fbpx
Wikipedia

Minimal surface of revolution

In mathematics, a minimal surface of revolution or minimum surface of revolution is a surface of revolution defined from two points in a half-plane, whose boundary is the axis of revolution of the surface. It is generated by a curve that lies in the half-plane and connects the two points; among all the surfaces that can be generated in this way, it is the one that minimizes the surface area.[1] A basic problem in the calculus of variations is finding the curve between two points that produces this minimal surface of revolution.[1]

Stretching a soap film between two parallel circular wire loops generates a catenoidal minimal surface of revolution

Relation to minimal surfaces edit

A minimal surface of revolution is a subtype of minimal surface.[1] A minimal surface is defined not as a surface of minimal area, but as a surface with a mean curvature of 0.[2] Since a mean curvature of 0 is a necessary condition of a surface of minimal area, all minimal surfaces of revolution are minimal surfaces, but not all minimal surfaces are minimal surfaces of revolution. As a point forms a circle when rotated about an axis, finding the minimal surface of revolution is equivalent to finding the minimal surface passing through two circular wireframes.[1] A physical realization of a minimal surface of revolution is soap film stretched between two parallel circular wires: the soap film naturally takes on the shape with least surface area.[3][4]

Catenoid solution edit

 
A catenoid

If the half-plane containing the two points and the axis of revolution is given Cartesian coordinates, making the axis of revolution into the x-axis of the coordinate system, then the curve connecting the points may be interpreted as the graph of a function. If the Cartesian coordinates of the two given points are  ,  , then the area of the surface generated by a nonnegative differentiable function   may be expressed mathematically as

 

and the problem of finding the minimal surface of revolution becomes one of finding the function that minimizes this integral, subject to the boundary conditions that   and  .[5] In this case, the optimal curve will necessarily be a catenary.[1][5] The axis of revolution is the directrix of the catenary, and the minimal surface of revolution will thus be a catenoid.[1][6][7]

Goldschmidt solution edit

Solutions based on discontinuous functions may also be defined. In particular, for some placements of the two points the optimal solution is generated by a discontinuous function that is nonzero at the two points and zero everywhere else. This function leads to a surface of revolution consisting of two circular disks, one for each point, connected by a degenerate line segment along the axis of revolution. This is known as a Goldschmidt solution[5][8] after German mathematician Carl Wolfgang Benjamin Goldschmidt,[4] who announced his discovery of it in his 1831 paper "Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datum axem ortae" ("Determination of the surface-minimal rotation curve given two joined points about a given axis of origin").[9]

To continue the physical analogy of soap film given above, these Goldschmidt solutions can be visualized as instances in which the soap film breaks as the circular wires are stretched apart.[4] However, in a physical soap film, the connecting line segment would not be present. Additionally, if a soap film is stretched in this way, there is a range of distances within which the catenoid solution is still feasible but has greater area than the Goldschmidt solution, so the soap film may stretch into a configuration in which the area is a local minimum but not a global minimum. For distances greater than this range, the catenary that defines the catenoid crosses the x-axis and leads to a self-intersecting surface, so only the Goldschmidt solution is feasible.[10]

References edit

  1. ^ a b c d e f Weisstein, Eric W. "Minimal Surface of Revolution". Mathworld. Wolfram Research. Retrieved 2012-08-29.
  2. ^ Weisstein, Eric W. "Minimal Surface". Mathworld. Wolfram Research. Retrieved 2012-08-29.
  3. ^ Olver, Peter J. (2012). "Chapter 21: The Calculus of Variations". Applied Mathematics Lecture Notes (PDF). Retrieved 2012-08-29.
  4. ^ a b c Nahin, Paul J. (2011). When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible. Princeton University Press. pp. 265–6. So what happens to the soap film after it breaks [...]? This discontinuous behavior is called the Goldschmidt solution, after the German mathematician C. W. B. Goldschmidt (1807-51) who discovered it (on paper) in 1831.
  5. ^ a b c Sagan, Hans (1992), "2.6 The problem of minimal surfaces of revolution", Introduction to the Calculus of Variations, Courier Dover Publications, pp. 62–66, ISBN 9780486673660
  6. ^ Colding, Tobias Holck; Minicozzi II, William P. (2011). "Chapter 1: The Beginning of the Theory". A Course in Minimal Surfaces (PDF). Graduate Studies in Mathematics. American Mathematical Society. Retrieved 2012-08-29.
  7. ^ Meeks III, William H.; Pérez, Joaquín (2012). "Chapter 2.5: Some interesting examples of complete minimal surfaces.". A Survey on Classical Minimal Surface Theory (PDF). University Lectures Series. Vol. 60. American Mathematical Society. Retrieved 2012-08-29.
  8. ^ Weisstein, Eric W. "Goldschmidt Solution". Mathworld. Wolfram Research. Retrieved 2012-08-29.
  9. ^ Goldschmidt, Benjamin (1831). "Bibliographic Information: Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datum axem ortae". Retrieved 2012-08-27.
  10. ^ Isenberg, Cyril (1992), The Science of Soap Films and Soap Bubbles, Courier Dover Publications, p. 165, ISBN 9780486269603.

minimal, surface, revolution, mathematics, minimal, surface, revolution, minimum, surface, revolution, surface, revolution, defined, from, points, half, plane, whose, boundary, axis, revolution, surface, generated, curve, that, lies, half, plane, connects, poi. In mathematics a minimal surface of revolution or minimum surface of revolution is a surface of revolution defined from two points in a half plane whose boundary is the axis of revolution of the surface It is generated by a curve that lies in the half plane and connects the two points among all the surfaces that can be generated in this way it is the one that minimizes the surface area 1 A basic problem in the calculus of variations is finding the curve between two points that produces this minimal surface of revolution 1 Stretching a soap film between two parallel circular wire loops generates a catenoidal minimal surface of revolution Contents 1 Relation to minimal surfaces 2 Catenoid solution 3 Goldschmidt solution 4 ReferencesRelation to minimal surfaces editA minimal surface of revolution is a subtype of minimal surface 1 A minimal surface is defined not as a surface of minimal area but as a surface with a mean curvature of 0 2 Since a mean curvature of 0 is a necessary condition of a surface of minimal area all minimal surfaces of revolution are minimal surfaces but not all minimal surfaces are minimal surfaces of revolution As a point forms a circle when rotated about an axis finding the minimal surface of revolution is equivalent to finding the minimal surface passing through two circular wireframes 1 A physical realization of a minimal surface of revolution is soap film stretched between two parallel circular wires the soap film naturally takes on the shape with least surface area 3 4 Catenoid solution edit nbsp A catenoid If the half plane containing the two points and the axis of revolution is given Cartesian coordinates making the axis of revolution into the x axis of the coordinate system then the curve connecting the points may be interpreted as the graph of a function If the Cartesian coordinates of the two given points are x 1 y 1 displaystyle x 1 y 1 nbsp x 2 y 2 displaystyle x 2 y 2 nbsp then the area of the surface generated by a nonnegative differentiable function f displaystyle f nbsp may be expressed mathematically as 2 p x 1 x 2 f x 1 f x 2 d x displaystyle 2 pi int x 1 x 2 f x sqrt 1 f x 2 dx nbsp and the problem of finding the minimal surface of revolution becomes one of finding the function that minimizes this integral subject to the boundary conditions that f x 1 y 1 displaystyle f x 1 y 1 nbsp and f x 2 y 2 displaystyle f x 2 y 2 nbsp 5 In this case the optimal curve will necessarily be a catenary 1 5 The axis of revolution is the directrix of the catenary and the minimal surface of revolution will thus be a catenoid 1 6 7 Goldschmidt solution editSolutions based on discontinuous functions may also be defined In particular for some placements of the two points the optimal solution is generated by a discontinuous function that is nonzero at the two points and zero everywhere else This function leads to a surface of revolution consisting of two circular disks one for each point connected by a degenerate line segment along the axis of revolution This is known as a Goldschmidt solution 5 8 after German mathematician Carl Wolfgang Benjamin Goldschmidt 4 who announced his discovery of it in his 1831 paper Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datum axem ortae Determination of the surface minimal rotation curve given two joined points about a given axis of origin 9 To continue the physical analogy of soap film given above these Goldschmidt solutions can be visualized as instances in which the soap film breaks as the circular wires are stretched apart 4 However in a physical soap film the connecting line segment would not be present Additionally if a soap film is stretched in this way there is a range of distances within which the catenoid solution is still feasible but has greater area than the Goldschmidt solution so the soap film may stretch into a configuration in which the area is a local minimum but not a global minimum For distances greater than this range the catenary that defines the catenoid crosses the x axis and leads to a self intersecting surface so only the Goldschmidt solution is feasible 10 References edit a b c d e f Weisstein Eric W Minimal Surface of Revolution Mathworld Wolfram Research Retrieved 2012 08 29 Weisstein Eric W Minimal Surface Mathworld Wolfram Research Retrieved 2012 08 29 Olver Peter J 2012 Chapter 21 The Calculus of Variations Applied Mathematics Lecture Notes PDF Retrieved 2012 08 29 a b c Nahin Paul J 2011 When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small or as Large as Possible Princeton University Press pp 265 6 So what happens to the soap film after it breaks This discontinuous behavior is called the Goldschmidt solution after the German mathematician C W B Goldschmidt 1807 51 who discovered it on paper in 1831 a b c Sagan Hans 1992 2 6 The problem of minimal surfaces of revolution Introduction to the Calculus of Variations Courier Dover Publications pp 62 66 ISBN 9780486673660 Colding Tobias Holck Minicozzi II William P 2011 Chapter 1 The Beginning of the Theory A Course in Minimal Surfaces PDF Graduate Studies in Mathematics American Mathematical Society Retrieved 2012 08 29 Meeks III William H Perez Joaquin 2012 Chapter 2 5 Some interesting examples of complete minimal surfaces A Survey on Classical Minimal Surface Theory PDF University Lectures Series Vol 60 American Mathematical Society Retrieved 2012 08 29 Weisstein Eric W Goldschmidt Solution Mathworld Wolfram Research Retrieved 2012 08 29 Goldschmidt Benjamin 1831 Bibliographic Information Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datum axem ortae Retrieved 2012 08 27 Isenberg Cyril 1992 The Science of Soap Films and Soap Bubbles Courier Dover Publications p 165 ISBN 9780486269603 Retrieved from https en wikipedia org w index php title Minimal surface of revolution amp oldid 1117689402, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.