fbpx
Wikipedia

Membrane vesicle trafficking

Membrane vesicle trafficking in eukaryotic animal cells involves movement of biochemical signal molecules from synthesis-and-packaging locations in the Golgi body to specific release locations on the inside of the plasma membrane of the secretory cell. It takes place in the form of Golgi membrane-bound micro-sized vesicles, termed membrane vesicles (MVs).

In this process, the packed cellular products are released or secreted outside the cell, across its plasma membrane. On the other hand, the vesicular membrane is retained and recycled by the secretory cells. This phenomenon has a major role in synaptic neurotransmission, endocrine secretion, mucous secretion, granular-product secretion by neutrophils, and other phenomena. The scientists behind this discovery were awarded Nobel prize for the year 2013.

In prokaryotic, gram-negative bacterial cells, membrane vesicle trafficking is mediated through bacterial outer membrane bounded nano-sized vesicles, called bacterial outer membrane vesicles (OMVs). In this case, however, the OMV membrane is secreted as well, along with OMV-contents to outside the secretion-active bacterium. This different phenomenon has a major role in host–pathogen interactions, endotoxic shock in patients, invasion and infection of animals or plants, inter-species bacterial competition, quorum sensing, exocytosis, and other areas.

Movement within eukaryotic cells edit

 
Here a vesicle forms as cargo, receptors and coat proteins gather. The vesicle then buds outwards and breaks free into the cytoplasm. The vesicle is moved towards its target location then docks and fuses.

Once vesicles are produced in the endoplasmic reticulum and modified in the Golgi body they make their way to a variety of destinations within the cell. Vesicles first leave the Golgi body and are released into the cytoplasm in a process called budding. Vesicles are then moved towards their destination by motor proteins. Once the vesicle arrives at its destination it joins with the bi-lipid layer in a process called fusion, and then releases its contents.

Budding edit

Receptors embedded in the membrane of the Golgi body bind specific cargo (such as dopamine) on the lumenal side of the vesicle. These cargo receptors then recruit a variety of proteins including other cargo receptors and coat proteins such as clathrin, COPI and COPII. As more and more of these coating proteins come together, they cause the vesicle to bud outward and eventually break free into the cytoplasm. The coating proteins are then shed into the cytoplasm to be recycled and reused.[1]

Motility between cell compartments edit

For movement between different compartments within the cell, vesicles rely on the motor proteins myosin, kinesin (primarily anterograde transport) and dynein (primarily retrograde transport). One end of the motor proteins attaches to the vesicle while the other end attaches to either microtubulees or microfilaments. The motor proteins then move by hydrolyzing ATP, which propels the vesicle towards its destination.[2]

Docking and Fusion edit

As a vesicle nears its intended location, RAB proteins in the vesicle membrane interact with docking proteins at the destination site. These docking proteins bring the vesicle in closer to interact with the SNARE Complex found in the target membrane. The SNARE complex reacts with synaptobrevin found on the vesicle membrane.[3] This forces the vesicle membrane against the membrane of the target complex (or the outer membrane of the cell) and causes the two membranes to fuse. Depending on whether the vesicle fuses with a target complex or the outer membrane, the contents of the vesicle are then released either into the target complex or outside the cell.[4]

Examples in eukaryotes edit

  1. Intracellular trafficking occurs between subcellular compartments like Golgi cisternae and multivesicular endosomes for transport of soluble proteins as MVs.
  2. Budding of MVs directly from plasma membrane as microvesicles released outside the secretory cells.
  3. Exosomes are MVs that can form inside an internal compartment like multivesicular endosome. Exosomes are released eventually due to fusion of this endosome with plasma membrane of cell.
  4. Hijacking of exosomal machinery by some viruses like retroviruses, wherein viruses bud inside multivesicular endosomes and get secreted subsequently as exosomes.

All these types (1–4) of modes of membrane vesicle trafficking, taking place in eukaryotic cells have been explained diagrammatically.[5]

In prokaryotes edit

Unlike in eukaryotes, membrane vesicular trafficking in prokaryotes is an emerging area in interactive biology for intra-species (quorum sensing) and inter-species signaling at the host–pathogen interface, as prokaryotes lack internal membrane-compartmentalization of their cytoplasm. Bacterial membrane vesicles dispersion along the cell surface was measured in live Escherichia coli, commensal bacteria common in the human gut. Antibiotic treatment altered vesicle dynamics, vesicle-to-membrane affinity, and surface properties of the cell membranes, generally enhancing vesicle transport along the surfaces of bacterial membranes and suggesting that their motion properties could be a signature of antibiotic stress.[6]

For more than four decades, cultures of gram negative microbes revealed the presence of nanoscale membrane vesicles. A role for membrane vesicles in pathogenic processes has been suspected since the 1970s, when they were observed in gingival plaque by electron microscopy.[7] These vesicles were suspected to promote bacterial adhesion to the host epithelial cell surface.[8] Their role in invasion of animal host cells in vivo was then demonstrated.[9] In inter-bacterial interactions, OMVs released by Pseudomonas aeruginosa microbes were shown to fuse with outer membrane of other gram negative microbes causing their bacteriolysis; these OMVs could lyse gram-positive microbes as well.[10] Role of OMVs in Helicobacter pylori infection of human primary antral epithelial cells, as model that closely resembles human stomach, has also been confirmed[11] VacA-containing OMVs could also be detected in human gastric mucosa, infected with H. pylori..[12] Salmonella OMVs were also shown to have direct role in invasion of chicken ileal epithelial cells in vivo in the year, 1993 (ref 4) and later, in hijacking of defense macrophages into sub-service for pathogen replication and consequent apoptosis of infected macrophages in typhoid-like animal infection.[13] These studies brought the focus on OMVs into membrane vesicle trafficking and showed this phenomenon as involved in multifarious processes like genetic transformation, quorum sensing, competition arsenal among microbes, etc., and invasion, infection, immuno-modulation, etc., of animal hosts.[7] A mechanism has already been proposed for generation of OMVs by gram negative microbes involving, expansion of pockets of periplasm (named, periplasmic organelles) due to accumulation of bacterial cell secretions and their pinching off as outer membrane bounded vesicles (OMVs) on the lines of a 'soap bubble' formation with a bubble tube, and further fusion or uptake of diffusing OMVs by host/target cells (Fig. 2).[14]

 
Fig. 2 Membrane vesicle trafficking Mechanism (A–E), proposed for release (stages A–C) of outer membrane vesicles, OMVs from gram-negative bacteria in analogy of soap-bubble formation from a bubble-tube assembly (RC in stage C) of rivet complexes, RC, and their translocation (stage D) to animal host/target cell, TC. General secretory pathway (GSP) secretes proteins across bacterial cell membrane (CM) to bulge out lipopolysaccharide (LPS)-rich outer membrane (OM) above peptidoglycan (PDG) layer into pockets of inflated periplasm, called periplasmic organelles (PO) to pinch off OMVs containing outer membrane proteins (OMPs), secretory proteins (SP) and chaperons (CH). OMVs signal epithelial host cells (EHC) to ruffle (R) aiding macropinoctosis of gram negative (G-) microbe (stage E).
 
Fig. 3 Transmission electron micrograph of human Salmonella organism bearing periplasmic organelles, (p, line arrow) on its surface and releasing bacterial outer membrane vesicles (MV) being endocytosed (curved arrow) by macrophage cell (M) in chicken ileum in vivo

In conclusion, membrane vesicle trafficking via OMVs of Gram-negative organisms, cuts across species and kingdoms – including plant kingdom[15] – in the realm of cell-to-cell signaling.

See also edit

References edit

  1. ^ Bonifacino, Juan (January 2004). "The Mechanisms of Vesicle Budding and Fusion". Cell. 116 (2): 153–166. doi:10.1016/S0092-8674(03)01079-1. PMID 14744428.
  2. ^ Hehnly H, Stamnes M (May 2007). "Regulating cytoskeleton-based vesicle motility". FEBS Letters. 581 (11): 2112–8. doi:10.1016/j.febslet.2007.01.094. PMC 1974873. PMID 17335816.
  3. ^ Nanavati C, Markin VS, Oberhauser AF, Fernandez JM (October 1992). "The exocytotic fusion pore modeled as a lipidic pore". Biophysical Journal. 63 (4): 1118–32. Bibcode:1992BpJ....63.1118N. doi:10.1016/S0006-3495(92)81679-X. PMC 1262250. PMID 1420930.
  4. ^ Papahadjopoulos D, Nir S, Düzgünes N (April 1990). "Molecular mechanisms of calcium-induced membrane fusion". Journal of Bioenergetics and Biomembranes. 22 (2): 157–79. doi:10.1007/BF00762944. PMID 2139437. S2CID 1465571.
  5. ^ Théry C, Ostrowski M, Segura E (August 2009). "Membrane vesicles as conveyors of immune responses". Nature Reviews. Immunology. 9 (8): 581–93. doi:10.1038/nri2567. PMID 19498381. S2CID 21161202.
  6. ^ Bos J, Cisneros LH, Mazel D (January 2021). "Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure". Science Advances. 7 (4): eabd1033. doi:10.1126/sciadv.abd1033. PMC 7817102. PMID 33523924.
  7. ^ a b Ellis TN, Kuehn MJ (March 2010). "Virulence and immunomodulatory roles of bacterial outer membrane vesicles". Microbiology and Molecular Biology Reviews. 74 (1): 81–94. doi:10.1128/MMBR.00031-09. PMC 2832350. PMID 20197500.
  8. ^ Halhoul N, Colvin JR (February 1975). "The ultrastructure of bacterial plaque attached to the gingiva of man". Archives of Oral Biology. 20 (2): 115–8. doi:10.1016/0003-9969(75)90164-8. PMID 1054578.
  9. ^ YashRoy RC (1993). "Electron microscope studies of surface pili and vesicles of Salmonella 3,10:r:- organisms". Indian Journal of Animal Sciences. 63 (2): 99–102.
  10. ^ Kadurugamuwa JL, Beveridge TJ (May 1996). "Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics". Journal of Bacteriology. 178 (10): 2767–74. doi:10.1128/jb.178.10.2767-2774.1996. PMC 178010. PMID 8631663.
  11. ^ Heczko U, Smith VC, Mark Meloche R, Buchan AM, Finlay BB (November 2000). "Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells". Microbes and Infection. 2 (14): 1669–76. doi:10.1016/s1286-4579(00)01322-8. PMID 11137040.
  12. ^ Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (June 1999). "Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium". The Journal of Pathology. 188 (2): 220–6. doi:10.1002/(sici)1096-9896(199906)188:2<220::aid-path307>3.0.co;2-c. PMID 10398168. S2CID 44528015.
  13. ^ Yashroy RC (2000). "Hijacking of macrophages by Salmonella (3,10:r:-) through 'type-III' secretion-like exocytotic signaling: a mechanism for infection of chicken ileum". Indian Journal of Poultry Science. 35 (3): 276–281.
  14. ^ YashRoy RC (June 2003). "Eucaryotic cell intoxication by gram-negative pathogens: a novel bacterial outermembrane-bound nanovesicular exocytosis model for type-III secretion system". Toxicology International. 10 (1): 1–9.
  15. ^ Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, Liu F, Ruan R, Fontaine-Bodin L, Koebnik R, Ronald P (2014). "The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles". PeerJ. 2: e242. doi:10.7717/peerj.242. PMC 3897388. PMID 24482761.{{cite journal}}: CS1 maint: unflagged free DOI (link)

External links edit

membrane, vesicle, trafficking, eukaryotic, animal, cells, involves, movement, biochemical, signal, molecules, from, synthesis, packaging, locations, golgi, body, specific, release, locations, inside, plasma, membrane, secretory, cell, takes, place, form, golg. Membrane vesicle trafficking in eukaryotic animal cells involves movement of biochemical signal molecules from synthesis and packaging locations in the Golgi body to specific release locations on the inside of the plasma membrane of the secretory cell It takes place in the form of Golgi membrane bound micro sized vesicles termed membrane vesicles MVs In this process the packed cellular products are released or secreted outside the cell across its plasma membrane On the other hand the vesicular membrane is retained and recycled by the secretory cells This phenomenon has a major role in synaptic neurotransmission endocrine secretion mucous secretion granular product secretion by neutrophils and other phenomena The scientists behind this discovery were awarded Nobel prize for the year 2013 In prokaryotic gram negative bacterial cells membrane vesicle trafficking is mediated through bacterial outer membrane bounded nano sized vesicles called bacterial outer membrane vesicles OMVs In this case however the OMV membrane is secreted as well along with OMV contents to outside the secretion active bacterium This different phenomenon has a major role in host pathogen interactions endotoxic shock in patients invasion and infection of animals or plants inter species bacterial competition quorum sensing exocytosis and other areas Contents 1 Movement within eukaryotic cells 1 1 Budding 1 2 Motility between cell compartments 1 3 Docking and Fusion 1 4 Examples in eukaryotes 2 In prokaryotes 3 See also 4 References 5 External linksMovement within eukaryotic cells edit nbsp Here a vesicle forms as cargo receptors and coat proteins gather The vesicle then buds outwards and breaks free into the cytoplasm The vesicle is moved towards its target location then docks and fuses Once vesicles are produced in the endoplasmic reticulum and modified in the Golgi body they make their way to a variety of destinations within the cell Vesicles first leave the Golgi body and are released into the cytoplasm in a process called budding Vesicles are then moved towards their destination by motor proteins Once the vesicle arrives at its destination it joins with the bi lipid layer in a process called fusion and then releases its contents Budding edit Receptors embedded in the membrane of the Golgi body bind specific cargo such as dopamine on the lumenal side of the vesicle These cargo receptors then recruit a variety of proteins including other cargo receptors and coat proteins such as clathrin COPI and COPII As more and more of these coating proteins come together they cause the vesicle to bud outward and eventually break free into the cytoplasm The coating proteins are then shed into the cytoplasm to be recycled and reused 1 Motility between cell compartments edit For movement between different compartments within the cell vesicles rely on the motor proteins myosin kinesin primarily anterograde transport and dynein primarily retrograde transport One end of the motor proteins attaches to the vesicle while the other end attaches to either microtubulees or microfilaments The motor proteins then move by hydrolyzing ATP which propels the vesicle towards its destination 2 Docking and Fusion edit As a vesicle nears its intended location RAB proteins in the vesicle membrane interact with docking proteins at the destination site These docking proteins bring the vesicle in closer to interact with the SNARE Complex found in the target membrane The SNARE complex reacts with synaptobrevin found on the vesicle membrane 3 This forces the vesicle membrane against the membrane of the target complex or the outer membrane of the cell and causes the two membranes to fuse Depending on whether the vesicle fuses with a target complex or the outer membrane the contents of the vesicle are then released either into the target complex or outside the cell 4 Examples in eukaryotes edit Intracellular trafficking occurs between subcellular compartments like Golgi cisternae and multivesicular endosomes for transport of soluble proteins as MVs Budding of MVs directly from plasma membrane as microvesicles released outside the secretory cells Exosomes are MVs that can form inside an internal compartment like multivesicular endosome Exosomes are released eventually due to fusion of this endosome with plasma membrane of cell Hijacking of exosomal machinery by some viruses like retroviruses wherein viruses bud inside multivesicular endosomes and get secreted subsequently as exosomes All these types 1 4 of modes of membrane vesicle trafficking taking place in eukaryotic cells have been explained diagrammatically 5 In prokaryotes editUnlike in eukaryotes membrane vesicular trafficking in prokaryotes is an emerging area in interactive biology for intra species quorum sensing and inter species signaling at the host pathogen interface as prokaryotes lack internal membrane compartmentalization of their cytoplasm Bacterial membrane vesicles dispersion along the cell surface was measured in live Escherichia coli commensal bacteria common in the human gut Antibiotic treatment altered vesicle dynamics vesicle to membrane affinity and surface properties of the cell membranes generally enhancing vesicle transport along the surfaces of bacterial membranes and suggesting that their motion properties could be a signature of antibiotic stress 6 For more than four decades cultures of gram negative microbes revealed the presence of nanoscale membrane vesicles A role for membrane vesicles in pathogenic processes has been suspected since the 1970s when they were observed in gingival plaque by electron microscopy 7 These vesicles were suspected to promote bacterial adhesion to the host epithelial cell surface 8 Their role in invasion of animal host cells in vivo was then demonstrated 9 In inter bacterial interactions OMVs released by Pseudomonas aeruginosa microbes were shown to fuse with outer membrane of other gram negative microbes causing their bacteriolysis these OMVs could lyse gram positive microbes as well 10 Role of OMVs in Helicobacter pylori infection of human primary antral epithelial cells as model that closely resembles human stomach has also been confirmed 11 VacA containing OMVs could also be detected in human gastric mucosa infected with H pylori 12 Salmonella OMVs were also shown to have direct role in invasion of chicken ileal epithelial cells in vivo in the year 1993 ref 4 and later in hijacking of defense macrophages into sub service for pathogen replication and consequent apoptosis of infected macrophages in typhoid like animal infection 13 These studies brought the focus on OMVs into membrane vesicle trafficking and showed this phenomenon as involved in multifarious processes like genetic transformation quorum sensing competition arsenal among microbes etc and invasion infection immuno modulation etc of animal hosts 7 A mechanism has already been proposed for generation of OMVs by gram negative microbes involving expansion of pockets of periplasm named periplasmic organelles due to accumulation of bacterial cell secretions and their pinching off as outer membrane bounded vesicles OMVs on the lines of a soap bubble formation with a bubble tube and further fusion or uptake of diffusing OMVs by host target cells Fig 2 14 nbsp Fig 2 Membrane vesicle trafficking Mechanism A E proposed for release stages A C of outer membrane vesicles OMVs from gram negative bacteria in analogy of soap bubble formation from a bubble tube assembly RC in stage C of rivet complexes RC and their translocation stage D to animal host target cell TC General secretory pathway GSP secretes proteins across bacterial cell membrane CM to bulge out lipopolysaccharide LPS rich outer membrane OM above peptidoglycan PDG layer into pockets of inflated periplasm called periplasmic organelles PO to pinch off OMVs containing outer membrane proteins OMPs secretory proteins SP and chaperons CH OMVs signal epithelial host cells EHC to ruffle R aiding macropinoctosis of gram negative G microbe stage E nbsp Fig 3 Transmission electron micrograph of human Salmonella organism bearing periplasmic organelles p line arrow on its surface and releasing bacterial outer membrane vesicles MV being endocytosed curved arrow by macrophage cell M in chicken ileum in vivoIn conclusion membrane vesicle trafficking via OMVs of Gram negative organisms cuts across species and kingdoms including plant kingdom 15 in the realm of cell to cell signaling See also editBacterial outer membrane vesicles Endocytosis Exocytosis Host pathogen interaction Secretory pathway Vesicle Biology and Chemistry VirulenceReferences edit Bonifacino Juan January 2004 The Mechanisms of Vesicle Budding and Fusion Cell 116 2 153 166 doi 10 1016 S0092 8674 03 01079 1 PMID 14744428 Hehnly H Stamnes M May 2007 Regulating cytoskeleton based vesicle motility FEBS Letters 581 11 2112 8 doi 10 1016 j febslet 2007 01 094 PMC 1974873 PMID 17335816 Nanavati C Markin VS Oberhauser AF Fernandez JM October 1992 The exocytotic fusion pore modeled as a lipidic pore Biophysical Journal 63 4 1118 32 Bibcode 1992BpJ 63 1118N doi 10 1016 S0006 3495 92 81679 X PMC 1262250 PMID 1420930 Papahadjopoulos D Nir S Duzgunes N April 1990 Molecular mechanisms of calcium induced membrane fusion Journal of Bioenergetics and Biomembranes 22 2 157 79 doi 10 1007 BF00762944 PMID 2139437 S2CID 1465571 Thery C Ostrowski M Segura E August 2009 Membrane vesicles as conveyors of immune responses Nature Reviews Immunology 9 8 581 93 doi 10 1038 nri2567 PMID 19498381 S2CID 21161202 Bos J Cisneros LH Mazel D January 2021 Real time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure Science Advances 7 4 eabd1033 doi 10 1126 sciadv abd1033 PMC 7817102 PMID 33523924 a b Ellis TN Kuehn MJ March 2010 Virulence and immunomodulatory roles of bacterial outer membrane vesicles Microbiology and Molecular Biology Reviews 74 1 81 94 doi 10 1128 MMBR 00031 09 PMC 2832350 PMID 20197500 Halhoul N Colvin JR February 1975 The ultrastructure of bacterial plaque attached to the gingiva of man Archives of Oral Biology 20 2 115 8 doi 10 1016 0003 9969 75 90164 8 PMID 1054578 YashRoy RC 1993 Electron microscope studies of surface pili and vesicles of Salmonella 3 10 r organisms Indian Journal of Animal Sciences 63 2 99 102 Kadurugamuwa JL Beveridge TJ May 1996 Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens conceptually new antibiotics Journal of Bacteriology 178 10 2767 74 doi 10 1128 jb 178 10 2767 2774 1996 PMC 178010 PMID 8631663 Heczko U Smith VC Mark Meloche R Buchan AM Finlay BB November 2000 Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells Microbes and Infection 2 14 1669 76 doi 10 1016 s1286 4579 00 01322 8 PMID 11137040 Fiocca R Necchi V Sommi P Ricci V Telford J Cover TL Solcia E June 1999 Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles Uptake of released toxin and vesicles by gastric epithelium The Journal of Pathology 188 2 220 6 doi 10 1002 sici 1096 9896 199906 188 2 lt 220 aid path307 gt 3 0 co 2 c PMID 10398168 S2CID 44528015 Yashroy RC 2000 Hijacking of macrophages by Salmonella 3 10 r through type III secretion like exocytotic signaling a mechanism for infection of chicken ileum Indian Journal of Poultry Science 35 3 276 281 YashRoy RC June 2003 Eucaryotic cell intoxication by gram negative pathogens a novel bacterial outermembrane bound nanovesicular exocytosis model for type III secretion system Toxicology International 10 1 1 9 Bahar O Pruitt R Luu DD Schwessinger B Daudi A Liu F Ruan R Fontaine Bodin L Koebnik R Ronald P 2014 The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles PeerJ 2 e242 doi 10 7717 peerj 242 PMC 3897388 PMID 24482761 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint unflagged free DOI link External links editNobel Prize of year 2013 in Physiology and Medicine press release http www nobelprize org nobel prizes medicine laureates 2013 press html Discovery of vesicular exocytosis in prokaryotes https www researchgate net publication 230793568 Discovery of vesicular exocytosis in prokaryotes and its role in Salmonella invasion ev prf pub Retrieved from https en wikipedia org w index php title Membrane vesicle trafficking amp oldid 1186551543, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.