fbpx
Wikipedia

Mehler kernel

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

Mehler's formula

Mehler (1866) defined a function[1]

 

and showed, in modernized notation,[2] that it can be expanded in terms of Hermite polynomials H(.) based on weight function exp(−x²) as

 

This result is useful, in modified form, in quantum physics, probability theory, and harmonic analysis.

Physics version

In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel. It provides the fundamental solution---the most general solution[3] φ(x,t) to

 

The orthonormal eigenfunctions of the operator D are the Hermite functions,

 

with corresponding eigenvalues (2n+1), furnishing particular solutions

 

The general solution is then a linear combination of these; when fitted to the initial condition φ(x,0), the general solution reduces to

 

where the kernel K has the separable representation

 

Utilizing Mehler's formula then yields

 

On substituting this in the expression for K with the value exp(−2t) for ρ, Mehler's kernel finally reads

 

When t = 0, variables x and y coincide, resulting in the limiting formula necessary by the initial condition,

 

As a fundamental solution, the kernel is additive,

 

This is further related to the symplectic rotation structure of the kernel K.[4]

When using the usual physics conventions of defining the quantum harmonic oscillator instead via

 

and assuming natural length and energy scales, then the Mehler kernel becomes the Feynman propagator   which reads

 

i.e.  

When   the   in the inverse square-root should be replaced by   and   should be multiplied by an extra Maslov phase factor [5]

 


When   the general solution is proportional to the Fourier transform   of the initial conditions   since

 

and the exact Fourier transform is thus obtained from the quantum harmonic oscillator's number operator written as[6]

 

since the resulting kernel

 

also compensates for the phase factor still arising in   and  , i.e.

 

which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t, and of the conventional Fourier transform   for the particular value  , with the Mehler kernel providing an active transform, while the corresponding passive transform is already embedded in the basis change from position to momentum space. The eigenfunctions of   are still the Hermite functions   which are therefore also Eigenfunctions of  .[7]

Probability version

The result of Mehler can also be linked to probability. For this, the variables should be rescaled as xx/2, yy/2, so as to change from the 'physicist's' Hermite polynomials H(.) (with weight function exp(−x2)) to "probabilist's" Hermite polynomials He(.) (with weight function exp(−x2/2)). Then, E becomes

 

The left-hand side here is p(x,y)/p(x)p(y) where p(x,y) is the bivariate Gaussian probability density function for variables x,y having zero means and unit variances:

 

and p(x), p(y) are the corresponding probability densities of x and y (both standard normal).

There follows the usually quoted form of the result (Kibble 1945)[8]

 

This expansion is most easily derived by using the two-dimensional Fourier transform of p(x,y), which is

 

This may be expanded as

 

The Inverse Fourier transform then immediately yields the above expansion formula.

This result can be extended to the multidimensional case.[8][9][10]

Fractional Fourier transform

Since Hermite functions ψn are orthonormal eigenfunctions of the Fourier transform,

 

in harmonic analysis and signal processing, they diagonalize the Fourier operator,

 

Thus, the continuous generalization for real angle α can be readily defined (Wiener, 1929;[11] Condon, 1937[12]), the fractional Fourier transform (FrFT), with kernel

 

This is a continuous family of linear transforms generalizing the Fourier transform, such that, for α = π/2, it reduces to the standard Fourier transform, and for α = −π/2 to the inverse Fourier transform.

The Mehler formula, for ρ = exp(−iα), thus directly provides

 

The square root is defined such that the argument of the result lies in the interval [−π /2, π /2].

If α is an integer multiple of π, then the above cotangent and cosecant functions diverge. In the limit, the kernel goes to a Dirac delta function in the integrand, δ(x−y) or δ(x+y), for α an even or odd multiple of π, respectively. Since  [f ] = f(−x),  [f ] must be simply f(x) or f(−x) for α an even or odd multiple of π, respectively.

See also

References

  1. ^ Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung", Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj (cf. p 174, eqn (18) & p 173, eqn (13) )
  2. ^ Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher transcendental functions. Vol. II, McGraw-Hill (scan:   p.194 10.13 (22))
  3. ^ Pauli, W., Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620 ; See section 44.
  4. ^ The quadratic form in its exponent, up to a factor of −1/2, involves the simplest (unimodular, symmetric) symplectic matrix in Sp(2,R). That is,
        where
     
    so it preserves the symplectic metric,
     
  5. ^ Horvathy, Peter (1979). "Extended Feynman Formula for Harmonic Oscillator". International Journal of Theoretical Physics. 18 (4): 245-250.
  6. ^ Wolf, Kurt B. (1979), Integral Transforms in Science and Engineering, Springer ([1] and [2]); see section 7.5.10.
  7. ^ Celeghini, Enrico; Gadella, Manuel; del Olmo, Mariano A. (2021). "Hermite Functions and Fourier Series". Symmetry. 13 (5). doi:10.3390/sym13050853.
  8. ^ a b Kibble, W. F. (1945), "An extension of a theorem of Mehler's on Hermite polynomials", Proc. Cambridge Philos. Soc., 41 (1): 12–15, Bibcode:1945PCPS...41...12K, doi:10.1017/S0305004100022313, MR 0012728, S2CID 121931906
  9. ^ Slepian, David (1972), "On the symmetrized Kronecker power of a matrix and extensions of Mehler's formula for Hermite polynomials", SIAM Journal on Mathematical Analysis, 3 (4): 606–616, doi:10.1137/0503060, ISSN 0036-1410, MR 0315173
  10. ^ Hörmander, Lars (1995). "Symplectic classification of quadratic forms, and general Mehler formulas". Mathematische Zeitschrift. 219: 413–449. doi:10.1007/BF02572374. S2CID 122233884.
  11. ^ Wiener, N (1929), "Hermitian Polynomials and Fourier Analysis", Journal of Mathematics and Physics 8: 70–73.
  12. ^ Condon, E. U. (1937). "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23, 158–164. online
  • Nicole Berline, Ezra Getzler, and Michèle Vergne (2013). Heat Kernels and Dirac Operators, (Springer: Grundlehren Text Editions) Paperback ISBN 3540200622
  • Louck, J. D. (1981). "Extension of the Kibble-Slepian formula for Hermite polynomials using boson operator methods". Advances in Applied Mathematics. 2 (3): 239–249. doi:10.1016/0196-8858(81)90005-1.
  • H. M. Srivastava and J. P. Singhal (1972). "Some extensions of the Mehler formula", Proc. Amer. Math. Soc. 31: 135–141. (online)

mehler, kernel, complex, valued, function, found, propagator, quantum, harmonic, oscillator, contents, mehler, formula, physics, version, probability, version, fractional, fourier, transform, also, referencesmehler, formula, editmehler, 1866, defined, function. The Mehler kernel is a complex valued function found to be the propagator of the quantum harmonic oscillator Contents 1 Mehler s formula 2 Physics version 3 Probability version 4 Fractional Fourier transform 5 See also 6 ReferencesMehler s formula EditMehler 1866 defined a function 1 E x y 1 1 r 2 exp r 2 x 2 y 2 2 r x y 1 r 2 displaystyle E x y frac 1 sqrt 1 rho 2 exp left frac rho 2 x 2 y 2 2 rho xy 1 rho 2 right and showed in modernized notation 2 that it can be expanded in terms of Hermite polynomials H based on weight function exp x as E x y n 0 r 2 n n H n x H n y displaystyle E x y sum n 0 infty frac rho 2 n n mathit H n x mathit H n y This result is useful in modified form in quantum physics probability theory and harmonic analysis Physics version EditIn physics the fundamental solution Green s function or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel It provides the fundamental solution the most general solution 3 f x t to f t 2 f x 2 x 2 f D x f displaystyle frac partial varphi partial t frac partial 2 varphi partial x 2 x 2 varphi equiv D x varphi The orthonormal eigenfunctions of the operator D are the Hermite functions ps n H n x exp x 2 2 2 n n p displaystyle psi n frac H n x exp x 2 2 sqrt 2 n n sqrt pi with corresponding eigenvalues 2n 1 furnishing particular solutions f n x t e 2 n 1 t H n x exp x 2 2 displaystyle varphi n x t e 2n 1 t H n x exp x 2 2 The general solution is then a linear combination of these when fitted to the initial condition f x 0 the general solution reduces to f x t K x y t f y 0 d y displaystyle varphi x t int K x y t varphi y 0 dy where the kernel K has the separable representation K x y t n 0 e 2 n 1 t p 2 n n H n x H n y exp x 2 y 2 2 displaystyle K x y t equiv sum n geq 0 frac e 2n 1 t sqrt pi 2 n n H n x H n y exp x 2 y 2 2 Utilizing Mehler s formula then yields n 0 r 2 n n H n x H n y exp x 2 y 2 2 1 1 r 2 exp 4 x y r 1 r 2 x 2 y 2 2 1 r 2 displaystyle sum n geq 0 frac rho 2 n n H n x H n y exp x 2 y 2 2 1 over sqrt 1 rho 2 exp left 4xy rho 1 rho 2 x 2 y 2 over 2 1 rho 2 right On substituting this in the expression for K with the value exp 2t for r Mehler s kernel finally reads K x y t 1 2 p sinh 2 t exp coth 2 t x 2 y 2 2 csch 2 t x y displaystyle K x y t frac 1 sqrt 2 pi sinh 2t exp left coth 2t x 2 y 2 2 operatorname csch 2t xy right When t 0 variables x and y coincide resulting in the limiting formula necessary by the initial condition K x y 0 d x y displaystyle K x y 0 delta x y As a fundamental solution the kernel is additive d y K x y t K y z t K x z t t displaystyle int dyK x y t K y z t K x z t t This is further related to the symplectic rotation structure of the kernel K 4 When using the usual physics conventions of defining the quantum harmonic oscillator instead via i f t 1 2 2 x 2 x 2 f H f displaystyle i frac partial varphi partial t frac 1 2 left frac partial 2 partial x 2 x 2 right varphi equiv H varphi and assuming natural length and energy scales then the Mehler kernel becomes the Feynman propagator K H displaystyle K H which reads x exp i t H y K H x y t 1 2 p i sin t exp i 2 sin t x 2 y 2 cos t 2 x y t lt p displaystyle langle x mid exp itH mid y rangle equiv K H x y t frac 1 sqrt 2 pi i sin t exp left frac i 2 sin t left x 2 y 2 cos t 2xy right right quad t lt pi i e K H x y t K x y i t 2 displaystyle K H x y t K x y it 2 When t gt p displaystyle t gt pi the i sin t displaystyle i sin t in the inverse square root should be replaced by sin t displaystyle sin t and K H displaystyle K H should be multiplied by an extra Maslov phase factor 5 exp i 8 M a s l o v exp i p 2 1 2 t p displaystyle exp left i theta rm Maslov right exp left i frac pi 2 left frac 1 2 left lfloor frac t pi right rfloor right right When t p 2 displaystyle t pi 2 the general solution is proportional to the Fourier transform F displaystyle mathcal F of the initial conditions f 0 y f y 0 displaystyle varphi 0 y equiv varphi y 0 since f x t p 2 K H x y p 2 f y 0 d y 1 2 p i exp i x y f y 0 d y exp i p 4 F f 0 x displaystyle varphi x t pi 2 int K H x y pi 2 varphi y 0 dy frac 1 sqrt 2 pi i int exp ixy varphi y 0 dy exp i pi 4 mathcal F varphi 0 x and the exact Fourier transform is thus obtained from the quantum harmonic oscillator s number operator written as 6 N 1 2 x x x x H 1 2 1 2 2 x 2 x 2 1 displaystyle N equiv frac 1 2 left x frac partial partial x right left x frac partial partial x right H frac 1 2 frac 1 2 left frac partial 2 partial x 2 x 2 1 right since the resulting kernel x exp i t N y K N x y t exp i t 2 K H x y t exp i t 2 K x y i t 2 displaystyle langle x mid exp itN mid y rangle equiv K N x y t exp it 2 K H x y t exp it 2 K x y it 2 also compensates for the phase factor still arising in K H displaystyle K H and K displaystyle K i e f x t p 2 K N x y p 2 f y 0 d y F f 0 x displaystyle varphi x t pi 2 int K N x y pi 2 varphi y 0 dy mathcal F varphi 0 x which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t and of the conventional Fourier transform F displaystyle mathcal F for the particular value t p 2 displaystyle t pi 2 with the Mehler kernel providing an active transform while the corresponding passive transform is already embedded in the basis change from position to momentum space The eigenfunctions of N displaystyle N are still the Hermite functions ps n x displaystyle psi n x which are therefore also Eigenfunctions of F displaystyle mathcal F 7 Probability version EditThe result of Mehler can also be linked to probability For this the variables should be rescaled as x x 2 y y 2 so as to change from the physicist s Hermite polynomials H with weight function exp x 2 to probabilist s Hermite polynomials He with weight function exp x 2 2 Then E becomes 1 1 r 2 exp r 2 x 2 y 2 2 r x y 2 1 r 2 n 0 r n n H e n x H e n y displaystyle frac 1 sqrt 1 rho 2 exp left frac rho 2 x 2 y 2 2 rho xy 2 1 rho 2 right sum n 0 infty frac rho n n mathit He n x mathit He n y The left hand side here is p x y p x p y where p x y is the bivariate Gaussian probability density function for variables x y having zero means and unit variances p x y 1 2 p 1 r 2 exp x 2 y 2 2 r x y 2 1 r 2 displaystyle p x y frac 1 2 pi sqrt 1 rho 2 exp left frac x 2 y 2 2 rho xy 2 1 rho 2 right and p x p y are the corresponding probability densities of x and y both standard normal There follows the usually quoted form of the result Kibble 1945 8 p x y p x p y n 0 r n n H e n x H e n y displaystyle p x y p x p y sum n 0 infty frac rho n n mathit He n x mathit He n y This expansion is most easily derived by using the two dimensional Fourier transform of p x y which is c i u 1 i u 2 exp u 1 2 u 2 2 2 r u 1 u 2 2 displaystyle c iu 1 iu 2 exp u 1 2 u 2 2 2 rho u 1 u 2 2 This may be expanded as exp u 1 2 u 2 2 2 n 0 r n n u 1 u 2 n displaystyle exp u 1 2 u 2 2 2 sum n 0 infty frac rho n n u 1 u 2 n The Inverse Fourier transform then immediately yields the above expansion formula This result can be extended to the multidimensional case 8 9 10 Fractional Fourier transform EditMain article Fractional Fourier transform Since Hermite functions psn are orthonormal eigenfunctions of the Fourier transform F ps n y i n ps n y displaystyle mathcal F psi n y i n psi n y in harmonic analysis and signal processing they diagonalize the Fourier operator F f y d x f x n 0 i n ps n x ps n y displaystyle mathcal F f y int dxf x sum n geq 0 i n psi n x psi n y Thus the continuous generalization for real angle a can be readily defined Wiener 1929 11 Condon 1937 12 the fractional Fourier transform FrFT with kernel F a n 0 i 2 a n p ps n x ps n y displaystyle mathcal F alpha sum n geq 0 i 2 alpha n pi psi n x psi n y This is a continuous family of linear transforms generalizing the Fourier transform such that for a p 2 it reduces to the standard Fourier transform and for a p 2 to the inverse Fourier transform The Mehler formula for r exp ia thus directly provides F a f y 1 i cot a 2 p e i cot a 2 y 2 e i csc a y x cot a 2 x 2 f x d x displaystyle mathcal F alpha f y sqrt frac 1 i cot alpha 2 pi e i frac cot alpha 2 y 2 int infty infty e i left csc alpha yx frac cot alpha 2 x 2 right f x mathrm d x The square root is defined such that the argument of the result lies in the interval p 2 p 2 If a is an integer multiple of p then the above cotangent and cosecant functions diverge In the limit the kernel goes to a Dirac delta function in the integrand d x y or d x y for a an even or odd multiple of p respectively Since F 2 displaystyle mathcal F 2 f f x F a displaystyle mathcal F alpha f must be simply f x or f x for a an even or odd multiple of p respectively See also EditOscillator representation Harmonic oscillator and Hermite functions Heat kernel Hermite polynomials Parabolic cylinder functions Laguerre polynomials Hardy Hille formulaReferences Edit Mehler F G 1866 Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen hoherer Ordnung Journal fur die Reine und Angewandte Mathematik in German 66 161 176 ISSN 0075 4102 ERAM 066 1720cj cf p 174 eqn 18 amp p 173 eqn 13 Erdelyi Arthur Magnus Wilhelm Oberhettinger Fritz Tricomi Francesco G 1955 Higher transcendental functions Vol II McGraw Hill scan p 194 10 13 22 Pauli W Wave Mechanics Volume 5 of Pauli Lectures on Physics Dover Books on Physics 2000 ISBN 0486414620 See section 44 The quadratic form in its exponent up to a factor of 1 2 involves the simplest unimodular symmetric symplectic matrix in Sp 2 R That is x y M x y displaystyle x y mathbf M begin pmatrix x y end pmatrix where M csch 2 t cosh 2 t 1 1 cosh 2 t displaystyle mathbf M equiv operatorname csch 2t begin pmatrix cosh 2t amp 1 1 amp cosh 2t end pmatrix so it preserves the symplectic metric M T 0 1 1 0 M 0 1 1 0 displaystyle mathbf M text T begin pmatrix 0 amp 1 1 amp 0 end pmatrix mathbf M begin pmatrix 0 amp 1 1 amp 0 end pmatrix Horvathy Peter 1979 Extended Feynman Formula for Harmonic Oscillator International Journal of Theoretical Physics 18 4 245 250 Wolf Kurt B 1979 Integral Transforms in Science and Engineering Springer 1 and 2 see section 7 5 10 Celeghini Enrico Gadella Manuel del Olmo Mariano A 2021 Hermite Functions and Fourier Series Symmetry 13 5 doi 10 3390 sym13050853 a b Kibble W F 1945 An extension of a theorem of Mehler s on Hermite polynomials Proc Cambridge Philos Soc 41 1 12 15 Bibcode 1945PCPS 41 12K doi 10 1017 S0305004100022313 MR 0012728 S2CID 121931906 Slepian David 1972 On the symmetrized Kronecker power of a matrix and extensions of Mehler s formula for Hermite polynomials SIAM Journal on Mathematical Analysis 3 4 606 616 doi 10 1137 0503060 ISSN 0036 1410 MR 0315173 Hormander Lars 1995 Symplectic classification of quadratic forms and general Mehler formulas Mathematische Zeitschrift 219 413 449 doi 10 1007 BF02572374 S2CID 122233884 Wiener N 1929 Hermitian Polynomials and Fourier Analysis Journal of Mathematics and Physics 8 70 73 Condon E U 1937 Immersion of the Fourier transform in a continuous group of functional transformations Proc Natl Acad Sci USA 23 158 164 online Nicole Berline Ezra Getzler and Michele Vergne 2013 Heat Kernels and Dirac Operators Springer Grundlehren Text Editions Paperback ISBN 3540200622 Louck J D 1981 Extension of the Kibble Slepian formula for Hermite polynomials using boson operator methods Advances in Applied Mathematics 2 3 239 249 doi 10 1016 0196 8858 81 90005 1 H M Srivastava and J P Singhal 1972 Some extensions of the Mehler formula Proc Amer Math Soc 31 135 141 online Retrieved from https en wikipedia org w index php title Mehler kernel amp oldid 1134630239, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.