fbpx
Wikipedia

Orbit of Mars

Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934.[1][2] The planet orbits the Sun in 687 days[3] and travels 9.55 AU in doing so,[4] making the average orbital speed 24 km/s.

Orbit of Mars relative to the orbits of inner Solar System planets

The eccentricity is greater than that of every other planet except Mercury, and this causes a large difference between the aphelion and perihelion distances—they are 1.6660 and 1.3814 AU.[5] [citation needed]

Changes in the orbit edit

Mars is in the midst of a long-term increase in eccentricity. It reached a minimum of 0.079 about 19 millennia ago, and will peak at about 0.105 after about 24 millennia from now (and with perihelion distances a mere 1.3621 astronomical units). The orbit is at times near circular: it was 0.002 1.35 million years ago, and will reach a similar minimum 1.05 million years into the future.[clarification needed] The maximum eccentricity between those two extreme minima is 0.12 in about 200 thousand years.[6]

Oppositions edit

Mars reaches opposition when there is a 180° difference between the geocentric longitudes of it and the Sun. At a time near opposition (within 8½ days) the Earth–Mars distance is as small as it will get during that 780-day synodic period.[7] Every opposition has some significance because Mars is visible from Earth all night, high and fully lit, but the ones of special interest happen when Mars is near perihelion, because this is when Mars is also nearest to Earth. One perihelic opposition is followed by another either 15 or 17 years later. In fact every opposition is followed by a similar one 7 or 8 synodic periods later, and by a very similar one 37 synodic periods (79 years) later.[8] In the so-called perihelic opposition Mars is closest to the Sun and is particularly close to Earth: Oppositions range from about 0.68 AU when Mars is near aphelion to only about 0.37 AU when Mars is near perihelion.[9]

Close approaches to Earth edit

Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost 60,000 years (57,617 BC). The record minimum distance between Earth and Mars in 2729 will stand at 55.65 million km. In the year 3818, the record will stand at 55.44 million km, and the distances will continue to decrease for about 24,000 years.[10]

Historical importance edit

Until the work of Johannes Kepler (1571–1630), a German astronomer, the prevailing belief was that the Sun and planets orbited the Earth. In 1543, Nicolaus Copernicus had proposed that all the planets orbited in circles around the Sun, but his theory did not give very satisfactory predictions and was largely ignored. When Kepler studied his boss Tycho Brahe's observations of Mars's position in the sky on many nights, Kepler realized that Mars's orbit could not be a circle. After years of analysis, Kepler discovered that Mars's orbit was likely to be an ellipse, with the Sun at one of the ellipse's focal points. This, in turn, led to Kepler's discovery that all planets orbit the Sun in elliptical orbits, with the Sun at one of the two focal points. This became the first of Kepler's three laws of planetary motion.[11][12]

Accuracy/predictability edit

From the perspective of all but the most demanding, the path of Mars is simple. An equation in Astronomical Algorithms that assumes an unperturbed elliptical orbit predicts the perihelion and aphelion times with an error of "a few hours".[13] Using orbital elements to calculate those distances agrees to actual averages to at least five significant figures. Formulas for computing position straight from orbital elements typically do not provide or need corrections for the effects of other planets.[14]

For a higher level of accuracy the perturbations of planets are required. These are well known, and are believed to be modeled well enough to achieve high accuracy. These are all of the bodies that need to be considered for even many demanding problems. When Aldo Vitagliano calculated the date of close Martian approaches in the distant past or future, he tested the potential effect caused by the uncertainties of the asteroid belt models by running the simulations both with and without the biggest three asteroids, and found the effects were negligible.

Observations improved, and space age technology has replaced the older techniques. E. Myles Standish wrote: "Classical ephemerides over the past centuries have been based entirely upon optical observations:almost exclusively, meridian circle transit timings. With the advent of planetary radar, spacecraft missions, VLBI, etc., the situation for the four inner planets has changed dramatically." (8.5.1 page 10) For DE405, created in 1995, optical observations were dropped and as he wrote "initial conditions for the inner four planets were adjusted to ranging data primarily…"[15] The error in DE405 is known to be about 2 km and is now sub-kilometer.[16]

Although the perturbations on Mars by asteroids have caused problems, they have also been used to estimate the masses of certain asteroids.[17] But improving the model of the asteroid belt is of great concern to those requiring or attempting to provide the highest-accuracy ephemerides.[18]

Orbital parameters edit

No more than five significant figures are presented in the following table of Mars's orbital elements. To this level of precision, the numbers match very well the VSOP87 elements and calculations derived from them, as well as Standish's (of JPL) 250-year best fit, and calculations using the actual positions of Mars over time.

Distances and eccentricity (AU) (million km)
Semimajor axis 1.5237 227.9
Perihelion 1.3814 206.7
Aphelion 1.6660 249.2
Average[19] 1.5303 228.9
Circumference 9.553 1429
Closest approach to Earth 0.3727 55.76
Farthest distance from Earth 2.675 400.2
Eccentricity 0.0934
Angles (°)
Inclination 1.850
Period (days) (years)
Orbital 687.0 1.881
Synodic 779.9 2.135
Speed (km/s)
Average 24.1
Maximum 26.5
Minimum 22.0

References edit

  1. ^ Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A...282..663S.
  2. ^ Jean Meeus, Astronomical Formulæ for Calculators. (Richmond, VA: Willmann-Bell, 1988) 99. Elements by F. E. Ross
  3. ^ In ephemeris days of 86 400 seconds. The sidereal and anomalistic years are 686.980 days and 686.996 days long, respectively. (About a 20 minute difference). The sidereal year is the time taken to revolve around the Sun relative to a fixed reference frame. More precisely, the sidereal year is one way to express the rate of change of the mean longitude at one instant, with respect to a fixed equinox. The calculation shows how long it would take for the longitude to change 360 degrees at the given rate. The anomalistic year is the time span between successive perihelion or aphelion passages. This may be calculated in the same manner as the sidereal year, but the mean anomaly is used.
  4. ^ Jean Meeus, Astronomical Algorithms (Richmond, VA: Willmann-Bell, 1998) 238. The formula by Ramanujan is accurate enough.
  5. ^ The averages between 1850 and 2150. The extreme values in that range are 1.66635 and 1.38097 AU
  6. ^ . Archived from the original on 2007-09-07. Retrieved 2007-07-20. Mars distance and eccentricity, using SOLEX. By its creator, Aldo Vitagliano
  7. ^ The synodic period may be calculated as 1/(1/p-1/q), where p and q are the smaller and larger sidereal periods.
  8. ^ The synodic period of Mars is 92.9 days longer than its sidereal period of 687.0 days. It has then moved forward 92.9/687.0 times 360, or 48.7 degrees. After seven oppositions it has moved forward 341 degrees, and after eight it has advanced 390 degrees; in the first case its longitude is different from one revolution by 19°, and by 30° in the second. So the situations will then be similar. Similar calculations show that the longitude changes only 2° after 37 oppositions.
  9. ^ Sheehan, William (February 2, 1997). . The Planet Mars: A History of Observation and Discovery. University of Arizona Press. Archived from the original on June 25, 2010. Retrieved January 30, 2010.
  10. ^ Meeus, Jean (March 2003). "When Was Mars Last This Close?" (PDF). Planetarian: 13.
  11. ^ Carr, Michael H.; Malin, Michael C.; Belton, Michael J.S. (July 27, 2018). "Mars". Encyclopædia Britannica Online. p. 2.
  12. ^ William Sheehan, The Planet Mars: A History of Observation and Discovery (Tucson, AZ: The University of Arizona Press, 1996) Chapter 1
  13. ^ Meeus (1998) pp 269–270
  14. ^ see, for example, Simon et al. (1994) p. 681
  15. ^ Standish & Williams (2012). "CHAPTER 8: Orbital Ephemerides of the Sun, Moon, and Planets" (PDF). 2012 version of the Explanatory Supplement
  16. ^ As noted in a 2008 JPL Memorandum regarding DE421, "The error in the Earth and Mars orbits in DE405 is now known to be about 2 km, which was good accuracy in 1997 but much worse than the current sub-kilometer accuracy."Folkner; et al. (2008). "The Planetary and Lunar Ephemeris DE421" (PDF). JPL Interoffice Memorandum IOM 343.R-08-003. p. 1
  17. ^ "asteroid." Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2014. Web. 19 Aug. 2014. http://www.britannica.com/EBchecked/topic/39730/asteroid
  18. ^ "The uncertainty in the Mars orbit for a one-year prediction is about 300 m, as required for the Mars Science Laboratory mission, but grows rapidly for times before and after the spacecraft observation time span due to the influence of asteroids with orbits near that of Mars. The predicted orbit and uncertainty depend greatly on the asteroid model used. "Folkner; et al. (2010). "Uncertainties in the JPL Planetary Ephemeris" (PDF). Proceedings of the Journées. p. 43.
  19. ^ Average distance over times. Constant term in VSOP87. It corresponds to the average taken of many short, equal time intervals.

orbit, mars, mars, orbit, with, semimajor, axis, astronomical, units, million, light, minutes, eccentricity, 0934, planet, orbits, days, travels, doing, making, average, orbital, speed, relative, orbits, inner, solar, system, planetsthe, eccentricity, greater,. Mars has an orbit with a semimajor axis of 1 524 astronomical units 228 million km 12 673 light minutes and an eccentricity of 0 0934 1 2 The planet orbits the Sun in 687 days 3 and travels 9 55 AU in doing so 4 making the average orbital speed 24 km s Orbit of Mars relative to the orbits of inner Solar System planetsThe eccentricity is greater than that of every other planet except Mercury and this causes a large difference between the aphelion and perihelion distances they are 1 6660 and 1 3814 AU 5 citation needed Contents 1 Changes in the orbit 2 Oppositions 3 Close approaches to Earth 4 Historical importance 5 Accuracy predictability 6 Orbital parameters 7 ReferencesChanges in the orbit editMars is in the midst of a long term increase in eccentricity It reached a minimum of 0 079 about 19 millennia ago and will peak at about 0 105 after about 24 millennia from now and with perihelion distances a mere 1 3621 astronomical units The orbit is at times near circular it was 0 002 1 35 million years ago and will reach a similar minimum 1 05 million years into the future clarification needed The maximum eccentricity between those two extreme minima is 0 12 in about 200 thousand years 6 Oppositions editMars reaches opposition when there is a 180 difference between the geocentric longitudes of it and the Sun At a time near opposition within 8 days the Earth Mars distance is as small as it will get during that 780 day synodic period 7 Every opposition has some significance because Mars is visible from Earth all night high and fully lit but the ones of special interest happen when Mars is near perihelion because this is when Mars is also nearest to Earth One perihelic opposition is followed by another either 15 or 17 years later In fact every opposition is followed by a similar one 7 or 8 synodic periods later and by a very similar one 37 synodic periods 79 years later 8 In the so called perihelic opposition Mars is closest to the Sun and is particularly close to Earth Oppositions range from about 0 68 AU when Mars is near aphelion to only about 0 37 AU when Mars is near perihelion 9 Close approaches to Earth editMars comes closer to Earth more than any other planet save Venus at its nearest 56 million km is the closest distance between Mars and Earth whereas the closest Venus comes to Earth is 40 million km Mars comes closest to Earth every other year around the time of its opposition when Earth is sweeping between the Sun and Mars Extra close oppositions of Mars happen every 15 to 17 years when we pass between Mars and the Sun around the time of its perihelion closest point to the Sun in orbit The minimum distance between Earth and Mars has been declining over the years and in 2003 the minimum distance was 55 76 million km nearer than any such encounter in almost 60 000 years 57 617 BC The record minimum distance between Earth and Mars in 2729 will stand at 55 65 million km In the year 3818 the record will stand at 55 44 million km and the distances will continue to decrease for about 24 000 years 10 Historical importance editUntil the work of Johannes Kepler 1571 1630 a German astronomer the prevailing belief was that the Sun and planets orbited the Earth In 1543 Nicolaus Copernicus had proposed that all the planets orbited in circles around the Sun but his theory did not give very satisfactory predictions and was largely ignored When Kepler studied his boss Tycho Brahe s observations of Mars s position in the sky on many nights Kepler realized that Mars s orbit could not be a circle After years of analysis Kepler discovered that Mars s orbit was likely to be an ellipse with the Sun at one of the ellipse s focal points This in turn led to Kepler s discovery that all planets orbit the Sun in elliptical orbits with the Sun at one of the two focal points This became the first of Kepler s three laws of planetary motion 11 12 Accuracy predictability editFrom the perspective of all but the most demanding the path of Mars is simple An equation in Astronomical Algorithms that assumes an unperturbed elliptical orbit predicts the perihelion and aphelion times with an error of a few hours 13 Using orbital elements to calculate those distances agrees to actual averages to at least five significant figures Formulas for computing position straight from orbital elements typically do not provide or need corrections for the effects of other planets 14 For a higher level of accuracy the perturbations of planets are required These are well known and are believed to be modeled well enough to achieve high accuracy These are all of the bodies that need to be considered for even many demanding problems When Aldo Vitagliano calculated the date of close Martian approaches in the distant past or future he tested the potential effect caused by the uncertainties of the asteroid belt models by running the simulations both with and without the biggest three asteroids and found the effects were negligible Observations improved and space age technology has replaced the older techniques E Myles Standish wrote Classical ephemerides over the past centuries have been based entirely upon optical observations almost exclusively meridian circle transit timings With the advent of planetary radar spacecraft missions VLBI etc the situation for the four inner planets has changed dramatically 8 5 1 page 10 For DE405 created in 1995 optical observations were dropped and as he wrote initial conditions for the inner four planets were adjusted to ranging data primarily 15 The error in DE405 is known to be about 2 km and is now sub kilometer 16 Although the perturbations on Mars by asteroids have caused problems they have also been used to estimate the masses of certain asteroids 17 But improving the model of the asteroid belt is of great concern to those requiring or attempting to provide the highest accuracy ephemerides 18 Orbital parameters editNo more than five significant figures are presented in the following table of Mars s orbital elements To this level of precision the numbers match very well the VSOP87 elements and calculations derived from them as well as Standish s of JPL 250 year best fit and calculations using the actual positions of Mars over time Distances and eccentricity AU million km Semimajor axis 1 5237 227 9Perihelion 1 3814 206 7Aphelion 1 6660 249 2Average 19 1 5303 228 9Circumference 9 553 1429Closest approach to Earth 0 3727 55 76Farthest distance from Earth 2 675 400 2Eccentricity 0 0934Angles Inclination 1 850Period days years Orbital 687 0 1 881Synodic 779 9 2 135Speed km s Average 24 1Maximum 26 5Minimum 22 0References edit Simon J L Bretagnon P Chapront J Chapront Touze M Francou G Laskar J February 1994 Numerical expressions for precession formulae and mean elements for the Moon and planets Astronomy and Astrophysics 282 2 663 683 Bibcode 1994A amp A 282 663S Jean Meeus Astronomical Formulae for Calculators Richmond VA Willmann Bell 1988 99 Elements by F E Ross In ephemeris days of 86 400 seconds The sidereal and anomalistic years are 686 980 days and 686 996 days long respectively About a 20 minute difference The sidereal year is the time taken to revolve around the Sun relative to a fixed reference frame More precisely the sidereal year is one way to express the rate of change of the mean longitude at one instant with respect to a fixed equinox The calculation shows how long it would take for the longitude to change 360 degrees at the given rate The anomalistic year is the time span between successive perihelion or aphelion passages This may be calculated in the same manner as the sidereal year but the mean anomaly is used Jean Meeus Astronomical Algorithms Richmond VA Willmann Bell 1998 238 The formula by Ramanujan is accurate enough The averages between 1850 and 2150 The extreme values in that range are 1 66635 and 1 38097 AU MarsDist Archived from the original on 2007 09 07 Retrieved 2007 07 20 Mars distance and eccentricity using SOLEX By its creator Aldo Vitagliano The synodic period may be calculated as 1 1 p 1 q where p and q are the smaller and larger sidereal periods The synodic period of Mars is 92 9 days longer than its sidereal period of 687 0 days It has then moved forward 92 9 687 0 times 360 or 48 7 degrees After seven oppositions it has moved forward 341 degrees and after eight it has advanced 390 degrees in the first case its longitude is different from one revolution by 19 and by 30 in the second So the situations will then be similar Similar calculations show that the longitude changes only 2 after 37 oppositions Sheehan William February 2 1997 Appendix 1 Oppositions of Mars 1901 2035 The Planet Mars A History of Observation and Discovery University of Arizona Press Archived from the original on June 25 2010 Retrieved January 30 2010 Meeus Jean March 2003 When Was Mars Last This Close PDF Planetarian 13 Carr Michael H Malin Michael C Belton Michael J S July 27 2018 Mars Encyclopaedia Britannica Online p 2 William Sheehan The Planet Mars A History of Observation and Discovery Tucson AZ The University of Arizona Press 1996 Chapter 1 Meeus 1998 pp 269 270 see for example Simon et al 1994 p 681 Standish amp Williams 2012 CHAPTER 8 Orbital Ephemerides of the Sun Moon and Planets PDF 2012 version of the Explanatory Supplement As noted in a 2008 JPL Memorandum regarding DE421 The error in the Earth and Mars orbits in DE405 is now known to be about 2 km which was good accuracy in 1997 but much worse than the current sub kilometer accuracy Folkner et al 2008 The Planetary and Lunar Ephemeris DE421 PDF JPL Interoffice Memorandum IOM 343 R 08 003 p 1 asteroid Encyclopaedia Britannica Encyclopaedia Britannica Online Encyclopaedia Britannica Inc 2014 Web 19 Aug 2014 http www britannica com EBchecked topic 39730 asteroid The uncertainty in the Mars orbit for a one year prediction is about 300 m as required for the Mars Science Laboratory mission but grows rapidly for times before and after the spacecraft observation time span due to the influence of asteroids with orbits near that of Mars The predicted orbit and uncertainty depend greatly on the asteroid model used Folkner et al 2010 Uncertainties in the JPL Planetary Ephemeris PDF Proceedings of the Journees p 43 Average distance over times Constant term in VSOP87 It corresponds to the average taken of many short equal time intervals Retrieved from https en wikipedia org w index php title Orbit of Mars amp oldid 1194931116, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.