fbpx
Wikipedia

Marcum Q-function

In statistics, the generalized Marcum Q-function of order is defined as

where and and is the modified Bessel function of first kind of order . If , the integral converges for any . The Marcum Q-function occurs as a complementary cumulative distribution function for noncentral chi, noncentral chi-squared, and Rice distributions. In engineering, this function appears in the study of radar systems, communication systems, queueing system, and signal processing. This function was first studied for , and hence named after, by Jess Marcum for pulsed radars.[1]

Properties edit

Finite integral representation edit

Using the fact that  , the generalized Marcum Q-function can alternatively be defined as a finite integral as

 

However, it is preferable to have an integral representation of the Marcum Q-function such that (i) the limits of the integral are independent of the arguments of the function, (ii) and that the limits are finite, (iii) and that the integrand is a Gaussian function of these arguments. For positive integer values of  , such a representation is given by the trigonometric integral[2][3]

 

where

 

and the ratio   is a constant.

For any real  , such finite trigonometric integral is given by[4]

 

where   is as defined before,  , and the additional correction term is given by

 

For integer values of  , the correction term   tend to vanish.

Monotonicity and log-concavity edit

  • The generalized Marcum Q-function   is strictly increasing in   and   for all   and  , and is strictly decreasing in   for all   and  [5]
  • The function   is log-concave on   for all  [5]
  • The function   is strictly log-concave on   for all   and  , which implies that the generalized Marcum Q-function satisfies the new-is-better-than-used property.[6]
  • The function   is log-concave on   for all  [5]

Series representation edit

  • The generalized Marcum Q function of order   can be represented using incomplete Gamma function as[7][8][9]
 
where   is the lower incomplete Gamma function. This is usually called the canonical representation of the  -th order generalized Marcum Q-function.
 
where   is the generalized Laguerre polynomial of degree   and of order  .
  • The generalized Marcum Q-function of order   can also be represented as Neumann series expansions[4][8]
 
 
where the summations are in increments of one. Note that when   assumes an integer value, we have  .
  • For non-negative half-integer values  , we have a closed form expression for the generalized Marcum Q-function as[8][10]
 
where   is the complementary error function. Since Bessel functions with half-integer parameter have finite sum expansions as[4]
 
where   is non-negative integer, we can exactly represent the generalized Marcum Q-function with half-integer parameter. More precisely, we have[4]
 
for non-negative integers  , where   is the Gaussian Q-function. Alternatively, we can also more compactly express the Bessel functions with half-integer as sum of hyperbolic sine and cosine functions:[11]
 
where  ,  , and   for any integer value of  .

Recurrence relation and generating function edit

  • Integrating by parts, we can show that generalized Marcum Q-function satisfies the following recurrence relation[8][10]
 
  • The above formula is easily generalized as[10]
 
 
for positive integer  . The former recurrence can be used to formally define the generalized Marcum Q-function for negative  . Taking   and   for  , we obtain the Neumann series representation of the generalized Marcum Q-function.
  • The related three-term recurrence relation is given by[7]
 
where
 
We can eliminate the occurrence of the Bessel function to give the third order recurrence relation[7]
 
  • Another recurrence relationship, relating it with its derivatives, is given by
 
 
  • The ordinary generating function of   for integral   is[10]
 
where  

Symmetry relation edit

  • Using the two Neumann series representations, we can obtain the following symmetry relation for positive integral  
 
In particular, for   we have
 

Special values edit

Some specific values of Marcum-Q function are[6]

  •  
  •  
  •  
  •  
  •  
  •  
  • For  , by subtracting the two forms of Neumann series representations, we have[10]
 
which when combined with the recursive formula gives
 
 
for any non-negative integer  .
  • For  , using the basic integral definition of generalized Marcum Q-function, we have[8][10]
 
  • For  , we have
 
  • For   we have
 

Asymptotic forms edit

  • Assuming   to be fixed and   large, let  , then the generalized Marcum-Q function has the following asymptotic form[7]
 
where   is given by
 
The functions   and   are given by
 
 
The function   satisfies the recursion
 
for   and  
  • In the first term of the above asymptotic approximation, we have
 
Hence, assuming  , the first term asymptotic approximation of the generalized Marcum-Q function is[7]
 
where   is the Gaussian Q-function. Here   as  
For the case when  , we have[7]
 
Here too   as  

Differentiation edit

  • The partial derivative of   with respect to   and   is given by[12][13]
 
 
We can relate the two partial derivatives as
 
  • The n-th partial derivative of   with respect to its arguments is given by[10]
 
 

Inequalities edit

 
for all   and  .

Bounds edit

Based on monotonicity and log-concavity edit

Various upper and lower bounds of generalized Marcum-Q function can be obtained using monotonicity and log-concavity of the function   and the fact that we have closed form expression for   when   is half-integer valued.

Let   and   denote the pair of half-integer rounding operators that map a real   to its nearest left and right half-odd integer, respectively, according to the relations

 
 

where   and   denote the integer floor and ceiling functions.

  • The monotonicity of the function   for all   and   gives us the following simple bound[14][8][15]
 
However, the relative error of this bound does not tend to zero when  .[5] For integral values of  , this bound reduces to
 
A very good approximation of the generalized Marcum Q-function for integer valued   is obtained by taking the arithmetic mean of the upper and lower bound[15]
 
  • A tighter bound can be obtained by exploiting the log-concavity of   on   as[5]
 
where   and   for  . The tightness of this bound improves as either   or   increases. The relative error of this bound converges to 0 as  .[5] For integral values of  , this bound reduces to
 

Cauchy-Schwarz bound edit

Using the trigonometric integral representation for integer valued  , the following Cauchy-Schwarz bound can be obtained[3]

 
 

where  .

Exponential-type bounds edit

For analytical purpose, it is often useful to have bounds in simple exponential form, even though they may not be the tightest bounds achievable. Letting  , one such bound for integer valued   is given as[16][3]

 
 

When  , the bound simplifies to give

 
 

Another such bound obtained via Cauchy-Schwarz inequality is given as[3]

 
 

Chernoff-type bound edit

Chernoff-type bounds for the generalized Marcum Q-function, where   is an integer, is given by[16][3]

 

where the Chernoff parameter   has optimum value   of

 

Semi-linear approximation edit

The first-order Marcum-Q function can be semi-linearly approximated by [17]

 

where

 
 

and

 

Equivalent forms for efficient computation edit

It is convenient to re-express the Marcum Q-function as[18]

 

The   can be interpreted as the detection probability of   incoherently integrated received signal samples of constant received signal-to-noise ratio,  , with a normalized detection threshold  . In this equivalent form of Marcum Q-function, for given   and  , we have   and  . Many expressions exist that can represent  . However, the five most reliable, accurate, and efficient ones for numerical computation are given below. They are form one:[18]

 

form two:[18]

 

form three:[18]

 

form four:[18]

 

and form five:[18]

 

Among these five form, the second form is the most robust.[18]

Applications edit

The generalized Marcum Q-function can be used to represent the cumulative distribution function (cdf) of many random variables:

  • If   is a exponential distribution with rate parameter  , then its cdf is given by  
  • If   is a Erlang distribution with shape parameter   and rate parameter  , then its cdf is given by  
  • If   is a chi-squared distribution with   degrees of freedom, then its cdf is given by  
  • If   is a gamma distribution with shape parameter   and rate parameter  , then its cdf is given by  
  • If   is a Weibull distribution with shape parameters   and scale parameter  , then its cdf is given by  
  • If   is a generalized gamma distribution with parameters  , then its cdf is given by  
  • If   is a non-central chi-squared distribution with non-centrality parameter   and   degrees of freedom, then its cdf is given by  
  • If   is a Rayleigh distribution with parameter  , then its cdf is given by  
  • If   is a Maxwell–Boltzmann distribution with parameter  , then its cdf is given by  
  • If   is a chi distribution with   degrees of freedom, then its cdf is given by  
  • If   is a Nakagami distribution with   as shape parameter and   as spread parameter, then its cdf is given by  
  • If   is a Rice distribution with parameters   and  , then its cdf is given by  
  • If   is a non-central chi distribution with non-centrality parameter   and   degrees of freedom, then its cdf is given by  

Footnotes edit

  1. ^ J.I. Marcum (1960). A statistical theory of target detection by pulsed radar: mathematical appendix, IRE Trans. Inform. Theory, vol. 6, 59-267.
  2. ^ M.K. Simon and M.-S. Alouini (1998). A Unified Approach to the Performance of Digital Communication over Generalized Fading Channels, Proceedings of the IEEE, 86(9), 1860-1877.
  3. ^ a b c d e A. Annamalai and C. Tellambura (2001). Cauchy-Schwarz bound on the generalized Marcum-Q function with applications, Wireless Communications and Mobile Computing, 1(2), 243-253.
  4. ^ a b c d A. Annamalai and C. Tellambura (2008). A Simple Exponential Integral Representation of the Generalized Marcum Q-Function QM(a,b) for Real-Order M with Applications. 2008 IEEE Military Communications Conference, San Diego, CA, USA
  5. ^ a b c d e f g Y. Sun, A. Baricz, and S. Zhou (2010). On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall Q-Functions. IEEE Transactions on Information Theory, 56(3), 1166–1186, ISSN 0018-9448
  6. ^ a b Y. Sun and A. Baricz (2008). Inequalities for the generalized Marcum Q-function. Applied Mathematics and Computation 203(2008) 134-141.
  7. ^ a b c d e f N.M. Temme (1993). Asymptotic and numerical aspects of the noncentral chi-square distribution. Computers Math. Applic., 25(5), 55-63.
  8. ^ a b c d e f A. Annamalai, C. Tellambura and John Matyjas (2009). "A New Twist on the Generalized Marcum Q-Function QM(ab) with Fractional-Order M and its Applications". 2009 6th IEEE Consumer Communications and Networking Conference, 1–5, ISBN 978-1-4244-2308-8
  9. ^ a b S. Andras, A. Baricz, and Y. Sun (2011) The Generalized Marcum Q-function: An Orthogonal Polynomial Approach. Acta Univ. Sapientiae Mathematica, 3(1), 60-76.
  10. ^ a b c d e f g Y.A. Brychkov (2012). On some properties of the Marcum Q function. Integral Transforms and Special Functions 23(3), 177-182.
  11. ^ M. Abramowitz and I.A. Stegun (1972). Formula 10.2.12, Modified Spherical Bessel Functions, Handbook of Mathematical functions, p. 443
  12. ^ W.K. Pratt (1968). Partial Differentials of Marcum's Q Function. Proceedings of the IEEE, 56(7), 1220-1221.
  13. ^ R. Esposito (1968). Comment on Partial Differentials of Marcum's Q Function. Proceedings of the IEEE, 56(12), 2195-2195.
  14. ^ V.M. Kapinas, S.K. Mihos, G.K. Karagiannidis (2009). On the Monotonicity of the Generalized Marcum and Nuttal Q-Functions. IEEE Transactions on Information Theory, 55(8), 3701-3710.
  15. ^ a b R. Li, P.Y. Kam, and H. Fu (2010). New Representations and Bounds for the Generalized Marcum Q-Function via a Geometric Approach, and an Application. IEEE Trans. Commun., 58(1), 157-169.
  16. ^ a b M.K. Simon and M.-S. Alouini (2000). Exponential-Type Bounds on the Generalized Marcum Q-Function with Application to Error Probability Analysis over Fading Channels. IEEE Trans. Commun. 48(3), 359-366.
  17. ^ H. Guo, B. Makki, M. -S. Alouini and T. Svensson, "A Semi-Linear Approximation of the First-Order Marcum Q-Function With Application to Predictor Antenna Systems," in IEEE Open Journal of the Communications Society, vol. 2, pp. 273-286, 2021, doi: 10.1109/OJCOMS.2021.3056393.
  18. ^ a b c d e f g D.A. Shnidman (1989). The Calculation of the Probability of Detection and the Generalized Marcum Q-Function. IEEE Transactions on Information Theory, 35(2), 389-400.

References edit

  • Marcum, J. I. (1950) "Table of Q Functions". U.S. Air Force RAND Research Memorandum M-339. Santa Monica, CA: Rand Corporation, Jan. 1, 1950.
  • Nuttall, Albert H. (1975): Some Integrals Involving the QM Function, IEEE Transactions on Information Theory, 21(1), 95–96, ISSN 0018-9448
  • Shnidman, David A. (1989): The Calculation of the Probability of Detection and the Generalized Marcum Q-Function, IEEE Transactions on Information Theory, 35(2), 389-400.
  • Weisstein, Eric W. Marcum Q-Function. From MathWorld—A Wolfram Web Resource. [1]

marcum, function, statistics, generalized, order, displaystyle, defined, 1aν, xνexp, displaystyle, frac, infty, left, frac, right, where, displaystyle, displaystyle, displaystyle, modified, bessel, function, first, kind, order, displaystyle, displaystyle, inte. In statistics the generalized Marcum Q function of order n displaystyle nu is defined as Qn a b 1an 1 b xnexp x2 a22 In 1 ax dx displaystyle Q nu a b frac 1 a nu 1 int b infty x nu exp left frac x 2 a 2 2 right I nu 1 ax dx where b 0 displaystyle b geq 0 and a n gt 0 displaystyle a nu gt 0 and In 1 displaystyle I nu 1 is the modified Bessel function of first kind of order n 1 displaystyle nu 1 If b gt 0 displaystyle b gt 0 the integral converges for any n displaystyle nu The Marcum Q function occurs as a complementary cumulative distribution function for noncentral chi noncentral chi squared and Rice distributions In engineering this function appears in the study of radar systems communication systems queueing system and signal processing This function was first studied for n 1 displaystyle nu 1 and hence named after by Jess Marcum for pulsed radars 1 Contents 1 Properties 1 1 Finite integral representation 1 2 Monotonicity and log concavity 1 3 Series representation 1 4 Recurrence relation and generating function 1 5 Symmetry relation 1 6 Special values 1 7 Asymptotic forms 1 8 Differentiation 1 9 Inequalities 2 Bounds 2 1 Based on monotonicity and log concavity 2 2 Cauchy Schwarz bound 2 3 Exponential type bounds 2 4 Chernoff type bound 2 5 Semi linear approximation 3 Equivalent forms for efficient computation 4 Applications 5 Footnotes 6 ReferencesProperties editFinite integral representation edit Using the fact that Qn a 0 1 displaystyle Q nu a 0 1 nbsp the generalized Marcum Q function can alternatively be defined as a finite integral as Qn a b 1 1an 1 0bxnexp x2 a22 In 1 ax dx displaystyle Q nu a b 1 frac 1 a nu 1 int 0 b x nu exp left frac x 2 a 2 2 right I nu 1 ax dx nbsp However it is preferable to have an integral representation of the Marcum Q function such that i the limits of the integral are independent of the arguments of the function ii and that the limits are finite iii and that the integrand is a Gaussian function of these arguments For positive integer values of n n displaystyle nu n nbsp such a representation is given by the trigonometric integral 2 3 Qn a b Hn a b a lt b 12 Hn a a a b 1 Hn a b a gt b displaystyle Q n a b left begin array lr H n a b amp a lt b frac 1 2 H n a a amp a b 1 H n a b amp a gt b end array right nbsp where Hn a b z1 n2pexp a2 b22 02pcos n 1 8 zcos n81 2zcos 8 z2exp abcos 8 d8 displaystyle H n a b frac zeta 1 n 2 pi exp left frac a 2 b 2 2 right int 0 2 pi frac cos n 1 theta zeta cos n theta 1 2 zeta cos theta zeta 2 exp ab cos theta mathrm d theta nbsp and the ratio z a b displaystyle zeta a b nbsp is a constant For any real n gt 0 displaystyle nu gt 0 nbsp such finite trigonometric integral is given by 4 Qn a b Hn a b Cn a b a lt b 12 Hn a a Cn a b a b 1 Hn a b Cn a b a gt b displaystyle Q nu a b left begin array lr H nu a b C nu a b amp a lt b frac 1 2 H nu a a C nu a b amp a b 1 H nu a b C nu a b amp a gt b end array right nbsp where Hn a b displaystyle H n a b nbsp is as defined before z a b displaystyle zeta a b nbsp and the additional correction term is given by Cn a b sin np pexp a2 b22 01 x z n 1z xexp ab2 x 1x dx displaystyle C nu a b frac sin nu pi pi exp left frac a 2 b 2 2 right int 0 1 frac x zeta nu 1 zeta x exp left frac ab 2 left x frac 1 x right right mathrm d x nbsp For integer values of n displaystyle nu nbsp the correction term Cn a b displaystyle C nu a b nbsp tend to vanish Monotonicity and log concavity edit The generalized Marcum Q function Qn a b displaystyle Q nu a b nbsp is strictly increasing in n displaystyle nu nbsp and a displaystyle a nbsp for all a 0 displaystyle a geq 0 nbsp and b n gt 0 displaystyle b nu gt 0 nbsp and is strictly decreasing in b displaystyle b nbsp for all a b 0 displaystyle a b geq 0 nbsp and n gt 0 displaystyle nu gt 0 nbsp 5 The function n Qn a b displaystyle nu mapsto Q nu a b nbsp is log concave on 1 displaystyle 1 infty nbsp for all a b 0 displaystyle a b geq 0 nbsp 5 The function b Qn a b displaystyle b mapsto Q nu a b nbsp is strictly log concave on 0 displaystyle 0 infty nbsp for all a 0 displaystyle a geq 0 nbsp and n gt 1 displaystyle nu gt 1 nbsp which implies that the generalized Marcum Q function satisfies the new is better than used property 6 The function a 1 Qn a b displaystyle a mapsto 1 Q nu a b nbsp is log concave on 0 displaystyle 0 infty nbsp for all b n gt 0 displaystyle b nu gt 0 nbsp 5 Series representation edit The generalized Marcum Q function of order n gt 0 displaystyle nu gt 0 nbsp can be represented using incomplete Gamma function as 7 8 9 Qn a b 1 e a2 2 k 0 1k g n k b22 G n k a22 k displaystyle Q nu a b 1 e a 2 2 sum k 0 infty frac 1 k frac gamma nu k frac b 2 2 Gamma nu k left frac a 2 2 right k nbsp dd where g s x displaystyle gamma s x nbsp is the lower incomplete Gamma function This is usually called the canonical representation of the n displaystyle nu nbsp th order generalized Marcum Q function The generalized Marcum Q function of order n gt 0 displaystyle nu gt 0 nbsp can also be represented using generalized Laguerre polynomials as 9 Qn a b 1 e a2 2 k 0 1 kLk n 1 a22 G n k 1 b22 k n displaystyle Q nu a b 1 e a 2 2 sum k 0 infty 1 k frac L k nu 1 frac a 2 2 Gamma nu k 1 left frac b 2 2 right k nu nbsp dd where Lk a displaystyle L k alpha cdot nbsp is the generalized Laguerre polynomial of degree k displaystyle k nbsp and of order a displaystyle alpha nbsp The generalized Marcum Q function of order n gt 0 displaystyle nu gt 0 nbsp can also be represented as Neumann series expansions 4 8 Qn a b e a2 b2 2 a 1 n ab aI a ab displaystyle Q nu a b e a 2 b 2 2 sum alpha 1 nu infty left frac a b right alpha I alpha ab nbsp dd 1 Qn a b e a2 b2 2 a n ba aIa ab displaystyle 1 Q nu a b e a 2 b 2 2 sum alpha nu infty left frac b a right alpha I alpha ab nbsp dd where the summations are in increments of one Note that when a displaystyle alpha nbsp assumes an integer value we have Ia ab I a ab displaystyle I alpha ab I alpha ab nbsp For non negative half integer values n n 1 2 displaystyle nu n 1 2 nbsp we have a closed form expression for the generalized Marcum Q function as 8 10 Qn 1 2 a b 12 erfc b a2 erfc b a2 e a2 b2 2 k 1n ba k 1 2Ik 1 2 ab displaystyle Q n 1 2 a b frac 1 2 left mathrm erfc left frac b a sqrt 2 right mathrm erfc left frac b a sqrt 2 right right e a 2 b 2 2 sum k 1 n left frac b a right k 1 2 I k 1 2 ab nbsp dd where erfc displaystyle mathrm erfc cdot nbsp is the complementary error function Since Bessel functions with half integer parameter have finite sum expansions as 4 I n 0 5 z 1p k 0n n k k n k 1 kez 1 ne z 2z k 0 5 displaystyle I pm n 0 5 z frac 1 sqrt pi sum k 0 n frac n k k n k left frac 1 k e z mp 1 n e z 2z k 0 5 right nbsp dd where n displaystyle n nbsp is non negative integer we can exactly represent the generalized Marcum Q function with half integer parameter More precisely we have 4 Qn 1 2 a b Q b a Q b a 1b2p i 1n ba i k 0i 1 i k 1 k i k 1 1 ke a b 2 2 1 ie a b 2 2 2ab k displaystyle Q n 1 2 a b Q b a Q b a frac 1 b sqrt 2 pi sum i 1 n left frac b a right i sum k 0 i 1 frac i k 1 k i k 1 left frac 1 k e a b 2 2 1 i e a b 2 2 2ab k right nbsp dd for non negative integers n displaystyle n nbsp where Q displaystyle Q cdot nbsp is the Gaussian Q function Alternatively we can also more compactly express the Bessel functions with half integer as sum of hyperbolic sine and cosine functions 11 In 12 z 2zp gn z sinh z g n 1 z cosh z displaystyle I n frac 1 2 z sqrt frac 2z pi left g n z sinh z g n 1 z cosh z right nbsp dd where g0 z z 1 displaystyle g 0 z z 1 nbsp g1 z z 2 displaystyle g 1 z z 2 nbsp and gn 1 z gn 1 z 2n 1 z 1gn z displaystyle g n 1 z g n 1 z 2n 1 z 1 g n z nbsp for any integer value of n displaystyle n nbsp Recurrence relation and generating function edit Integrating by parts we can show that generalized Marcum Q function satisfies the following recurrence relation 8 10 Qn 1 a b Qn a b ba ne a2 b2 2In ab displaystyle Q nu 1 a b Q nu a b left frac b a right nu e a 2 b 2 2 I nu ab nbsp dd The above formula is easily generalized as 10 Qn n a b Qn a b ba ne a2 b2 2 k 1n ab kIn k ab displaystyle Q nu n a b Q nu a b left frac b a right nu e a 2 b 2 2 sum k 1 n left frac a b right k I nu k ab nbsp dd Qn n a b Qn a b ba ne a2 b2 2 k 0n 1 ba kIn k ab displaystyle Q nu n a b Q nu a b left frac b a right nu e a 2 b 2 2 sum k 0 n 1 left frac b a right k I nu k ab nbsp dd for positive integer n displaystyle n nbsp The former recurrence can be used to formally define the generalized Marcum Q function for negative n displaystyle nu nbsp Taking Q a b 1 displaystyle Q infty a b 1 nbsp and Q a b 0 displaystyle Q infty a b 0 nbsp for n displaystyle n infty nbsp we obtain the Neumann series representation of the generalized Marcum Q function The related three term recurrence relation is given by 7 Qn 1 a b 1 cn a b Qn a b cn a b Qn 1 a b 0 displaystyle Q nu 1 a b 1 c nu a b Q nu a b c nu a b Q nu 1 a b 0 nbsp dd wherecn a b ba In ab In 1 ab displaystyle c nu a b left frac b a right frac I nu ab I nu 1 ab nbsp dd We can eliminate the occurrence of the Bessel function to give the third order recurrence relation 7 a22Qn 2 a b a22 n Qn 1 a b b22 n Qn a b b22Qn 1 a b displaystyle frac a 2 2 Q nu 2 a b left frac a 2 2 nu right Q nu 1 a b left frac b 2 2 nu right Q nu a b frac b 2 2 Q nu 1 a b nbsp dd Another recurrence relationship relating it with its derivatives is given byQn 1 a b Qn a b 1a aQn a b displaystyle Q nu 1 a b Q nu a b frac 1 a frac partial partial a Q nu a b nbsp Qn 1 a b Qn a b 1b bQn a b displaystyle Q nu 1 a b Q nu a b frac 1 b frac partial partial b Q nu a b nbsp dd The ordinary generating function of Qn a b displaystyle Q nu a b nbsp for integral n displaystyle nu nbsp is 10 n tnQn a b e a2 b2 2t1 te b2t a2 t 2 displaystyle sum n infty infty t n Q n a b e a 2 b 2 2 frac t 1 t e b 2 t a 2 t 2 nbsp dd where t lt 1 displaystyle t lt 1 nbsp Symmetry relation edit Using the two Neumann series representations we can obtain the following symmetry relation for positive integral n n displaystyle nu n nbsp Qn a b Qn b a 1 e a2 b2 2 I0 ab k 1n 1a2k b2k ab kIk ab displaystyle Q n a b Q n b a 1 e a 2 b 2 2 left I 0 ab sum k 1 n 1 frac a 2k b 2k ab k I k ab right nbsp dd In particular for n 1 displaystyle n 1 nbsp we haveQ1 a b Q1 b a 1 e a2 b2 2I0 ab displaystyle Q 1 a b Q 1 b a 1 e a 2 b 2 2 I 0 ab nbsp dd Special values edit Some specific values of Marcum Q function are 6 Qn 0 0 1 displaystyle Q nu 0 0 1 nbsp Qn a 0 1 displaystyle Q nu a 0 1 nbsp Qn a 0 displaystyle Q nu a infty 0 nbsp Qn 0 b G n b2 2 G n displaystyle Q nu 0 b frac Gamma nu b 2 2 Gamma nu nbsp Qn b 1 displaystyle Q nu infty b 1 nbsp Q a b 1 displaystyle Q infty a b 1 nbsp For a b displaystyle a b nbsp by subtracting the two forms of Neumann series representations we have 10 Q1 a a 12 1 e a2I0 a2 displaystyle Q 1 a a frac 1 2 1 e a 2 I 0 a 2 nbsp dd which when combined with the recursive formula givesQn a a 12 1 e a2I0 a2 e a2 k 1n 1Ik a2 displaystyle Q n a a frac 1 2 1 e a 2 I 0 a 2 e a 2 sum k 1 n 1 I k a 2 nbsp Q n a a 12 1 e a2I0 a2 e a2 k 1nIk a2 displaystyle Q n a a frac 1 2 1 e a 2 I 0 a 2 e a 2 sum k 1 n I k a 2 nbsp dd for any non negative integer n displaystyle n nbsp For n 1 2 displaystyle nu 1 2 nbsp using the basic integral definition of generalized Marcum Q function we have 8 10 Q1 2 a b 12 erfc b a2 erfc b a2 displaystyle Q 1 2 a b frac 1 2 left mathrm erfc left frac b a sqrt 2 right mathrm erfc left frac b a sqrt 2 right right nbsp dd For n 3 2 displaystyle nu 3 2 nbsp we haveQ3 2 a b Q1 2 a b 2psinh ab ae a2 b2 2 displaystyle Q 3 2 a b Q 1 2 a b sqrt frac 2 pi frac sinh ab a e a 2 b 2 2 nbsp dd For n 5 2 displaystyle nu 5 2 nbsp we haveQ5 2 a b Q3 2 a b 2pabcosh ab sinh ab a3e a2 b2 2 displaystyle Q 5 2 a b Q 3 2 a b sqrt frac 2 pi frac ab cosh ab sinh ab a 3 e a 2 b 2 2 nbsp dd Asymptotic forms edit Assuming n displaystyle nu nbsp to be fixed and ab displaystyle ab nbsp large let z a b gt 0 displaystyle zeta a b gt 0 nbsp then the generalized Marcum Q function has the following asymptotic form 7 Qn a b n 0 psn displaystyle Q nu a b sim sum n 0 infty psi n nbsp dd where psn displaystyle psi n nbsp is given bypsn 12zn2p 1 n An n 1 zAn n ϕn displaystyle psi n frac 1 2 zeta nu sqrt 2 pi 1 n left A n nu 1 zeta A n nu right phi n nbsp dd The functions ϕn displaystyle phi n nbsp and An displaystyle A n nbsp are given byϕn b a 22ab n 12G 12 n b a 22 displaystyle phi n left frac b a 2 2ab right n frac 1 2 Gamma left frac 1 2 n frac b a 2 2 right nbsp dd An n 2 nG 12 n n n G 12 n n displaystyle A n nu frac 2 n Gamma frac 1 2 nu n n Gamma frac 1 2 nu n nbsp dd The function An n displaystyle A n nu nbsp satisfies the recursionAn 1 n 2n 1 2 4n28 n 1 An n displaystyle A n 1 nu frac 2n 1 2 4 nu 2 8 n 1 A n nu nbsp dd for n 0 displaystyle n geq 0 nbsp and A0 n 1 displaystyle A 0 nu 1 nbsp In the first term of the above asymptotic approximation we haveϕ0 2pabb aerfc b a2 displaystyle phi 0 frac sqrt 2 pi ab b a mathrm erfc left frac b a sqrt 2 right nbsp dd Hence assuming b gt a displaystyle b gt a nbsp the first term asymptotic approximation of the generalized Marcum Q function is 7 Qn a b ps0 ba n 12Q b a displaystyle Q nu a b sim psi 0 left frac b a right nu frac 1 2 Q b a nbsp dd where Q displaystyle Q cdot nbsp is the Gaussian Q function Here Qn a b 0 5 displaystyle Q nu a b sim 0 5 nbsp as a b displaystyle a uparrow b nbsp For the case when a gt b displaystyle a gt b nbsp we have 7 Qn a b 1 ps0 1 ba n 12Q a b displaystyle Q nu a b sim 1 psi 0 1 left frac b a right nu frac 1 2 Q a b nbsp dd Here too Qn a b 0 5 displaystyle Q nu a b sim 0 5 nbsp as a b displaystyle a downarrow b nbsp Differentiation edit The partial derivative of Qn a b displaystyle Q nu a b nbsp with respect to a displaystyle a nbsp and b displaystyle b nbsp is given by 12 13 aQn a b a Qn 1 a b Qn a b a ba ne a2 b2 2In ab displaystyle frac partial partial a Q nu a b a left Q nu 1 a b Q nu a b right a left frac b a right nu e a 2 b 2 2 I nu ab nbsp bQn a b b Qn 1 a b Qn a b b ba n 1e a2 b2 2In 1 ab displaystyle frac partial partial b Q nu a b b left Q nu 1 a b Q nu a b right b left frac b a right nu 1 e a 2 b 2 2 I nu 1 ab nbsp dd We can relate the two partial derivatives as1a aQn a b 1b bQn 1 a b 0 displaystyle frac 1 a frac partial partial a Q nu a b frac 1 b frac partial partial b Q nu 1 a b 0 nbsp dd The n th partial derivative of Qn a b displaystyle Q nu a b nbsp with respect to its arguments is given by 10 n anQn a b n a n k 0 n 2 2a2 kk n 2k p 0n k 1 p n kp Qn p a b displaystyle frac partial n partial a n Q nu a b n a n sum k 0 n 2 frac 2a 2 k k n 2k sum p 0 n k 1 p binom n k p Q nu p a b nbsp n bnQn a b n a1 n2nbn n 1e a2 b2 2 k n 2 n 2b2 k n k 2k n p 0k 1 k 1p ab pIn p 1 ab displaystyle frac partial n partial b n Q nu a b frac n a 1 nu 2 n b n nu 1 e a 2 b 2 2 sum k n 2 n frac 2b 2 k n k 2k n sum p 0 k 1 binom k 1 p left frac a b right p I nu p 1 ab nbsp dd Inequalities edit The generalized Marcum Q function satisfies a Turan type inequality 5 Qn2 a b gt Qn 1 a b Qn 1 a b 2 gt Qn 1 a b Qn 1 a b displaystyle Q nu 2 a b gt frac Q nu 1 a b Q nu 1 a b 2 gt Q nu 1 a b Q nu 1 a b nbsp dd for all a b gt 0 displaystyle a geq b gt 0 nbsp and n gt 1 displaystyle nu gt 1 nbsp Bounds editBased on monotonicity and log concavity edit Various upper and lower bounds of generalized Marcum Q function can be obtained using monotonicity and log concavity of the function n Qn a b displaystyle nu mapsto Q nu a b nbsp and the fact that we have closed form expression for Qn a b displaystyle Q nu a b nbsp when n displaystyle nu nbsp is half integer valued Let x 0 5 displaystyle lfloor x rfloor 0 5 nbsp and x 0 5 displaystyle lceil x rceil 0 5 nbsp denote the pair of half integer rounding operators that map a real x displaystyle x nbsp to its nearest left and right half odd integer respectively according to the relations x 0 5 x 0 5 0 5 displaystyle lfloor x rfloor 0 5 lfloor x 0 5 rfloor 0 5 nbsp x 0 5 x 0 5 0 5 displaystyle lceil x rceil 0 5 lceil x 0 5 rceil 0 5 nbsp where x displaystyle lfloor x rfloor nbsp and x displaystyle lceil x rceil nbsp denote the integer floor and ceiling functions The monotonicity of the function n Qn a b displaystyle nu mapsto Q nu a b nbsp for all a 0 displaystyle a geq 0 nbsp and b gt 0 displaystyle b gt 0 nbsp gives us the following simple bound 14 8 15 Q n 0 5 a b lt Qn a b lt Q n 0 5 a b displaystyle Q lfloor nu rfloor 0 5 a b lt Q nu a b lt Q lceil nu rceil 0 5 a b nbsp dd However the relative error of this bound does not tend to zero when b displaystyle b to infty nbsp 5 For integral values of n n displaystyle nu n nbsp this bound reduces toQn 0 5 a b lt Qn a b lt Qn 0 5 a b displaystyle Q n 0 5 a b lt Q n a b lt Q n 0 5 a b nbsp dd A very good approximation of the generalized Marcum Q function for integer valued n n displaystyle nu n nbsp is obtained by taking the arithmetic mean of the upper and lower bound 15 Qn a b Qn 0 5 a b Qn 0 5 a b 2 displaystyle Q n a b approx frac Q n 0 5 a b Q n 0 5 a b 2 nbsp dd A tighter bound can be obtained by exploiting the log concavity of n Qn a b displaystyle nu mapsto Q nu a b nbsp on 1 displaystyle 1 infty nbsp as 5 Qn1 a b n2 vQn2 a b v n1 lt Qn a b lt Qn2 a b n2 n 1Qn2 1 a b n2 n displaystyle Q nu 1 a b nu 2 v Q nu 2 a b v nu 1 lt Q nu a b lt frac Q nu 2 a b nu 2 nu 1 Q nu 2 1 a b nu 2 nu nbsp dd where n1 n 0 5 displaystyle nu 1 lfloor nu rfloor 0 5 nbsp and n2 n 0 5 displaystyle nu 2 lceil nu rceil 0 5 nbsp for n 1 5 displaystyle nu geq 1 5 nbsp The tightness of this bound improves as either a displaystyle a nbsp or n displaystyle nu nbsp increases The relative error of this bound converges to 0 as b displaystyle b to infty nbsp 5 For integral values of n n displaystyle nu n nbsp this bound reduces toQn 0 5 a b Qn 0 5 a b lt Qn a b lt Qn 0 5 a b Qn 0 5 a b Qn 1 5 a b displaystyle sqrt Q n 0 5 a b Q n 0 5 a b lt Q n a b lt Q n 0 5 a b sqrt frac Q n 0 5 a b Q n 1 5 a b nbsp dd Cauchy Schwarz bound edit Using the trigonometric integral representation for integer valued n n displaystyle nu n nbsp the following Cauchy Schwarz bound can be obtained 3 e b2 2 Qn a b exp 12 b2 a2 I0 2ab 2n 12 z2 1 n 2 1 z2 z lt 1 displaystyle e b 2 2 leq Q n a b leq exp left frac 1 2 b 2 a 2 right sqrt I 0 2ab sqrt frac 2n 1 2 frac zeta 2 1 n 2 1 zeta 2 qquad zeta lt 1 nbsp 1 Qn a b exp 12 b2 a2 I0 2ab z2 1 n 2 z2 1 z gt 1 displaystyle 1 Q n a b leq exp left frac 1 2 b 2 a 2 right sqrt I 0 2ab sqrt frac zeta 2 1 n 2 zeta 2 1 qquad zeta gt 1 nbsp where z a b gt 0 displaystyle zeta a b gt 0 nbsp Exponential type bounds edit For analytical purpose it is often useful to have bounds in simple exponential form even though they may not be the tightest bounds achievable Letting z a b gt 0 displaystyle zeta a b gt 0 nbsp one such bound for integer valued n n displaystyle nu n nbsp is given as 16 3 e b a 2 2 Qn a b e b a 2 2 z1 n 1p 1 z e b a 2 2 e b a 2 2 z lt 1 displaystyle e b a 2 2 leq Q n a b leq e b a 2 2 frac zeta 1 n 1 pi 1 zeta left e b a 2 2 e b a 2 2 right qquad zeta lt 1 nbsp Qn a b 1 12 e a b 2 2 e a b 2 2 z gt 1 displaystyle Q n a b geq 1 frac 1 2 left e a b 2 2 e a b 2 2 right qquad zeta gt 1 nbsp When n 1 displaystyle n 1 nbsp the bound simplifies to give e b a 2 2 Q1 a b e b a 2 2 z lt 1 displaystyle e b a 2 2 leq Q 1 a b leq e b a 2 2 qquad zeta lt 1 nbsp 1 12 e a b 2 2 e a b 2 2 Q1 a b z gt 1 displaystyle 1 frac 1 2 left e a b 2 2 e a b 2 2 right leq Q 1 a b qquad zeta gt 1 nbsp Another such bound obtained via Cauchy Schwarz inequality is given as 3 e b2 2 Qn a b 122n 12 z2 1 n 2 1 z2 e b a 2 2 e b a 2 2 z lt 1 displaystyle e b 2 2 leq Q n a b leq frac 1 2 sqrt frac 2n 1 2 frac zeta 2 1 n 2 1 zeta 2 left e b a 2 2 e b a 2 2 right qquad zeta lt 1 nbsp Qn a b 1 12z2 1 n 2 z2 1 e b a 2 2 e b a 2 2 z gt 1 displaystyle Q n a b geq 1 frac 1 2 sqrt frac zeta 2 1 n 2 zeta 2 1 left e b a 2 2 e b a 2 2 right qquad zeta gt 1 nbsp Chernoff type bound edit Chernoff type bounds for the generalized Marcum Q function where n n displaystyle nu n nbsp is an integer is given by 16 3 1 2l nexp lb2 lna21 2l Qn a b b2 gt n a2 2 1 Qn a b b2 lt n a2 2 displaystyle 1 2 lambda n exp left lambda b 2 frac lambda na 2 1 2 lambda right geq left begin array lr Q n a b amp b 2 gt n a 2 2 1 Q n a b amp b 2 lt n a 2 2 end array right nbsp where the Chernoff parameter 0 lt l lt 1 2 displaystyle 0 lt lambda lt 1 2 nbsp has optimum value l0 displaystyle lambda 0 nbsp of l0 12 1 nb2 nb21 ab 2n displaystyle lambda 0 frac 1 2 left 1 frac n b 2 frac n b 2 sqrt 1 frac ab 2 n right nbsp Semi linear approximation edit The first order Marcum Q function can be semi linearly approximated by 17 Q1 a b 1 if b lt c1 b0e 12 a2 b0 2 I0 ab0 b b0 Q1 a b0 if c1 b c20 if b gt c2 displaystyle begin aligned Q 1 a b begin cases 1 mathrm if b lt c 1 beta 0 e frac 1 2 left a 2 left beta 0 right 2 right I 0 left a beta 0 right left b beta 0 right Q 1 left a beta 0 right mathrm if c 1 leq b leq c 2 0 mathrm if b gt c 2 end cases end aligned nbsp where b0 a a2 22 displaystyle begin aligned beta 0 frac a sqrt a 2 2 2 end aligned nbsp c1 a max 0 b0 Q1 a b0 1b0e 12 a2 b0 2 I0 ab0 displaystyle begin aligned c 1 a max Bigg 0 beta 0 frac Q 1 left a beta 0 right 1 beta 0 e frac 1 2 left a 2 left beta 0 right 2 right I 0 left a beta 0 right Bigg end aligned nbsp and c2 a b0 Q1 a b0 b0e 12 a2 b0 2 I0 ab0 displaystyle begin aligned c 2 a beta 0 frac Q 1 left a beta 0 right beta 0 e frac 1 2 left a 2 left beta 0 right 2 right I 0 left a beta 0 right end aligned nbsp Equivalent forms for efficient computation editIt is convenient to re express the Marcum Q function as 18 PN X Y QN 2NX 2Y displaystyle P N X Y Q N sqrt 2NX sqrt 2Y nbsp The PN X Y displaystyle P N X Y nbsp can be interpreted as the detection probability of N displaystyle N nbsp incoherently integrated received signal samples of constant received signal to noise ratio X displaystyle X nbsp with a normalized detection threshold Y displaystyle Y nbsp In this equivalent form of Marcum Q function for given a displaystyle a nbsp and b displaystyle b nbsp we have X a2 2N displaystyle X a 2 2N nbsp and Y b2 2 displaystyle Y b 2 2 nbsp Many expressions exist that can represent PN X Y displaystyle P N X Y nbsp However the five most reliable accurate and efficient ones for numerical computation are given below They are form one 18 PN X Y k 0 e NX NX kk m 0N 1 ke YYmm displaystyle P N X Y sum k 0 infty e NX frac NX k k sum m 0 N 1 k e Y frac Y m m nbsp form two 18 PN X Y m 0N 1e YYmm m N e YYmm 1 k 0m Ne NX NX kk displaystyle P N X Y sum m 0 N 1 e Y frac Y m m sum m N infty e Y frac Y m m left 1 sum k 0 m N e NX frac NX k k right nbsp form three 18 1 PN X Y m N e YYmm k 0m Ne NX NX kk displaystyle 1 P N X Y sum m N infty e Y frac Y m m sum k 0 m N e NX frac NX k k nbsp form four 18 1 PN X Y k 0 e NX NX kk 1 m 0N 1 ke YYmm displaystyle 1 P N X Y sum k 0 infty e NX frac NX k k left 1 sum m 0 N 1 k e Y frac Y m m right nbsp and form five 18 1 PN X Y e NX Y r N YNX r 2Ir 2NXY displaystyle 1 P N X Y e NX Y sum r N infty left frac Y NX right r 2 I r 2 sqrt NXY nbsp Among these five form the second form is the most robust 18 Applications editThe generalized Marcum Q function can be used to represent the cumulative distribution function cdf of many random variables If X Exp l displaystyle X sim mathrm Exp lambda nbsp is a exponential distribution with rate parameter l displaystyle lambda nbsp then its cdf is given by FX x 1 Q1 0 2lx displaystyle F X x 1 Q 1 left 0 sqrt 2 lambda x right nbsp If X Erlang k l displaystyle X sim mathrm Erlang k lambda nbsp is a Erlang distribution with shape parameter k displaystyle k nbsp and rate parameter l displaystyle lambda nbsp then its cdf is given by FX x 1 Qk 0 2lx displaystyle F X x 1 Q k left 0 sqrt 2 lambda x right nbsp If X xk2 displaystyle X sim chi k 2 nbsp is a chi squared distribution with k displaystyle k nbsp degrees of freedom then its cdf is given by FX x 1 Qk 2 0 x displaystyle F X x 1 Q k 2 0 sqrt x nbsp If X Gamma a b displaystyle X sim mathrm Gamma alpha beta nbsp is a gamma distribution with shape parameter a displaystyle alpha nbsp and rate parameter b displaystyle beta nbsp then its cdf is given by FX x 1 Qa 0 2bx displaystyle F X x 1 Q alpha 0 sqrt 2 beta x nbsp If X Weibull k l displaystyle X sim mathrm Weibull k lambda nbsp is a Weibull distribution with shape parameters k displaystyle k nbsp and scale parameter l displaystyle lambda nbsp then its cdf is given by FX x 1 Q1 0 2 xl k2 displaystyle F X x 1 Q 1 left 0 sqrt 2 left frac x lambda right frac k 2 right nbsp If X GG a d p displaystyle X sim mathrm GG a d p nbsp is a generalized gamma distribution with parameters a d p displaystyle a d p nbsp then its cdf is given by FX x 1 Qdp 0 2 xa p2 displaystyle F X x 1 Q frac d p left 0 sqrt 2 left frac x a right frac p 2 right nbsp If X xk2 l displaystyle X sim chi k 2 lambda nbsp is a non central chi squared distribution with non centrality parameter l displaystyle lambda nbsp and k displaystyle k nbsp degrees of freedom then its cdf is given by FX x 1 Qk 2 l x displaystyle F X x 1 Q k 2 sqrt lambda sqrt x nbsp If X Rayleigh s displaystyle X sim mathrm Rayleigh sigma nbsp is a Rayleigh distribution with parameter s displaystyle sigma nbsp then its cdf is given by FX x 1 Q1 0 xs displaystyle F X x 1 Q 1 left 0 frac x sigma right nbsp If X Maxwell s displaystyle X sim mathrm Maxwell sigma nbsp is a Maxwell Boltzmann distribution with parameter s displaystyle sigma nbsp then its cdf is given by FX x 1 Q3 2 0 xs displaystyle F X x 1 Q 3 2 left 0 frac x sigma right nbsp If X xk displaystyle X sim chi k nbsp is a chi distribution with k displaystyle k nbsp degrees of freedom then its cdf is given by FX x 1 Qk 2 0 x displaystyle F X x 1 Q k 2 0 x nbsp If X Nakagami m W displaystyle X sim mathrm Nakagami m Omega nbsp is a Nakagami distribution with m displaystyle m nbsp as shape parameter and W displaystyle Omega nbsp as spread parameter then its cdf is given by FX x 1 Qm 0 2mWx displaystyle F X x 1 Q m left 0 sqrt frac 2m Omega x right nbsp If X Rice n s displaystyle X sim mathrm Rice nu sigma nbsp is a Rice distribution with parameters n displaystyle nu nbsp and s displaystyle sigma nbsp then its cdf is given by FX x 1 Q1 ns xs displaystyle F X x 1 Q 1 left frac nu sigma frac x sigma right nbsp If X xk l displaystyle X sim chi k lambda nbsp is a non central chi distribution with non centrality parameter l displaystyle lambda nbsp and k displaystyle k nbsp degrees of freedom then its cdf is given by FX x 1 Qk 2 l x displaystyle F X x 1 Q k 2 lambda x nbsp Footnotes edit J I Marcum 1960 A statistical theory of target detection by pulsed radar mathematical appendix IRE Trans Inform Theory vol 6 59 267 M K Simon and M S Alouini 1998 A Unified Approach to the Performance of Digital Communication over Generalized Fading Channels Proceedings of the IEEE 86 9 1860 1877 a b c d e A Annamalai and C Tellambura 2001 Cauchy Schwarz bound on the generalized Marcum Q function with applications Wireless Communications and Mobile Computing 1 2 243 253 a b c d A Annamalai and C Tellambura 2008 A Simple Exponential Integral Representation of the Generalized Marcum Q Function QM a b for Real Order M with Applications 2008 IEEE Military Communications Conference San Diego CA USA a b c d e f g Y Sun A Baricz and S Zhou 2010 On the Monotonicity Log Concavity and Tight Bounds of the Generalized Marcum and Nuttall Q Functions IEEE Transactions on Information Theory 56 3 1166 1186 ISSN 0018 9448 a b Y Sun and A Baricz 2008 Inequalities for the generalized Marcum Q function Applied Mathematics and Computation 203 2008 134 141 a b c d e f N M Temme 1993 Asymptotic and numerical aspects of the noncentral chi square distribution Computers Math Applic 25 5 55 63 a b c d e f A Annamalai C Tellambura and John Matyjas 2009 A New Twist on the Generalized Marcum Q Function QM a b with Fractional Order M and its Applications 2009 6th IEEE Consumer Communications and Networking Conference 1 5 ISBN 978 1 4244 2308 8 a b S Andras A Baricz and Y Sun 2011 The Generalized Marcum Q function An Orthogonal Polynomial Approach Acta Univ Sapientiae Mathematica 3 1 60 76 a b c d e f g Y A Brychkov 2012 On some properties of the Marcum Q function Integral Transforms and Special Functions 23 3 177 182 M Abramowitz and I A Stegun 1972 Formula 10 2 12 Modified Spherical Bessel Functions Handbook of Mathematical functions p 443 W K Pratt 1968 Partial Differentials of Marcum s Q Function Proceedings of the IEEE 56 7 1220 1221 R Esposito 1968 Comment on Partial Differentials of Marcum s Q Function Proceedings of the IEEE 56 12 2195 2195 V M Kapinas S K Mihos G K Karagiannidis 2009 On the Monotonicity of the Generalized Marcum and Nuttal Q Functions IEEE Transactions on Information Theory 55 8 3701 3710 a b R Li P Y Kam and H Fu 2010 New Representations and Bounds for the Generalized Marcum Q Function via a Geometric Approach and an Application IEEE Trans Commun 58 1 157 169 a b M K Simon and M S Alouini 2000 Exponential Type Bounds on the Generalized Marcum Q Function with Application to Error Probability Analysis over Fading Channels IEEE Trans Commun 48 3 359 366 H Guo B Makki M S Alouini and T Svensson A Semi Linear Approximation of the First Order Marcum Q Function With Application to Predictor Antenna Systems in IEEE Open Journal of the Communications Society vol 2 pp 273 286 2021 doi 10 1109 OJCOMS 2021 3056393 a b c d e f g D A Shnidman 1989 The Calculation of the Probability of Detection and the Generalized Marcum Q Function IEEE Transactions on Information Theory 35 2 389 400 References editMarcum J I 1950 Table of Q Functions U S Air Force RAND Research Memorandum M 339 Santa Monica CA Rand Corporation Jan 1 1950 Nuttall Albert H 1975 Some Integrals Involving the QM Function IEEE Transactions on Information Theory 21 1 95 96 ISSN 0018 9448 Shnidman David A 1989 The Calculation of the Probability of Detection and the Generalized Marcum Q Function IEEE Transactions on Information Theory 35 2 389 400 Weisstein Eric W Marcum Q Function From MathWorld A Wolfram Web Resource 1 Retrieved from https en wikipedia org w index php title Marcum Q function amp oldid 1215815170, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.