fbpx
Wikipedia

List of character tables for chemically important 3D point groups

This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well as more extensive lists of them, can be found in the references.[1][2][3][4][5]

Notation edit

For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Zn: cyclic group of order n, Dn: dihedral group isomorphic to the symmetry group of an n–sided regular polygon, Sn: symmetric group on n letters, and An: alternating group on n letters.

The character tables then follow for all groups. The rows of the character tables correspond to the irreducible representations of the group, with their conventional names, known as Mulliken symbols,[6] in the left margin. The naming conventions are as follows:

  • A and B are singly degenerate representations, with the former transforming symmetrically around the principal axis of the group, and the latter asymmetrically. E, T, G, H, ... are doubly, triply, quadruply, quintuply, ... degenerate representations.
  • g and u subscripts denote symmetry and antisymmetry, respectively, with respect to a center of inversion. Subscripts "1" and "2" denote symmetry and antisymmetry, respectively, with respect to a nonprincipal rotation axis. Higher numbers denote additional representations with such asymmetry.
  • Single prime ( ' ) and double prime ( '' ) superscripts denote symmetry and antisymmetry, respectively, with respect to a horizontal mirror plane σh, one perpendicular to the principal rotation axis.

All but the two rightmost columns correspond to the symmetry operations which are invariant in the group. In the case of sets of similar operations with the same characters for all representations, they are presented as one column, with the number of such similar operations noted in the heading.

The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations. The symbol i used in the body of the table denotes the imaginary unit: i 2 = −1. Used in a column heading, it denotes the operation of inversion. A superscripted uppercase "C" denotes complex conjugation.

The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (xy and z), rotations about those three coordinates (RxRy and Rz), and functions of the quadratic terms of the coordinates(x2y2z2xyxz, and yz).

A further column is included in some tables, such as those of Salthouse and Ware[7] For example,

     
       ,  ,    ,  ,  ,    ,  ,  ,  ,  ,  
       ,  ,    ,    ,  ,  ,  

The last column relates to cubic functions which may be used in applications regarding f orbitals in atoms.

Character tables edit

Nonaxial symmetries edit

These groups are characterized by a lack of a proper rotation axis, noting that a   rotation is considered the identity operation. These groups have involutional symmetry: the only nonidentity operation, if any, is its own inverse.

In the group  , all functions of the Cartesian coordinates and rotations about them transform as the   irreducible representation.

Point Group Canonical Group Order Character Table
     
 
   
    2
   
       ,  ,    ,  ,  ,  ,  ,  
       ,  ,  
     
   
       ,  ,    ,  ,  ,  
       ,  ,    ,  

Cyclic symmetries edit

The families of groups with these symmetries have only one rotation axis.

Cyclic groups (Cn) edit

The cyclic groups are denoted by Cn. These groups are characterized by an n-fold proper rotation axis Cn. The C1 group is covered in the nonaxial groups section.

Point
Group
Canonical
Group
Order Character Table
C2 Z2 2
  E C2   
A 1 1 Rz, z x2, y2, z2, xy
B 1 −1 Rx, Ry, x, y xz, yz
C3 Z3 3
  E C3  C32 θ = ei /3
A 1 1 1 Rz, z x2 + y2
E 1
1
θ 
θC
θC
θ 
(Rx, Ry),
(x, y)
(x2 - y2, xy),
(xz, yz)
C4 Z4 4
  E C4  C2  C43  
A 1 1 1 1 Rz, z x2 + y2, z2
B 1 −1 1 −1   x2y2, xy
E 1
1
i
i
−1
−1
i
i
(Rx, Ry),
(x, y)
(xz, yz)
C5 Z5 5
  E   C5  C52 C53 C54 θ = ei /5
A 1 1 1 1 1 Rz, z x2 + y2, z2
E1 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
  (x2 - y2, xy)
C6 Z6 6
  E   C6  C3  C2  C32 C65 θ = ei /6
A 1 1 1 1 1 1 Rz, z x2 + y2, z2
B 1 −1 1 −1 1 −1    
E1 1
1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
  (x2y2, xy)
C8 Z8 8
  E   C8  C4  C83 C2  C85 C43 C87 θ = ei /8
A 1 1 1 1 1 1 1 1 Rz, z x2 + y2, z2
B 1 −1 1 −1 1 −1 1 −1    
E1 1
1
θ 
θC
i
i
θC
θ 
−1
−1
θ 
θC
i
i
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
i
i
−1
−1
i
i
1
1
i
i
−1
−1
i
i
  (x2y2, xy)
E3 1
1
θ 
θC
i
i
θC
θ 
−1
−1
θ 
θC
i
i
θC
θ 
   

Reflection groups (Cnh) edit

The reflection groups are denoted by Cnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) a mirror plane σh normal to Cn. The C1h group is the same as the Cs group in the nonaxial groups section.

Point
Group
Canonical
group
Order Character Table
C2h Z2 × Z2 4
  E C2  i σh   
Ag 1 1 1 1 Rz x2, y2, z2, xy
Bg 1 −1 1 −1 Rx, Ry xz, yz
Au 1 1 −1 −1 z  
Bu 1 −1 −1 1 x, y  
C3h Z6 6
  E C3  C32 σh  S3  S35 θ = ei /3
A' 1 1 1 1 1 1 Rz x2 + y2, z2
E' 1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(x, y) (x2y2, xy)
A'' 1 1 1 −1 −1 −1 z  
E'' 1
1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
(Rx, Ry) (xz, yz)
C4h Z2 × Z4 8
  E C4  C2  C43 i S43 σh  S4   
Ag 1 1 1 1 1 1 1 1 Rz x2 + y2, z2
Bg 1 −1 1 −1 1 −1 1 −1   x2y2, xy
Eg 1
1
i
i
−1
−1
i
i
1
1
i
i
−1
−1
i
i
(Rx, Ry) (xz, yz)
Au 1 1 1 1 −1 −1 −1 −1 z  
Bu 1 −1 1 −1 −1 1 −1 1    
Eu 1
1
i
i
−1
−1
i
i
−1
−1
i
i
1
1
i
i
(x, y)  
C5h Z10 10
  E   C5  C52 C53 C54 σh  S5  S57 S53 S59 θ = ei /5
A' 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2
E1' 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
(x, y)  
E2' 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
  (x2 - y2, xy)
A'' 1 1 1 1 1 −1 −1 −1 −1 −1 z  
E1'' 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
−1
−1
θ 
-θC
θ2
−(θ2)C
−(θ2)C
θ2
θC
θ 
(Rx, Ry) (xz, yz)
E2'' 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
−1
−1
θ2
−(θ2)C
θC
θ 
θ 
θC
−(θ2)C
θ2
   
C6h Z2 × Z6 12
  E   C6  C3  C2  C32 C65 i S35 S65 σh  S6  S3  θ = ei /6
Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2
Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1    
E1g 1
1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
(Rx, Ry) (xz, yz)
E2g 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
  (x2y2, xy)
Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 z  
Bu 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1    
E1u 1
1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
−1
−1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(x, y)  
E2u 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
−1
−1
θC
θ 
θ 
θC
−1
−1
θC
θ 
θ 
θC
   

Pyramidal groups (Cnv) edit

The pyramidal groups are denoted by Cnv. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n mirror planes σv which contain Cn. The C1v group is the same as the Cs group in the nonaxial groups section.

Point
Group
Canonical
group
Order Character Table
C2v Z2 × Z2
(=D2)
4
  E C2  σv  σv'   
A1 1 1 1 1 z x2 , y2, z2
A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 Ry, x xz
B2 1 −1 −1 1 Rx, y yz
C3v D3 6
  E 2 C3  3 σv   
A1 1 1 1 z x2 + y2, z2
A2 1 1 −1 Rz  
E 2 −1 0 (Rx, Ry), (x, y) (x2y2, xy), (xz, yz)
C4v D4 8
  E 2 C4  C2  2 σv  2 σd   
A1 1 1 1 1 1 z x2 + y2, z2
A2 1 1 1 −1 −1 Rz  
B1 1 −1 1 1 −1   x2y2
B2 1 −1 1 −1 1   xy
E 2 0 −2 0 0 (Rx, Ry), (x, y) (xz, yz)
C5v D5 10
  E   2 C5  2 C52 5 σv  θ = 2π/5
A1 1 1 1 1 z x2 + y2, z2
A2 1 1 1 −1 Rz  
E1 2 2 cos(θ) 2 cos(2θ) 0 (Rx, Ry), (x, y) (xz, yz)
E2 2 2 cos(2θ) 2 cos(θ) 0   (x2y2, xy)
C6v D6 12
  E   2 C6  2 C3  C2  3 σv  3 σd   
A1 1 1 1 1 1 1 z x2 + y2, z2
A2 1 1 1 1 −1 −1 Rz  
B1 1 −1 1 −1 1 −1    
B2 1 −1 1 −1 −1 1    
E1 2 1 −1 −2 0 0 (Rx, Ry), (x, y) (xz, yz)
E2 2 −1 −1 2 0 0   (x2y2, xy)

Improper rotation groups (Sn) edit

The improper rotation groups are denoted by Sn. These groups are characterized by an n-fold improper rotation axis Sn, where n is necessarily even. The S2 group is the same as the Ci group in the nonaxial groups section. Sn groups with an odd value of n are identical to Cnh groups of same n and are therefore not considered here (in particular, S1 is identical to Cs).

The S8 table reflects the 2007 discovery of errors in older references.[4] Specifically, (Rx, Ry) transform not as E1 but rather as E3.

Point
Group
Canonical
group
Order Character Table
S4 Z4 4
  E S4  C2  S43  
A 1 1 1 1 Rz,   x2 + y2, z2
B 1 −1 1 −1 z x2y2, xy
E 1
1
i
i
−1
−1
i
i
(Rx, Ry),
(x, y)
(xz, yz)
S6 Z6 6
  E   S6  C3  i C32 S65 θ = ei /6
Ag 1 1 1 1 1 1 Rz x2 + y2, z2
Eg 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
(Rx, Ry) (x2y2, xy),
(xz, yz)
Au 1 −1 1 −1 1 −1 z  
Eu 1
1
θC
θ 
θ 
θC
−1
−1
θC
θ 
θ 
θC
(x, y)  
S8 Z8 8
  E   S8  C4  S83 i S85 C42 S87 θ = ei /8
A 1 1 1 1 1 1 1 1 Rz x2 + y2, z2
B 1 −1 1 −1 −1 −1 1 −1 z  
E1 1
1
θ 
θC
i
i
θC
θ 
−1
−1
θ 
θC
i
i
θC
θ 
(x, y) (xz, yz)
E2 1
1
i
i
−1
−1
i
i
1
1
i
i
−1
−1
i
i
  (x2y2, xy)
E3 1
1
θC
θ 
i
i
θ 
θC
−1
−1
θC
θ 
i
i
θ
θC
(Rx, Ry) (xz, yz)

Dihedral symmetries edit

The families of groups with these symmetries are characterized by 2-fold proper rotation axes normal to a principal rotation axis.

Dihedral groups (Dn) edit

The dihedral groups are denoted by Dn. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn. The D1 group is the same as the C2 group in the cyclic groups section.

Point
Group
Canonical
group
Order Character Table
D2 Z2 × Z2
(=D2)
4
  E C2 (z) C2 (x) C2 (y)  
A 1 1 1 1   x2, y2, z2
B1 1 1 −1 −1 Rz, z xy
B2 1 −1 −1 1 Ry, y xz
B3 1 −1 1 −1 Rx, x yz
D3 D3 6
  E 2 C3  3 C'2   
A1 1 1 1   x2 + y2, z2
A2 1 1 −1 Rz, z  
E 2 −1 0 (Rx, Ry), (x, y) (x2y2, xy), (xz, yz)
D4 D4 8
  E 2 C4  C2  2 C2'  2 C2''   
A1 1 1 1 1 1   x2 + y2, z2
A2 1 1 1 −1 −1 Rz, z  
B1 1 −1 1 1 −1   x2y2
B2 1 −1 1 −1 1   xy
E 2 0 −2 0 0 (Rx, Ry), (x, y) (xz, yz)
D5 D5 10
  E   2 C5  2 C52 5 C2  θ=2π/5
A1 1 1 1 1   x2 + y2, z2
A2 1 1 1 −1 Rz, z  
E1 2 2 cos(θ) 2 cos(2θ) 0 (Rx, Ry), (x, y) (xz, yz)
E2 2 2 cos(2θ) 2 cos(θ) 0   (x2y2, xy)
D6 D6 12
  E   2 C6  2 C3  C2  3 C2'  3 C2''   
A1 1 1 1 1 1 1   x2 + y2, z2
A2 1 1 1 1 −1 −1 Rz, z  
B1 1 −1 1 −1 1 −1    
B2 1 −1 1 −1 −1 1    
E1 2 1 −1 −2 0 0 (Rx, Ry), (x, y) (xz, yz)
E2 2 −1 −1 2 0 0   (x2y2, xy)

Prismatic groups (Dnh) edit

The prismatic groups are denoted by Dnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) a mirror plane σh normal to Cn and containing the C2s. The D1h group is the same as the C2v group in the pyramidal groups section.

The D8h table reflects the 2007 discovery of errors in older references.[4] Specifically, symmetry operation column headers 2S8 and 2S83 were reversed in the older references.

Point
Group
Canonical
group
Order Character Table
D2h Z2×Z2×Z2
(=Z2×D2)
8
  E C2  C2 (x) C2 (y) i σ(xy)   σ(xz)   σ(yz)    
Ag 1 1 1 1 1 1 1 1   x2, y2, z2
B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 −1 1 1 −1 1 −1 Ry xz
B3g 1 −1 1 −1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1    
B1u 1 1 −1 −1 −1 −1 1 1 z  
B2u 1 −1 −1 1 −1 1 −1 1 y  
B3u 1 −1 1 −1 −1 1 1 −1 x  
D3h D6 12
  E 2 C3  3 C2  σh  2 S3  3 σv   
A1' 1 1 1 1 1 1   x2 + y2, z2
A2' 1 1 −1 1 1 −1 Rz  
E' 2 −1 0 2 −1 0 (x, y) (x2y2, xy)
A1'' 1 1 1 −1 −1 −1    
A2'' 1 1 −1 −1 −1 1 z  
E'' 2 −1 0 −2 1 0 (Rx, Ry) (xz, yz)
D4h Z2×D4 16
  E 2 C4  C2  2 C2'  2 C2''  i 2 S4  σh  2 σv  2 σd   
A1g 1 1 1 1 1 1 1 1 1 1   x2 + y2, z2
A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz  
B1g 1 −1 1 1 −1 1 −1 1 1 −1   x2y2
B2g 1 −1 1 −1 1 1 −1 1 −1 1   xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx, Ry) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1    
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z  
B1u 1 −1 1 1 −1 −1 1 −1 −1 1    
B2u 1 −1 1 −1 1 −1 1 −1 1 −1    
Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)  
D5h D10 20
  E   2 C5  2 C52 5 C2  σh  2 S5  2 S53 5 σv  θ=2π/5
A1' 1 1 1 1 1 1 1 1   x2 + y2, z2
A2' 1 1 1 −1 1 1 1 −1 Rz  
E1' 2 2 cos(θ) 2 cos(2θ) 0 2 2 cos(θ) 2 cos(2θ) 0 (x, y)  
E2' 2 2 cos(2θ) 2 cos(θ) 0 2 2 cos(2θ) 2 cos(θ) 0   (x2y2, xy)
A1'' 1 1 1 1 −1 −1 −1 −1    
A2'' 1 1 1 −1 −1 −1 −1 1 z  
E1'' 2 2 cos(θ) 2 cos(2θ) 0 −2 −2 cos(θ) −2 cos(2θ) 0 (Rx, Ry) (xz, yz)
E2'' 2 2 cos(2θ) 2 cos(θ) 0 −2 −2 cos(2θ) −2 cos(θ) 0    
D6h Z2×D6 24
  E   2 C6  2 C3  C2  3 C2'  3 C2''  i 2 S3  2 S6  σh  3 σd  3 σv   
A1g 1 1 1 1 1 1 1 1 1 1 1 1   x2 + y2, z2
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz  
B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1    
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1    
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx, Ry) (xz, yz)
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0   (x2y2, xy)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1    
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z  
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1    
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1    
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y)  
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0    
D8h Z2×D8 32
  E   2 C8  2 C83 2 C4  C2  4 C2'  4 C2''  i 2 S83 2 S8  2 S4  σh  4 σd  4 σv  θ=21/2
A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1   x2 + y2, z2
A2g 1 1 1 1 1 −1 −1 1 1 1 1 1 −1 −1 Rz  
B1g 1 −1 −1 1 1 1 −1 1 −1 −1 1 1 1 −1    
B2g 1 −1 −1 1 1 −1 1 1 −1 −1 1 1 −1 1    
E1g 2 θ θ 0 −2 0 0 2 θ θ 0 −2 0 0 (Rx, Ry) (xz, yz)
E2g 2 0 0 −2 2 0 0 2 0 0 −2 2 0 0   (x2y2, xy)
E3g 2 θ θ 0 −2 0 0 2 θ θ 0 −2 0 0    
A1u 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1    
A2u 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1 z  
B1u 1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −1 1    
B2u 1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1    
E1u 2 θ θ 0 −2 0 0 −2 θ θ 0 2 0 0 (x, y)  
E2u 2 0 0 −2 2 0 0 −2 0 0 2 −2 0 0    
E3u 2 θ θ 0 −2 0 0 −2 θ θ 0 2 0 0    

Antiprismatic groups (Dnd) edit

The antiprismatic groups are denoted by Dnd. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) n mirror planes σd which contain Cn. The D1d group is the same as the C2h group in the reflection groups section.

Point
Group
Canonical
group
Order Character Table
D2d D4 8
  E  2 S4  C2  2 C2'  2 σd   
A1 1 1 1 1 1   x2, y2, z2
A2 1 1 1 −1 −1 Rz  
B1 1 −1 1 1 −1   x2y2
B2 1 −1 1 −1 1 z xy
E 2 0 −2 0 0 (Rx, Ry), (x, y) (xz, yz)
D3d D6 12
  E  2 C3  3 C2  i  2 S6  3 σd   
A1g 1 1 1 1 1 1   x2 + y2, z2
A2g 1 1 −1 1 1 −1 Rz  
Eg 2 −1 0 2 −1 0 (Rx, Ry) (x2y2, xy), (xz, yz)
A1u 1 1 1 −1 −1 −1    
A2u 1 1 −1 −1 −1 1 z  
Eu 2 −1 0 −2 1 0 (x, y)  
D4d D8 16
  E  2 S8  2 C4  2 S83 C2  4 C2'  4 σd  θ=21/2
A1 1 1 1 1 1 1 1   x2 + y2, z2
A2 1 1 1 1 1 −1 −1 Rz  
B1 1 −1 1 −1 1 1 −1    
B2 1 −1 1 −1 1 −1 1 z  
E1 2 θ 0 θ −2 0 0 (x, y)  
E2 2 0 −2 0 2 0 0   (x2y2, xy)
E3 2 θ 0 θ −2 0 0 (Rx, Ry) (xz, yz)
D5d D10 20
  E   2 C5  2 C52 5 C2  i  2 S10  2 S103 5 σd  θ=2π/5
A1g 1 1 1 1 1 1 1 1   x2 + y2, z2
A2g 1 1 1 −1 1 1 1 −1 Rz  
E1g 2 2 cos(θ) 2 cos(2θ) 0 2 2 cos(2θ) 2 cos(θ) 0 (Rx, Ry) (xz, yz)
E2g 2 2 cos(2θ) 2 cos(θ) 0 2 2 cos(θ) 2 cos(2θ) 0   (x2y2, xy)
A1u 1 1 1 1 −1 −1 −1 −1    
A2u 1 1 1 −1 −1 −1 −1 1 z  
E1u 2 2 cos(θ) 2 cos(2θ) 0 −2 −2 cos(2θ) −2 cos(θ) 0 (x, y)  
E2u 2 2 cos(2θ) 2 cos(θ) 0 −2 −2 cos(θ) −2 cos(2θ) 0    
D6d D12 24
  E   2 S12  2 C6  2 S4  2 C3  2 S125 C2  6 C2'  6 σd  θ=31/2
A1 1 1 1 1 1 1 1 1 1   x2 + y2, z2
A2 1 1 1 1 1 1 1 −1 −1 Rz  
B1 1 −1 1 −1 1 −1 1 1 −1    
B2 1 −1 1 −1 1 −1 1 −1 1 z  
E1 2 θ 1 0 −1 θ −2 0 0 (x, y)  
E2 2 1 −1 −2 −1 1 2 0 0   (x2y2, xy)
E3 2 0 −2 0 2 0 −2 0 0    
E4 2 −1 −1 2 −1 −1 2 0 0    
E5 2 θ 1 0 −1 θ −2 0 0 (Rx, Ry) (xz, yz)

Polyhedral symmetries edit

These symmetries are characterized by having more than one proper rotation axis of order greater than 2.

Cubic groups edit

These polyhedral groups are characterized by not having a C5 proper rotation axis.

Point
Group
Canonical
group
Order Character Table
T A4 12
  E 4 C3  4 C32 3 C2  θ=ei/3
A 1 1 1 1   x2 + y2 + z2
E 1
1
θ 
θC
θC
θ 
1
1
  (2 z2x2y2,
x2y2)
T 3 0 0 −1 (Rx, Ry, Rz),
(x, y, z)
(xy, xz, yz)
Td S4 24
  E 8 C3  3 C2  6 S4  6 σd   
A1 1 1 1 1 1   x2 + y2 + z2
A2 1 1 1 −1 −1    
E 2 −1 2 0 0   (2 z2x2y2,
x2y2)
T1 3 0 −1 1 −1 (Rx, Ry, Rz)  
T2 3 0 −1 −1 1 (x, y, z) (xy, xz, yz)
Th Z2×A4 24
  E 4 C3  4 C32 3 C2  i 4 S6  4 S65 3 σh  θ=ei/3
Ag 1 1 1 1 1 1 1 1   x2 + y2 + z2
Au 1 1 1 1 −1 −1 −1 −1    
Eg 1
1
θ 
θC
θC
θ 
1
1
1
1
θ 
θC
θC
θ 
1
1
  (2 z2x2y2,
x2y2)
Eu 1
1
θ 
θC
θC
θ 
1
1
−1
−1
θ 
θC
θC
θ 
−1
−1
   
Tg 3 0 0 −1 3 0 0 −1 (Rx, Ry, Rz) (xy, xz, yz)
Tu 3 0 0 −1 −3 0 0 1 (x, y, z)  
O S4 24
  E   6 C4  3 C2  (C42) 8 C3  6 C'2   
A1 1 1 1 1 1   x2 + y2 + z2
A2 1 −1 1 1 −1    
E 2 0 2 −1 0   (2 z2x2y2,
x2y2)
T1 3 1 −1 0 −1 (Rx, Ry, Rz),
(x, y, z)
 
T2 3 −1 −1 0 1   (xy, xz, yz)
Oh Z2×S4 48
  E   8 C3  6 C2  6 C4  3 C2  (C42) i 6 S4  8 S6  3 σh  6 σd   
A1g 1 1 1 1 1 1 1 1 1 1   x2 + y2 + z2
A2g 1 1 −1 −1 1 1 −1 1 1 −1    
Eg 2 −1 0 0 2 2 0 −1 2 0   (2 z2x2y2,
x2y2)
T1g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)  
T2g 3 0 1 −1 −1 3 −1 0 −1 1   (xy, xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1    
A2u 1 1 −1 −1 1 −1 1 −1 −1 1    
Eu 2 −1 0 0 2 −2 0 1 −2 0    
T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)  
T2u 3 0 1 −1 −1 −3 1 0 1 −1    

Icosahedral groups edit

These polyhedral groups are characterized by having a C5 proper rotation axis.

Point
Group
Canonical
group
Order Character Table
I A5 60
  E 12 C5  12 C52 20 C3  15 C2  θ=π/5
A 1 1 1 1 1   x2 + y2 + z2
T1 3 2 cos(θ) 2 cos(3θ) 0 −1 (Rx, Ry, Rz),
(x, y, z)
 
T2 3 2 cos(3θ) 2 cos(θ) 0 −1    
G 4 −1 −1 1 0    
H 5 0 0 −1 1   (2 z2x2y2,
x2y2,
xy, xz, yz)
Ih Z2×A5 120
  E 12 C5  12 C52 20 C3  15 C2  i 12 S10  12 S103 20 S6  15 σ θ=π/5
Ag 1 1 1 1 1 1 1 1 1 1   x2 + y2 + z2
T1g 3 2 cos(θ) 2 cos(3θ) 0 −1 3 2 cos(3θ) 2 cos(θ) 0 −1 (Rx, Ry, Rz)  
T2g 3 2 cos(3θ) 2 cos(θ) 0 −1 3 2 cos(θ) 2 cos(3θ) 0 −1    
Gg 4 −1 −1 1 0 4 −1 −1 1 0    
Hg 5 0 0 −1 1 5 0 0 −1 1   (2 z2x2y2,
x2y2,
xy, xz, yz)
Au 1 1 1 1 1 −1 −1 −1 −1 −1    
T1u 3 2 cos(θ) 2 cos(3θ) 0 −1 −3 −2 cos(3θ) −2 cos(θ) 0 1 (x, y, z)  
T2u 3 2 cos(3θ) 2 cos(θ) 0 −1 −3 −2 cos(θ) −2 cos(3θ) 0 1    
Gu 4 −1 −1 1 0 −4 1 1 −1 0    
Hu 5 0 0 −1 1 −5 0 0 1 −1    

Linear (cylindrical) groups edit

These groups are characterized by having a proper rotation axis C around which the symmetry is invariant to any rotation.

Point
Group
Character Table
C∞v
  E 2 CΦ ... ∞ σv   
A1+ 1 1 ... 1 z x2 + y2, z2
A2 1 1 ... −1 Rz  
E1 2 2 cos(Φ) ... 0 (x, y), (Rx, Ry) (xz, yz)
E2 2 2 cos(2Φ) ... 0   (x2 - y2, xy)
E3 2 2 cos(3Φ) ... 0    
... ... ... ... ...    
D∞h
  E 2 CΦ ... ∞ σv  i 2 SΦ ... C2   
Σg+ 1 1 ... 1 1 1 ... 1   x2 + y2, z2
Σg 1 1 ... −1 1 1 ... −1 Rz  
Πg 2 2 cos(Φ) ... 0 2 −2 cos(Φ) .. 0 (Rx, Ry) (xz, yz)
Δg 2 2 cos(2Φ) ... 0 2 2 cos(2Φ) .. 0   (x2y2, xy)
... ... ... ... ... ... ... ... ...    
Σu+ 1 1 ... 1 −1 −1 ... −1 z  
Σu 1 1 ... −1 −1 −1 ... 1    
Πu 2 2 cos(Φ) ... 0 −2 2 cos(Φ) .. 0 (x, y)  
Δu 2 2 cos(2Φ) ... 0 −2 −2 cos(2Φ) .. 0    
... ... ... ... ... ... ... ... ...    

See also edit

Notes edit

  1. ^ Drago, Russell S. (1977). Physical Methods in Chemistry. W.B. Saunders Company. ISBN 0-7216-3184-3.
  2. ^ Cotton, F. Albert (1990). Chemical Applications of Group Theory. John Wiley & Sons: New York. ISBN 0-471-51094-7.
  3. ^ Gelessus, Achim (2007-07-12). "Character tables for chemically important point groups". Jacobs University, Bremin; Computational Laboratory for Analysis, Modeling, and Visualization. Retrieved 2007-07-12.
  4. ^ a b c Shirts, Randall B. (2007). "Correcting Two Long-Standing Errors in Point Group Symmetry Character Tables". Journal of Chemical Education. American Chemical Society. 84 (1882): 1882. Bibcode:2007JChEd..84.1882S. doi:10.1021/ed084p1882. Retrieved 2007-10-16.
  5. ^ Vanovschi, Vitalii. "POINT GROUP SYMMETRY CHARACTER TABLES". WebQC.Org. Retrieved 2008-10-29.
  6. ^ Mulliken, Robert S. (1933-02-15). "Electronic Structures of Polyatomic Molecules and Valence. IV. Electronic States, Quantum Theory of the Double Bond". Physical Review. American Physical Society (APS). 43 (4): 279–302. Bibcode:1933PhRv...43..279M. doi:10.1103/physrev.43.279. ISSN 0031-899X.
  7. ^ Salthouse, J.A.; Ware, M.J. (1972). Point group character tables and related data. Cambridge: Cambridge University Press. pp. 88 + v. ISBN 0-521-08139-4.

External links edit

  • Character tables for many more point groups (includes symmetry transformations of Cartesian products up to sixth order)

Further reading edit

  • Bunker, Philip; Jensen, Per (2006). Molecular Symmetry and Spectroscopy, Second edition. Ottawa: NRC Research Press. ISBN 0-660-19628-X.

list, character, tables, chemically, important, point, groups, this, lists, character, tables, more, common, molecular, point, groups, used, study, molecular, symmetry, these, tables, based, group, theoretical, treatment, symmetry, operations, present, common,. This lists the character tables for the more common molecular point groups used in the study of molecular symmetry These tables are based on the group theoretical treatment of the symmetry operations present in common molecules and are useful in molecular spectroscopy and quantum chemistry Information regarding the use of the tables as well as more extensive lists of them can be found in the references 1 2 3 4 5 Contents 1 Notation 2 Character tables 2 1 Nonaxial symmetries 2 2 Cyclic symmetries 2 2 1 Cyclic groups Cn 2 2 2 Reflection groups Cnh 2 2 3 Pyramidal groups Cnv 2 2 4 Improper rotation groups Sn 2 3 Dihedral symmetries 2 3 1 Dihedral groups Dn 2 3 2 Prismatic groups Dnh 2 3 3 Antiprismatic groups Dnd 2 4 Polyhedral symmetries 2 4 1 Cubic groups 2 4 2 Icosahedral groups 2 5 Linear cylindrical groups 3 See also 4 Notes 5 External links 6 Further readingNotation editFor each non linear group the tables give the most standard notation of the finite group isomorphic to the point group followed by the order of the group number of invariant symmetry operations The finite group notation used is Zn cyclic group of order n Dn dihedral group isomorphic to the symmetry group of an n sided regular polygon Sn symmetric group on n letters and An alternating group on n letters The character tables then follow for all groups The rows of the character tables correspond to the irreducible representations of the group with their conventional names known as Mulliken symbols 6 in the left margin The naming conventions are as follows A and B are singly degenerate representations with the former transforming symmetrically around the principal axis of the group and the latter asymmetrically E T G H are doubly triply quadruply quintuply degenerate representations g and u subscripts denote symmetry and antisymmetry respectively with respect to a center of inversion Subscripts 1 and 2 denote symmetry and antisymmetry respectively with respect to a nonprincipal rotation axis Higher numbers denote additional representations with such asymmetry Single prime and double prime superscripts denote symmetry and antisymmetry respectively with respect to a horizontal mirror plane sh one perpendicular to the principal rotation axis All but the two rightmost columns correspond to the symmetry operations which are invariant in the group In the case of sets of similar operations with the same characters for all representations they are presented as one column with the number of such similar operations noted in the heading The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation or set of symmetry operations The symbol i used in the body of the table denotes the imaginary unit i 2 1 Used in a column heading it denotes the operation of inversion A superscripted uppercase C denotes complex conjugation The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates x y and z rotations about those three coordinates Rx Ry and Rz and functions of the quadratic terms of the coordinates x2 y2 z2 xy xz and yz A further column is included in some tables such as those of Salthouse and Ware 7 For example C s displaystyle C s nbsp E displaystyle E nbsp s h displaystyle sigma h nbsp A displaystyle A nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp x displaystyle x nbsp y displaystyle y nbsp R z displaystyle R z nbsp x 2 displaystyle x 2 nbsp y 2 displaystyle y 2 nbsp z 2 displaystyle z 2 nbsp x y displaystyle xy nbsp z x 2 displaystyle zx 2 nbsp y z 2 displaystyle yz 2 nbsp x 2 y displaystyle x 2 y nbsp x y 2 displaystyle xy 2 nbsp x 3 displaystyle x 3 nbsp y 3 displaystyle y 3 nbsp A displaystyle A nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp z displaystyle z nbsp R x displaystyle R x nbsp R y displaystyle R y nbsp y z displaystyle yz nbsp x z displaystyle xz nbsp z 3 displaystyle z 3 nbsp x y z displaystyle xyz nbsp y 2 z displaystyle y 2 z nbsp x 2 z displaystyle x 2 z nbsp The last column relates to cubic functions which may be used in applications regarding f orbitals in atoms Character tables editNonaxial symmetries edit These groups are characterized by a lack of a proper rotation axis noting that a C 1 displaystyle C 1 nbsp rotation is considered the identity operation These groups have involutional symmetry the only nonidentity operation if any is its own inverse In the group C 1 displaystyle C 1 nbsp all functions of the Cartesian coordinates and rotations about them transform as the A displaystyle A nbsp irreducible representation Point Group Canonical Group Order Character TableC 1 displaystyle C 1 nbsp Z 1 displaystyle Z 1 nbsp 1 displaystyle 1 nbsp E displaystyle E nbsp A displaystyle A nbsp 1 displaystyle 1 nbsp C i displaystyle C i nbsp Z 2 displaystyle Z 2 nbsp 2 E displaystyle E nbsp i displaystyle i nbsp A g displaystyle A g nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp R x displaystyle R x nbsp R y displaystyle R y nbsp R z displaystyle R z nbsp x 2 displaystyle x 2 nbsp y 2 displaystyle y 2 nbsp z 2 displaystyle z 2 nbsp x y displaystyle xy nbsp x z displaystyle xz nbsp y z displaystyle yz nbsp A u displaystyle A u nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp x displaystyle x nbsp y displaystyle y nbsp z displaystyle z nbsp C s displaystyle C s nbsp Z 2 displaystyle Z 2 nbsp 2 displaystyle 2 nbsp E displaystyle E nbsp s h displaystyle sigma h nbsp A displaystyle A nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp x displaystyle x nbsp y displaystyle y nbsp R z displaystyle R z nbsp x 2 displaystyle x 2 nbsp y 2 displaystyle y 2 nbsp z 2 displaystyle z 2 nbsp x y displaystyle xy nbsp A displaystyle A nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp z displaystyle z nbsp R x displaystyle R x nbsp R y displaystyle R y nbsp y z displaystyle yz nbsp x z displaystyle xz nbsp Cyclic symmetries edit The families of groups with these symmetries have only one rotation axis Cyclic groups Cn edit The cyclic groups are denoted by Cn These groups are characterized by an n fold proper rotation axis Cn The C1 group is covered in the nonaxial groups section PointGroup CanonicalGroup Order Character TableC2 Z2 2 E C2 A 1 1 Rz z x2 y2 z2 xyB 1 1 Rx Ry x y xz yzC3 Z3 3 E C3 C32 8 e2pi 3A 1 1 1 Rz z x2 y2E 1 1 8 8C 8C 8 Rx Ry x y x2 y2 xy xz yz C4 Z4 4 E C4 C2 C43 A 1 1 1 1 Rz z x2 y2 z2B 1 1 1 1 x2 y2 xyE 1 1 i i 1 1 i i Rx Ry x y xz yz C5 Z5 5 E C5 C52 C53 C54 8 e2pi 5A 1 1 1 1 1 Rz z x2 y2 z2E1 1 1 8 8C 82 82 C 82 C 82 8C 8 Rx Ry x y xz yz E2 1 1 82 82 C 8C 8 8 8C 82 C 82 x2 y2 xy C6 Z6 6 E C6 C3 C2 C32 C65 8 e2pi 6A 1 1 1 1 1 1 Rz z x2 y2 z2B 1 1 1 1 1 1 E1 1 1 8 8C 8C 8 1 1 8 8C 8C 8 Rx Ry x y xz yz E2 1 1 8C 8 8 8C 1 1 8C 8 8 8C x2 y2 xy C8 Z8 8 E C8 C4 C83 C2 C85 C43 C87 8 e2pi 8A 1 1 1 1 1 1 1 1 Rz z x2 y2 z2B 1 1 1 1 1 1 1 1 E1 1 1 8 8C i i 8C 8 1 1 8 8C i i 8C 8 Rx Ry x y xz yz E2 1 1 i i 1 1 i i 1 1 i i 1 1 i i x2 y2 xy E3 1 1 8 8C i i 8C 8 1 1 8 8C i i 8C 8 Reflection groups Cnh edit The reflection groups are denoted by Cnh These groups are characterized by i an n fold proper rotation axis Cn ii a mirror plane sh normal to Cn The C1h group is the same as the Cs group in the nonaxial groups section PointGroup Canonicalgroup Order Character TableC2h Z2 Z2 4 E C2 i sh Ag 1 1 1 1 Rz x2 y2 z2 xyBg 1 1 1 1 Rx Ry xz yzAu 1 1 1 1 z Bu 1 1 1 1 x y C3h Z6 6 E C3 C32 sh S3 S35 8 e2pi 3A 1 1 1 1 1 1 Rz x2 y2 z2E 1 1 8 8C 8C 8 1 1 8 8C 8C 8 x y x2 y2 xy A 1 1 1 1 1 1 z E 1 1 8 8C 8C 8 1 1 8 8C 8C 8 Rx Ry xz yz C4h Z2 Z4 8 E C4 C2 C43 i S43 sh S4 Ag 1 1 1 1 1 1 1 1 Rz x2 y2 z2Bg 1 1 1 1 1 1 1 1 x2 y2 xyEg 1 1 i i 1 1 i i 1 1 i i 1 1 i i Rx Ry xz yz Au 1 1 1 1 1 1 1 1 z Bu 1 1 1 1 1 1 1 1 Eu 1 1 i i 1 1 i i 1 1 i i 1 1 i i x y C5h Z10 10 E C5 C52 C53 C54 sh S5 S57 S53 S59 8 e2pi 5A 1 1 1 1 1 1 1 1 1 1 Rz x2 y2 z2E1 1 1 8 8C 82 82 C 82 C 82 8C 8 1 1 8 8C 82 82 C 82 C 82 8C 8 x y E2 1 1 82 82 C 8C 8 8 8C 82 C 82 1 1 82 82 C 8C 8 8 8C 82 C 82 x2 y2 xy A 1 1 1 1 1 1 1 1 1 1 z E1 1 1 8 8C 82 82 C 82 C 82 8C 8 1 1 8 8C 82 82 C 82 C 82 8C 8 Rx Ry xz yz E2 1 1 82 82 C 8C 8 8 8C 82 C 82 1 1 82 82 C 8C 8 8 8C 82 C 82 C6h Z2 Z6 12 E C6 C3 C2 C32 C65 i S35 S65 sh S6 S3 8 e2pi 6Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2 y2 z2Bg 1 1 1 1 1 1 1 1 1 1 1 1 E1g 1 1 8 8C 8C 8 1 1 8 8C 8C 8 1 1 8 8C 8C 8 1 1 8 8C 8C 8 Rx Ry xz yz E2g 1 1 8C 8 8 8C 1 1 8C 8 8 8C 1 1 8C 8 8 8C 1 1 8C 8 8 8C x2 y2 xy Au 1 1 1 1 1 1 1 1 1 1 1 1 z Bu 1 1 1 1 1 1 1 1 1 1 1 1 E1u 1 1 8 8C 8C 8 1 1 8 8C 8C 8 1 1 8 8C 8C 8 1 1 8 8C 8C 8 x y E2u 1 1 8C 8 8 8C 1 1 8C 8 8 8C 1 1 8C 8 8 8C 1 1 8C 8 8 8C Pyramidal groups Cnv edit The pyramidal groups are denoted by Cnv These groups are characterized by i an n fold proper rotation axis Cn ii n mirror planes sv which contain Cn The C1v group is the same as the Cs group in the nonaxial groups section PointGroup Canonicalgroup Order Character TableC2v Z2 Z2 D2 4 E C2 sv sv A1 1 1 1 1 z x2 y2 z2A2 1 1 1 1 Rz xyB1 1 1 1 1 Ry x xzB2 1 1 1 1 Rx y yzC3v D3 6 E 2 C3 3 sv A1 1 1 1 z x2 y2 z2A2 1 1 1 Rz E 2 1 0 Rx Ry x y x2 y2 xy xz yz C4v D4 8 E 2 C4 C2 2 sv 2 sd A1 1 1 1 1 1 z x2 y2 z2A2 1 1 1 1 1 Rz B1 1 1 1 1 1 x2 y2B2 1 1 1 1 1 xyE 2 0 2 0 0 Rx Ry x y xz yz C5v D5 10 E 2 C5 2 C52 5 sv 8 2p 5A1 1 1 1 1 z x2 y2 z2A2 1 1 1 1 Rz E1 2 2 cos 8 2 cos 28 0 Rx Ry x y xz yz E2 2 2 cos 28 2 cos 8 0 x2 y2 xy C6v D6 12 E 2 C6 2 C3 C2 3 sv 3 sd A1 1 1 1 1 1 1 z x2 y2 z2A2 1 1 1 1 1 1 Rz B1 1 1 1 1 1 1 B2 1 1 1 1 1 1 E1 2 1 1 2 0 0 Rx Ry x y xz yz E2 2 1 1 2 0 0 x2 y2 xy Improper rotation groups Sn edit The improper rotation groups are denoted by Sn These groups are characterized by an n fold improper rotation axis Sn where n is necessarily even The S2 group is the same as the Ci group in the nonaxial groups section Sn groups with an odd value of n are identical to Cnh groups of same n and are therefore not considered here in particular S1 is identical to Cs The S8 table reflects the 2007 discovery of errors in older references 4 Specifically Rx Ry transform not as E1 but rather as E3 PointGroup Canonicalgroup Order Character TableS4 Z4 4 E S4 C2 S43 A 1 1 1 1 Rz x2 y2 z2B 1 1 1 1 z x2 y2 xyE 1 1 i i 1 1 i i Rx Ry x y xz yz S6 Z6 6 E S6 C3 i C32 S65 8 e2pi 6Ag 1 1 1 1 1 1 Rz x2 y2 z2Eg 1 1 8C 8 8 8C 1 1 8C 8 8 8C Rx Ry x2 y2 xy xz yz Au 1 1 1 1 1 1 z Eu 1 1 8C 8 8 8C 1 1 8C 8 8 8C x y S8 Z8 8 E S8 C4 S83 i S85 C42 S87 8 e2pi 8A 1 1 1 1 1 1 1 1 Rz x2 y2 z2B 1 1 1 1 1 1 1 1 z E1 1 1 8 8C i i 8C 8 1 1 8 8C i i 8C 8 x y xz yz E2 1 1 i i 1 1 i i 1 1 i i 1 1 i i x2 y2 xy E3 1 1 8C 8 i i 8 8C 1 1 8C 8 i i 8 8C Rx Ry xz yz Dihedral symmetries edit The families of groups with these symmetries are characterized by 2 fold proper rotation axes normal to a principal rotation axis Dihedral groups Dn edit The dihedral groups are denoted by Dn These groups are characterized by i an n fold proper rotation axis Cn ii n 2 fold proper rotation axes C2 normal to Cn The D1 group is the same as the C2 group in the cyclic groups section PointGroup Canonicalgroup Order Character TableD2 Z2 Z2 D2 4 E C2 z C2 x C2 y A 1 1 1 1 x2 y2 z2B1 1 1 1 1 Rz z xyB2 1 1 1 1 Ry y xzB3 1 1 1 1 Rx x yzD3 D3 6 E 2 C3 3 C 2 A1 1 1 1 x2 y2 z2A2 1 1 1 Rz z E 2 1 0 Rx Ry x y x2 y2 xy xz yz D4 D4 8 E 2 C4 C2 2 C2 2 C2 A1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 Rz z B1 1 1 1 1 1 x2 y2B2 1 1 1 1 1 xyE 2 0 2 0 0 Rx Ry x y xz yz D5 D5 10 E 2 C5 2 C52 5 C2 8 2p 5A1 1 1 1 1 x2 y2 z2A2 1 1 1 1 Rz z E1 2 2 cos 8 2 cos 28 0 Rx Ry x y xz yz E2 2 2 cos 28 2 cos 8 0 x2 y2 xy D6 D6 12 E 2 C6 2 C3 C2 3 C2 3 C2 A1 1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 1 Rz z B1 1 1 1 1 1 1 B2 1 1 1 1 1 1 E1 2 1 1 2 0 0 Rx Ry x y xz yz E2 2 1 1 2 0 0 x2 y2 xy Prismatic groups Dnh edit The prismatic groups are denoted by Dnh These groups are characterized by i an n fold proper rotation axis Cn ii n 2 fold proper rotation axes C2 normal to Cn iii a mirror plane sh normal to Cn and containing the C2s The D1h group is the same as the C2v group in the pyramidal groups section The D8h table reflects the 2007 discovery of errors in older references 4 Specifically symmetry operation column headers 2S8 and 2S83 were reversed in the older references PointGroup Canonicalgroup Order Character TableD2h Z2 Z2 Z2 Z2 D2 8 E C2 C2 x C2 y i s xy s xz s yz Ag 1 1 1 1 1 1 1 1 x2 y2 z2B1g 1 1 1 1 1 1 1 1 Rz xyB2g 1 1 1 1 1 1 1 1 Ry xzB3g 1 1 1 1 1 1 1 1 Rx yzAu 1 1 1 1 1 1 1 1 B1u 1 1 1 1 1 1 1 1 z B2u 1 1 1 1 1 1 1 1 y B3u 1 1 1 1 1 1 1 1 x D3h D6 12 E 2 C3 3 C2 sh 2 S3 3 sv A1 1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 1 Rz E 2 1 0 2 1 0 x y x2 y2 xy A1 1 1 1 1 1 1 A2 1 1 1 1 1 1 z E 2 1 0 2 1 0 Rx Ry xz yz D4h Z2 D4 16 E 2 C4 C2 2 C2 2 C2 i 2 S4 sh 2 sv 2 sd A1g 1 1 1 1 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 1 1 1 1 Rz B1g 1 1 1 1 1 1 1 1 1 1 x2 y2B2g 1 1 1 1 1 1 1 1 1 1 xyEg 2 0 2 0 0 2 0 2 0 0 Rx Ry xz yz A1u 1 1 1 1 1 1 1 1 1 1 A2u 1 1 1 1 1 1 1 1 1 1 z B1u 1 1 1 1 1 1 1 1 1 1 B2u 1 1 1 1 1 1 1 1 1 1 Eu 2 0 2 0 0 2 0 2 0 0 x y D5h D10 20 E 2 C5 2 C52 5 C2 sh 2 S5 2 S53 5 sv 8 2p 5A1 1 1 1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 1 1 1 Rz E1 2 2 cos 8 2 cos 28 0 2 2 cos 8 2 cos 28 0 x y E2 2 2 cos 28 2 cos 8 0 2 2 cos 28 2 cos 8 0 x2 y2 xy A1 1 1 1 1 1 1 1 1 A2 1 1 1 1 1 1 1 1 z E1 2 2 cos 8 2 cos 28 0 2 2 cos 8 2 cos 28 0 Rx Ry xz yz E2 2 2 cos 28 2 cos 8 0 2 2 cos 28 2 cos 8 0 D6h Z2 D6 24 E 2 C6 2 C3 C2 3 C2 3 C2 i 2 S3 2 S6 sh 3 sd 3 sv A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 1 1 1 1 1 1 Rz B1g 1 1 1 1 1 1 1 1 1 1 1 1 B2g 1 1 1 1 1 1 1 1 1 1 1 1 E1g 2 1 1 2 0 0 2 1 1 2 0 0 Rx Ry xz yz E2g 2 1 1 2 0 0 2 1 1 2 0 0 x2 y2 xy A1u 1 1 1 1 1 1 1 1 1 1 1 1 A2u 1 1 1 1 1 1 1 1 1 1 1 1 z B1u 1 1 1 1 1 1 1 1 1 1 1 1 B2u 1 1 1 1 1 1 1 1 1 1 1 1 E1u 2 1 1 2 0 0 2 1 1 2 0 0 x y E2u 2 1 1 2 0 0 2 1 1 2 0 0 D8h Z2 D8 32 E 2 C8 2 C83 2 C4 C2 4 C2 4 C2 i 2 S83 2 S8 2 S4 sh 4 sd 4 sv 8 21 2A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Rz B1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B2g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E1g 2 8 8 0 2 0 0 2 8 8 0 2 0 0 Rx Ry xz yz E2g 2 0 0 2 2 0 0 2 0 0 2 2 0 0 x2 y2 xy E3g 2 8 8 0 2 0 0 2 8 8 0 2 0 0 A1u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A2u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 z B1u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B2u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E1u 2 8 8 0 2 0 0 2 8 8 0 2 0 0 x y E2u 2 0 0 2 2 0 0 2 0 0 2 2 0 0 E3u 2 8 8 0 2 0 0 2 8 8 0 2 0 0 Antiprismatic groups Dnd edit The antiprismatic groups are denoted by Dnd These groups are characterized by i an n fold proper rotation axis Cn ii n 2 fold proper rotation axes C2 normal to Cn iii n mirror planes sd which contain Cn The D1d group is the same as the C2h group in the reflection groups section PointGroup Canonicalgroup Order Character TableD2d D4 8 E 2 S4 C2 2 C2 2 sd A1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 Rz B1 1 1 1 1 1 x2 y2B2 1 1 1 1 1 z xyE 2 0 2 0 0 Rx Ry x y xz yz D3d D6 12 E 2 C3 3 C2 i 2 S6 3 sd A1g 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 Rz Eg 2 1 0 2 1 0 Rx Ry x2 y2 xy xz yz A1u 1 1 1 1 1 1 A2u 1 1 1 1 1 1 z Eu 2 1 0 2 1 0 x y D4d D8 16 E 2 S8 2 C4 2 S83 C2 4 C2 4 sd 8 21 2A1 1 1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 1 1 Rz B1 1 1 1 1 1 1 1 B2 1 1 1 1 1 1 1 z E1 2 8 0 8 2 0 0 x y E2 2 0 2 0 2 0 0 x2 y2 xy E3 2 8 0 8 2 0 0 Rx Ry xz yz D5d D10 20 E 2 C5 2 C52 5 C2 i 2 S10 2 S103 5 sd 8 2p 5A1g 1 1 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 1 1 Rz E1g 2 2 cos 8 2 cos 28 0 2 2 cos 28 2 cos 8 0 Rx Ry xz yz E2g 2 2 cos 28 2 cos 8 0 2 2 cos 8 2 cos 28 0 x2 y2 xy A1u 1 1 1 1 1 1 1 1 A2u 1 1 1 1 1 1 1 1 z E1u 2 2 cos 8 2 cos 28 0 2 2 cos 28 2 cos 8 0 x y E2u 2 2 cos 28 2 cos 8 0 2 2 cos 8 2 cos 28 0 D6d D12 24 E 2 S12 2 C6 2 S4 2 C3 2 S125 C2 6 C2 6 sd 8 31 2A1 1 1 1 1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 1 1 1 1 Rz B1 1 1 1 1 1 1 1 1 1 B2 1 1 1 1 1 1 1 1 1 z E1 2 8 1 0 1 8 2 0 0 x y E2 2 1 1 2 1 1 2 0 0 x2 y2 xy E3 2 0 2 0 2 0 2 0 0 E4 2 1 1 2 1 1 2 0 0 E5 2 8 1 0 1 8 2 0 0 Rx Ry xz yz Polyhedral symmetries edit These symmetries are characterized by having more than one proper rotation axis of order greater than 2 Cubic groups edit These polyhedral groups are characterized by not having a C5 proper rotation axis PointGroup Canonicalgroup Order Character TableT A4 12 E 4 C3 4 C32 3 C2 8 e2p i 3A 1 1 1 1 x2 y2 z2E 1 1 8 8C 8C 8 1 1 2 z2 x2 y2 x2 y2 T 3 0 0 1 Rx Ry Rz x y z xy xz yz Td S4 24 E 8 C3 3 C2 6 S4 6 sd A1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 E 2 1 2 0 0 2 z2 x2 y2 x2 y2 T1 3 0 1 1 1 Rx Ry Rz T2 3 0 1 1 1 x y z xy xz yz Th Z2 A4 24 E 4 C3 4 C32 3 C2 i 4 S6 4 S65 3 sh 8 e2p i 3Ag 1 1 1 1 1 1 1 1 x2 y2 z2Au 1 1 1 1 1 1 1 1 Eg 1 1 8 8C 8C 8 1 1 1 1 8 8C 8C 8 1 1 2 z2 x2 y2 x2 y2 Eu 1 1 8 8C 8C 8 1 1 1 1 8 8C 8C 8 1 1 Tg 3 0 0 1 3 0 0 1 Rx Ry Rz xy xz yz Tu 3 0 0 1 3 0 0 1 x y z O S4 24 E 6 C4 3 C2 C42 8 C3 6 C 2 A1 1 1 1 1 1 x2 y2 z2A2 1 1 1 1 1 E 2 0 2 1 0 2 z2 x2 y2 x2 y2 T1 3 1 1 0 1 Rx Ry Rz x y z T2 3 1 1 0 1 xy xz yz Oh Z2 S4 48 E 8 C3 6 C2 6 C4 3 C2 C42 i 6 S4 8 S6 3 sh 6 sd A1g 1 1 1 1 1 1 1 1 1 1 x2 y2 z2A2g 1 1 1 1 1 1 1 1 1 1 Eg 2 1 0 0 2 2 0 1 2 0 2 z2 x2 y2 x2 y2 T1g 3 0 1 1 1 3 1 0 1 1 Rx Ry Rz T2g 3 0 1 1 1 3 1 0 1 1 xy xz yz A1u 1 1 1 1 1 1 1 1 1 1 A2u 1 1 1 1 1 1 1 1 1 1 Eu 2 1 0 0 2 2 0 1 2 0 T1u 3 0 1 1 1 3 1 0 1 1 x y z T2u 3 0 1 1 1 3 1 0 1 1 Icosahedral groups edit See also Icosahedral symmetry These polyhedral groups are characterized by having a C5 proper rotation axis PointGroup Canonicalgroup Order Character TableI A5 60 E 12 C5 12 C52 20 C3 15 C2 8 p 5A 1 1 1 1 1 x2 y2 z2T1 3 2 cos 8 2 cos 38 0 1 Rx Ry Rz x y z T2 3 2 cos 38 2 cos 8 0 1 G 4 1 1 1 0 H 5 0 0 1 1 2 z2 x2 y2 x2 y2 xy xz yz Ih Z2 A5 120 E 12 C5 12 C52 20 C3 15 C2 i 12 S10 12 S103 20 S6 15 s 8 p 5Ag 1 1 1 1 1 1 1 1 1 1 x2 y2 z2T1g 3 2 cos 8 2 cos 38 0 1 3 2 cos 38 2 cos 8 0 1 Rx Ry Rz T2g 3 2 cos 38 2 cos 8 0 1 3 2 cos 8 2 cos 38 0 1 Gg 4 1 1 1 0 4 1 1 1 0 Hg 5 0 0 1 1 5 0 0 1 1 2 z2 x2 y2 x2 y2 xy xz yz Au 1 1 1 1 1 1 1 1 1 1 T1u 3 2 cos 8 2 cos 38 0 1 3 2 cos 38 2 cos 8 0 1 x y z T2u 3 2 cos 38 2 cos 8 0 1 3 2 cos 8 2 cos 38 0 1 Gu 4 1 1 1 0 4 1 1 1 0 Hu 5 0 0 1 1 5 0 0 1 1 Linear cylindrical groups edit These groups are characterized by having a proper rotation axis C around which the symmetry is invariant to any rotation PointGroup Character TableC v E 2 C F sv A1 S 1 1 1 z x2 y2 z2A2 S 1 1 1 Rz E1 P 2 2 cos F 0 x y Rx Ry xz yz E2 D 2 2 cos 2F 0 x2 y2 xy E3 F 2 2 cos 3F 0 D h E 2 C F sv i 2 S F C2 Sg 1 1 1 1 1 1 x2 y2 z2Sg 1 1 1 1 1 1 Rz Pg 2 2 cos F 0 2 2 cos F 0 Rx Ry xz yz Dg 2 2 cos 2F 0 2 2 cos 2F 0 x2 y2 xy Su 1 1 1 1 1 1 z Su 1 1 1 1 1 1 Pu 2 2 cos F 0 2 2 cos F 0 x y Du 2 2 cos 2F 0 2 2 cos 2F 0 See also editLinear combination of atomic orbitals molecular orbital method Raman spectroscopy Vibrational spectroscopy molecular vibration List of small groups Cubic harmonicsNotes edit Drago Russell S 1977 Physical Methods in Chemistry W B Saunders Company ISBN 0 7216 3184 3 Cotton F Albert 1990 Chemical Applications of Group Theory John Wiley amp Sons New York ISBN 0 471 51094 7 Gelessus Achim 2007 07 12 Character tables for chemically important point groups Jacobs University Bremin Computational Laboratory for Analysis Modeling and Visualization Retrieved 2007 07 12 a b c Shirts Randall B 2007 Correcting Two Long Standing Errors in Point Group Symmetry Character Tables Journal of Chemical Education American Chemical Society 84 1882 1882 Bibcode 2007JChEd 84 1882S doi 10 1021 ed084p1882 Retrieved 2007 10 16 Vanovschi Vitalii POINT GROUP SYMMETRY CHARACTER TABLES WebQC Org Retrieved 2008 10 29 Mulliken Robert S 1933 02 15 Electronic Structures of Polyatomic Molecules and Valence IV Electronic States Quantum Theory of the Double Bond Physical Review American Physical Society APS 43 4 279 302 Bibcode 1933PhRv 43 279M doi 10 1103 physrev 43 279 ISSN 0031 899X Salthouse J A Ware M J 1972 Point group character tables and related data Cambridge Cambridge University Press pp 88 v ISBN 0 521 08139 4 External links editCharacter tables for many more point groups includes symmetry transformations of Cartesian products up to sixth order Further reading editBunker Philip Jensen Per 2006 Molecular Symmetry and Spectroscopy Second edition Ottawa NRC Research Press ISBN 0 660 19628 X Retrieved from https en wikipedia org w index php title List of character tables for chemically important 3D point groups amp oldid 1180887064, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.