fbpx
Wikipedia

Linnik's theorem

Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem on arithmetic progressions. It asserts that there exist positive c and L such that, if we denote p(a,d) the least prime in the arithmetic progression

where n runs through the positive integers and a and d are any given positive coprime integers with 1 ≤ ad − 1, then:

The theorem is named after Yuri Vladimirovich Linnik, who proved it in 1944.[1][2] Although Linnik's proof showed c and L to be effectively computable, he provided no numerical values for them.

It follows from Zsigmondy's theorem that p(1,d) ≤ 2d − 1, for all d ≥ 3. It is known that p(1,p) ≤ Lp, for all primes p ≥ 5, as Lp is congruent to 1 modulo p for all prime numbers p, where Lp denotes the p-th Lucas number. Just like Mersenne numbers, Lucas numbers with prime indices have divisors of the form 2kp+1.

Properties Edit

It is known that L ≤ 2 for almost all integers d.[3]

On the generalized Riemann hypothesis it can be shown that

 

where   is the totient function,[4] and the stronger bound

 

has been also proved.[5]

It is also conjectured that:

  [4]

Bounds for L Edit

The constant L is called Linnik's constant[6] and the following table shows the progress that has been made on determining its size.

L Year of publication Author
10000 1957 Pan[7]
5448 1958 Pan
777 1965 Chen[8]
630 1971 Jutila
550 1970 Jutila[9]
168 1977 Chen[10]
80 1977 Jutila[11]
36 1977 Graham[12]
20 1981 Graham[13] (submitted before Chen's 1979 paper)
17 1979 Chen[14]
16 1986 Wang
13.5 1989 Chen and Liu[15][16]
8 1990 Wang[17]
5.5 1992 Heath-Brown[4]
5.18 2009 Xylouris[18]
5 2011 Xylouris[19]

Moreover, in Heath-Brown's result the constant c is effectively computable.

Notes Edit

  1. ^ Linnik, Yu. V. (1944). "On the least prime in an arithmetic progression I. The basic theorem". Rec. Math. (Mat. Sbornik). Nouvelle Série. 15 (57): 139–178. MR 0012111.
  2. ^ Linnik, Yu. V. (1944). "On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon". Rec. Math. (Mat. Sbornik). Nouvelle Série. 15 (57): 347–368. MR 0012112.
  3. ^ Bombieri, Enrico; Friedlander, John B.; Iwaniec, Henryk (1989). "Primes in Arithmetic Progressions to Large Moduli. III". Journal of the American Mathematical Society. 2 (2): 215–224. doi:10.2307/1990976. JSTOR 1990976. MR 0976723.
  4. ^ a b c Heath-Brown, Roger (1992). "Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression". Proc. London Math. Soc. 64 (3): 265–338. doi:10.1112/plms/s3-64.2.265. MR 1143227.
  5. ^ Lamzouri, Y.; Li, X.; Soundararajan, K. (2015). "Conditional bounds for the least quadratic non-residue and related problems". Math. Comp. 84 (295): 2391–2412. arXiv:1309.3595. doi:10.1090/S0025-5718-2015-02925-1. S2CID 15306240.
  6. ^ Guy, Richard K. (2004). Unsolved problems in number theory. Problem Books in Mathematics. Vol. 1 (Third ed.). New York: Springer-Verlag. p. 22. doi:10.1007/978-0-387-26677-0. ISBN 978-0-387-20860-2. MR 2076335.
  7. ^ Pan, Cheng Dong (1957). "On the least prime in an arithmetical progression". Sci. Record. New Series. 1: 311–313. MR 0105398.
  8. ^ Chen, Jingrun (1965). "On the least prime in an arithmetical progression". Sci. Sinica. 14: 1868–1871.
  9. ^ Jutila, Matti (1970). "A new estimate for Linnik's constant". Ann. Acad. Sci. Fenn. Ser. A. 471. MR 0271056.
  10. ^ Chen, Jingrun (1977). "On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions". Sci. Sinica. 20 (5): 529–562. MR 0476668.
  11. ^ Jutila, Matti (1977). "On Linnik's constant". Math. Scand. 41 (1): 45–62. doi:10.7146/math.scand.a-11701. MR 0476671.
  12. ^ Graham, Sidney West (1977). Applications of sieve methods (Ph.D.). Ann Arbor, Mich: Univ. Michigan. MR 2627480.
  13. ^ Graham, S. W. (1981). "On Linnik's constant". Acta Arith. 39 (2): 163–179. doi:10.4064/aa-39-2-163-179. MR 0639625.
  14. ^ Chen, Jingrun (1979). "On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II". Sci. Sinica. 22 (8): 859–889. MR 0549597.
  15. ^ Chen, Jingrun; Liu, Jian Min (1989). "On the least prime in an arithmetical progression. III". Science in China Series A: Mathematics. 32 (6): 654–673. MR 1056044.
  16. ^ Chen, Jingrun; Liu, Jian Min (1989). "On the least prime in an arithmetical progression. IV". Science in China Series A: Mathematics. 32 (7): 792–807. MR 1058000.
  17. ^ Wang, Wei (1991). "On the least prime in an arithmetical progression". Acta Mathematica Sinica. New Series. 7 (3): 279–288. doi:10.1007/BF02583005. MR 1141242. S2CID 121701036.
  18. ^ Xylouris, Triantafyllos (2011). "On Linnik's constant". Acta Arith. 150 (1): 65–91. doi:10.4064/aa150-1-4. MR 2825574.
  19. ^ Xylouris, Triantafyllos (2011). Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression [The zeros of Dirichlet L-functions and the least prime in an arithmetic progression] (Dissertation for the degree of Doctor of Mathematics and Natural Sciences) (in German). Bonn: Universität Bonn, Mathematisches Institut. MR 3086819.

linnik, theorem, analytic, number, theory, answers, natural, question, after, dirichlet, theorem, arithmetic, progressions, asserts, that, there, exist, positive, such, that, denote, least, prime, arithmetic, progression, displaystyle, where, runs, through, po. Linnik s theorem in analytic number theory answers a natural question after Dirichlet s theorem on arithmetic progressions It asserts that there exist positive c and L such that if we denote p a d the least prime in the arithmetic progression a n d displaystyle a nd where n runs through the positive integers and a and d are any given positive coprime integers with 1 a d 1 then p a d lt c d L displaystyle operatorname p a d lt cd L The theorem is named after Yuri Vladimirovich Linnik who proved it in 1944 1 2 Although Linnik s proof showed c and L to be effectively computable he provided no numerical values for them It follows from Zsigmondy s theorem that p 1 d 2d 1 for all d 3 It is known that p 1 p Lp for all primes p 5 as Lp is congruent to 1 modulo p for all prime numbers p where Lp denotes the p th Lucas number Just like Mersenne numbers Lucas numbers with prime indices have divisors of the form 2kp 1 Properties EditIt is known that L 2 for almost all integers d 3 On the generalized Riemann hypothesis it can be shown that p a d 1 o 1 f d 2 log d 2 displaystyle operatorname p a d leq 1 o 1 varphi d 2 log d 2 nbsp where f displaystyle varphi nbsp is the totient function 4 and the stronger bound p a d f d 2 log d 2 displaystyle operatorname p a d leq varphi d 2 log d 2 nbsp has been also proved 5 It is also conjectured that p a d lt d 2 displaystyle operatorname p a d lt d 2 nbsp 4 Bounds for L EditThe constant L is called Linnik s constant 6 and the following table shows the progress that has been made on determining its size L Year of publication Author10000 1957 Pan 7 5448 1958 Pan777 1965 Chen 8 630 1971 Jutila550 1970 Jutila 9 168 1977 Chen 10 80 1977 Jutila 11 36 1977 Graham 12 20 1981 Graham 13 submitted before Chen s 1979 paper 17 1979 Chen 14 16 1986 Wang13 5 1989 Chen and Liu 15 16 8 1990 Wang 17 5 5 1992 Heath Brown 4 5 18 2009 Xylouris 18 5 2011 Xylouris 19 Moreover in Heath Brown s result the constant c is effectively computable Notes Edit Linnik Yu V 1944 On the least prime in an arithmetic progression I The basic theorem Rec Math Mat Sbornik Nouvelle Serie 15 57 139 178 MR 0012111 Linnik Yu V 1944 On the least prime in an arithmetic progression II The Deuring Heilbronn phenomenon Rec Math Mat Sbornik Nouvelle Serie 15 57 347 368 MR 0012112 Bombieri Enrico Friedlander John B Iwaniec Henryk 1989 Primes in Arithmetic Progressions to Large Moduli III Journal of the American Mathematical Society 2 2 215 224 doi 10 2307 1990976 JSTOR 1990976 MR 0976723 a b c Heath Brown Roger 1992 Zero free regions for Dirichlet L functions and the least prime in an arithmetic progression Proc London Math Soc 64 3 265 338 doi 10 1112 plms s3 64 2 265 MR 1143227 Lamzouri Y Li X Soundararajan K 2015 Conditional bounds for the least quadratic non residue and related problems Math Comp 84 295 2391 2412 arXiv 1309 3595 doi 10 1090 S0025 5718 2015 02925 1 S2CID 15306240 Guy Richard K 2004 Unsolved problems in number theory Problem Books in Mathematics Vol 1 Third ed New York Springer Verlag p 22 doi 10 1007 978 0 387 26677 0 ISBN 978 0 387 20860 2 MR 2076335 Pan Cheng Dong 1957 On the least prime in an arithmetical progression Sci Record New Series 1 311 313 MR 0105398 Chen Jingrun 1965 On the least prime in an arithmetical progression Sci Sinica 14 1868 1871 Jutila Matti 1970 A new estimate for Linnik s constant Ann Acad Sci Fenn Ser A 471 MR 0271056 Chen Jingrun 1977 On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet s L functions Sci Sinica 20 5 529 562 MR 0476668 Jutila Matti 1977 On Linnik s constant Math Scand 41 1 45 62 doi 10 7146 math scand a 11701 MR 0476671 Graham Sidney West 1977 Applications of sieve methods Ph D Ann Arbor Mich Univ Michigan MR 2627480 Graham S W 1981 On Linnik s constant Acta Arith 39 2 163 179 doi 10 4064 aa 39 2 163 179 MR 0639625 Chen Jingrun 1979 On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet s L functions II Sci Sinica 22 8 859 889 MR 0549597 Chen Jingrun Liu Jian Min 1989 On the least prime in an arithmetical progression III Science in China Series A Mathematics 32 6 654 673 MR 1056044 Chen Jingrun Liu Jian Min 1989 On the least prime in an arithmetical progression IV Science in China Series A Mathematics 32 7 792 807 MR 1058000 Wang Wei 1991 On the least prime in an arithmetical progression Acta Mathematica Sinica New Series 7 3 279 288 doi 10 1007 BF02583005 MR 1141242 S2CID 121701036 Xylouris Triantafyllos 2011 On Linnik s constant Acta Arith 150 1 65 91 doi 10 4064 aa150 1 4 MR 2825574 Xylouris Triantafyllos 2011 Uber die Nullstellen der Dirichletschen L Funktionen und die kleinste Primzahl in einer arithmetischen Progression The zeros of Dirichlet L functions and the least prime in an arithmetic progression Dissertation for the degree of Doctor of Mathematics and Natural Sciences in German Bonn Universitat Bonn Mathematisches Institut MR 3086819 Retrieved from https en wikipedia org w index php title Linnik 27s theorem amp oldid 1170009745, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.