fbpx
Wikipedia

Legendre symbol

Legendre symbol (a/p)
for various a (along top) and p (along left side).
a
p
0 1 2 3 4 5 6 7 8 9 10
3 0 1 −1
5 0 1 −1 −1 1
7 0 1 1 −1 1 −1 −1
11 0 1 −1 1 1 1 −1 −1 −1 1 −1

Only 0 ≤ a < p are shown, since due to the first property below any other a can be reduced modulo p. Quadratic residues are highlighted in yellow, and correspond precisely to the values 0 and 1.

In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.

The Legendre symbol was introduced by Adrien-Marie Legendre in 1798[1] in the course of his attempts at proving the law of quadratic reciprocity. Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order. The notational convenience of the Legendre symbol inspired introduction of several other "symbols" used in algebraic number theory, such as the Hilbert symbol and the Artin symbol.

Definition edit

Let   be an odd prime number. An integer   is a quadratic residue modulo   if it is congruent to a perfect square modulo   and is a quadratic nonresidue modulo   otherwise. The Legendre symbol is a function of   and   defined as

 

Legendre's original definition was by means of the explicit formula

 

By Euler's criterion, which had been discovered earlier and was known to Legendre, these two definitions are equivalent.[2] Thus Legendre's contribution lay in introducing a convenient notation that recorded quadratic residuosity of a mod p. For the sake of comparison, Gauss used the notation aRp, aNp according to whether a is a residue or a non-residue modulo p. For typographical convenience, the Legendre symbol is sometimes written as (a | p) or (a/p). For fixed p, the sequence   is periodic with period p and is sometimes called the Legendre sequence. Each row in the following table exhibits periodicity, just as described.

Table of values edit

The following is a table of values of Legendre symbol   with p ≤ 127, a ≤ 30, p odd prime.

a
p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0
5 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0
7 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1
11 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1
13 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1
17 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 0 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1
19 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 0 1 −1 −1 1 1 1 1 −1 1 −1 1
23 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 0 1 1 1 1 −1 1 −1
29 1 −1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 1 1 1 −1 −1 1 0 1
31 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1
37 1 −1 1 1 −1 −1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1
41 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 −1
43 1 −1 −1 1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1
47 1 1 1 1 −1 1 1 1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1 −1
53 1 −1 −1 1 −1 1 1 −1 1 1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1
59 1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 1 1 −1
61 1 −1 1 1 1 −1 −1 −1 1 −1 −1 1 1 1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1
67 1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1 1 −1 −1 1 −1
71 1 1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 1 1 −1 1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1
73 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1
79 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 −1 1 −1 1 1 1 1 1 1 −1 1 1 −1 −1 −1 −1
83 1 −1 1 1 −1 −1 1 −1 1 1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 1 1 1
89 1 1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1
97 1 1 1 1 −1 1 −1 1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 −1 −1 −1
101 1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 1 1 1 1 −1 −1 −1 −1 1
103 1 1 −1 1 −1 −1 1 1 1 −1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 −1 1 1 1
107 1 −1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1
109 1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 1 1 1 −1 −1 1 1 1 1 1 −1
113 1 1 −1 1 −1 −1 1 1 1 −1 1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 1 −1 1 −1 1
127 1 1 −1 1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1

Properties of the Legendre symbol edit

There are a number of useful properties of the Legendre symbol which, together with the law of quadratic reciprocity, can be used to compute it efficiently.

  • Given a generator  , if  , then   is a quadratic residue if and only if   is even. This shows that half of the elements in   are quadratic residues.
  • If   then the fact that
      gives us that   is the square root of the quadratic residue  .
  • The Legendre symbol is periodic in its first (or top) argument: if ab (mod p), then
     
  • The Legendre symbol is a completely multiplicative function of its top argument:
     
  • In particular, the product of two numbers that are both quadratic residues or quadratic non-residues modulo p is a residue, whereas the product of a residue with a non-residue is a non-residue. A special case is the Legendre symbol of a square:
     
  • When viewed as a function of a, the Legendre symbol   is the unique quadratic (or order 2) Dirichlet character modulo p.
  • The first supplement to the law of quadratic reciprocity:
     
  • The second supplement to the law of quadratic reciprocity:
     
  • Special formulas for the Legendre symbol   for small values of a:
    • For an odd prime p ≠ 3,
       
    • For an odd prime p ≠ 5,
       
  • The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... are defined by the recurrence F1 = F2 = 1, Fn+1 = Fn + Fn−1. If p is a prime number then
     
For example,
 

Legendre symbol and quadratic reciprocity edit

Let p and q be distinct odd primes. Using the Legendre symbol, the quadratic reciprocity law can be stated concisely:

 

Many proofs of quadratic reciprocity are based on Euler's criterion

 

In addition, several alternative expressions for the Legendre symbol were devised in order to produce various proofs of the quadratic reciprocity law.

 
in his fourth[4] and sixth[5] proofs of quadratic reciprocity.
 
Reversing the roles of p and q, he obtains the relation between (p/q) and (q/p).
 
Using certain elliptic functions instead of the sine function, Eisenstein was able to prove cubic and quartic reciprocity as well.

Related functions edit

  • The Jacobi symbol (a/n) is a generalization of the Legendre symbol that allows for a composite second (bottom) argument n, although n must still be odd and positive. This generalization provides an efficient way to compute all Legendre symbols without performing factorization along the way.
  • A further extension is the Kronecker symbol, in which the bottom argument may be any integer.
  • The power residue symbol (a/n)n generalizes the Legendre symbol to higher power n. The Legendre symbol represents the power residue symbol for n = 2.

Computational example edit

The above properties, including the law of quadratic reciprocity, can be used to evaluate any Legendre symbol. For example:

 

Or using a more efficient computation:

 

The article Jacobi symbol has more examples of Legendre symbol manipulation.

Since no efficient factorization algorithm is known, but efficient modular exponentiation algorithms are, in general it is more efficient to use Legendre's original definition, e.g.

 

using repeated squaring modulo 331, reducing every value using the modulus after every operation to avoid computation with large integers.

Notes edit

  1. ^ Legendre, A. M. (1798). Essai sur la théorie des nombres. Paris. p. 186.
  2. ^ Hardy & Wright, Thm. 83.
  3. ^ Ribenboim, p. 64; Lemmermeyer, ex. 2.25–2.28, pp. 73–74.
  4. ^ Gauss, "Summierung gewisser Reihen von besonderer Art" (1811), reprinted in Untersuchungen ... pp. 463–495
  5. ^ Gauss, "Neue Beweise und Erweiterungen des Fundamentalsatzes in der Lehre von den quadratischen Resten" (1818) reprinted in Untersuchungen ... pp. 501–505
  6. ^ Lemmermeyer, ex. p. 31, 1.34
  7. ^ Lemmermeyer, pp. 236 ff.

References edit

External links edit

    legendre, symbol, various, along, along, left, side, only, shown, since, first, property, below, other, reduced, modulo, quadratic, residues, highlighted, yellow, correspond, precisely, values, number, theory, multiplicative, function, with, values, that, quad. Legendre symbol a p for various a along top and p along left side ap 0 1 2 3 4 5 6 7 8 9 10 3 0 1 1 5 0 1 1 1 1 7 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 1 1 Only 0 a lt p are shown since due to the first property below any other a can be reduced modulo p Quadratic residues are highlighted in yellow and correspond precisely to the values 0 and 1 In number theory the Legendre symbol is a multiplicative function with values 1 1 0 that is a quadratic character modulo of an odd prime number p its value at a nonzero quadratic residue mod p is 1 and at a non quadratic residue non residue is 1 Its value at zero is 0 The Legendre symbol was introduced by Adrien Marie Legendre in 1798 1 in the course of his attempts at proving the law of quadratic reciprocity Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order The notational convenience of the Legendre symbol inspired introduction of several other symbols used in algebraic number theory such as the Hilbert symbol and the Artin symbol Contents 1 Definition 2 Table of values 3 Properties of the Legendre symbol 4 Legendre symbol and quadratic reciprocity 5 Related functions 6 Computational example 7 Notes 8 References 9 External linksDefinition editLet p displaystyle p nbsp be an odd prime number An integer a displaystyle a nbsp is a quadratic residue modulo p displaystyle p nbsp if it is congruent to a perfect square modulo p displaystyle p nbsp and is a quadratic nonresidue modulo p displaystyle p nbsp otherwise The Legendre symbol is a function of a displaystyle a nbsp and p displaystyle p nbsp defined as a p 1 if a is a quadratic residue modulo p and a 0 mod p 1 if a is a quadratic nonresidue modulo p 0 if a 0 mod p displaystyle left frac a p right begin cases 1 amp text if a text is a quadratic residue modulo p text and a not equiv 0 pmod p 1 amp text if a text is a quadratic nonresidue modulo p 0 amp text if a equiv 0 pmod p end cases nbsp Legendre s original definition was by means of the explicit formula a p a p 1 2 mod p and a p 1 0 1 displaystyle left frac a p right equiv a frac p 1 2 pmod p quad text and quad left frac a p right in 1 0 1 nbsp By Euler s criterion which had been discovered earlier and was known to Legendre these two definitions are equivalent 2 Thus Legendre s contribution lay in introducing a convenient notation that recorded quadratic residuosity of a mod p For the sake of comparison Gauss used the notation aRp aNp according to whether a is a residue or a non residue modulo p For typographical convenience the Legendre symbol is sometimes written as a p or a p For fixed p the sequence 0 p 1 p 2 p displaystyle left tfrac 0 p right left tfrac 1 p right left tfrac 2 p right ldots nbsp is periodic with period p and is sometimes called the Legendre sequence Each row in the following table exhibits periodicity just as described Table of values editThe following is a table of values of Legendre symbol a p displaystyle left frac a p right nbsp with p 127 a 30 p odd prime ap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 5 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 7 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 11 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 127 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Properties of the Legendre symbol editThere are a number of useful properties of the Legendre symbol which together with the law of quadratic reciprocity can be used to compute it efficiently Given a generator g F p displaystyle g in mathbb F p nbsp if x g r displaystyle x g r nbsp then x displaystyle x nbsp is a quadratic residue if and only if r displaystyle r nbsp is even This shows that half of the elements in F p displaystyle mathbb F p nbsp are quadratic residues If p 3 mod 4 displaystyle p equiv 3 text mod 4 nbsp then the fact that p 1 4 p 1 4 p 1 2 p 1 2 2 p 1 2 1 displaystyle frac p 1 4 frac p 1 4 frac p 1 2 frac p 1 2 2 frac p 1 2 1 nbsp gives us that a x p 1 4 displaystyle a x p 1 4 nbsp is the square root of the quadratic residue x displaystyle x nbsp The Legendre symbol is periodic in its first or top argument if a b mod p then a p b p displaystyle left frac a p right left frac b p right nbsp The Legendre symbol is a completely multiplicative function of its top argument a b p a p b p displaystyle left frac ab p right left frac a p right left frac b p right nbsp In particular the product of two numbers that are both quadratic residues or quadratic non residues modulo p is a residue whereas the product of a residue with a non residue is a non residue A special case is the Legendre symbol of a square x 2 p 1 if p x 0 if p x displaystyle left frac x 2 p right begin cases 1 amp mbox if p nmid x 0 amp mbox if p mid x end cases nbsp When viewed as a function of a the Legendre symbol a p displaystyle left frac a p right nbsp is the unique quadratic or order 2 Dirichlet character modulo p The first supplement to the law of quadratic reciprocity 1 p 1 p 1 2 1 if p 1 mod 4 1 if p 3 mod 4 displaystyle left frac 1 p right 1 frac p 1 2 begin cases 1 amp mbox if p equiv 1 pmod 4 1 amp mbox if p equiv 3 pmod 4 end cases nbsp The second supplement to the law of quadratic reciprocity 2 p 1 p 2 1 8 1 if p 1 or 7 mod 8 1 if p 3 or 5 mod 8 displaystyle left frac 2 p right 1 tfrac p 2 1 8 begin cases 1 amp mbox if p equiv 1 mbox or 7 pmod 8 1 amp mbox if p equiv 3 mbox or 5 pmod 8 end cases nbsp Special formulas for the Legendre symbol a p displaystyle left frac a p right nbsp for small values of a For an odd prime p 3 3 p 1 p 1 6 1 if p 1 or 11 mod 12 1 if p 5 or 7 mod 12 displaystyle left frac 3 p right 1 big lfloor frac p 1 6 big rfloor begin cases 1 amp mbox if p equiv 1 mbox or 11 pmod 12 1 amp mbox if p equiv 5 mbox or 7 pmod 12 end cases nbsp For an odd prime p 5 5 p 1 2 p 2 5 1 if p 1 or 4 mod 5 1 if p 2 or 3 mod 5 displaystyle left frac 5 p right 1 big lfloor frac 2p 2 5 big rfloor begin cases 1 amp mbox if p equiv 1 mbox or 4 pmod 5 1 amp mbox if p equiv 2 mbox or 3 pmod 5 end cases nbsp The Fibonacci numbers 1 1 2 3 5 8 13 21 34 55 are defined by the recurrence F1 F2 1 Fn 1 Fn Fn 1 If p is a prime number then F p p 5 0 mod p F p p 5 mod p displaystyle F p left frac p 5 right equiv 0 pmod p qquad F p equiv left frac p 5 right pmod p nbsp For example 2 5 1 F 3 2 F 2 1 3 5 1 F 4 3 F 3 2 5 5 0 F 5 5 7 5 1 F 8 21 F 7 13 11 5 1 F 10 55 F 11 89 displaystyle begin aligned left tfrac 2 5 right amp 1 amp F 3 amp 2 amp F 2 amp 1 left tfrac 3 5 right amp 1 amp F 4 amp 3 amp F 3 amp 2 left tfrac 5 5 right amp 0 amp F 5 amp 5 amp amp left tfrac 7 5 right amp 1 amp F 8 amp 21 amp F 7 amp 13 left tfrac 11 5 right amp 1 amp F 10 amp 55 amp F 11 amp 89 end aligned nbsp dd This result comes from the theory of Lucas sequences which are used in primality testing 3 See Wall Sun Sun prime Legendre symbol and quadratic reciprocity editLet p and q be distinct odd primes Using the Legendre symbol the quadratic reciprocity law can be stated concisely q p p q 1 p 1 2 q 1 2 displaystyle left frac q p right left frac p q right 1 tfrac p 1 2 cdot tfrac q 1 2 nbsp Many proofs of quadratic reciprocity are based on Euler s criterion a p a p 1 2 mod p displaystyle left frac a p right equiv a tfrac p 1 2 pmod p nbsp In addition several alternative expressions for the Legendre symbol were devised in order to produce various proofs of the quadratic reciprocity law Gauss introduced the quadratic Gauss sum and used the formula k 0 p 1 z a k 2 a p k 0 p 1 z k 2 z e 2 p i p displaystyle sum k 0 p 1 zeta ak 2 left frac a p right sum k 0 p 1 zeta k 2 qquad zeta e frac 2 pi i p nbsp dd in his fourth 4 and sixth 5 proofs of quadratic reciprocity Kronecker s proof 6 first establishes that p q sgn i 1 q 1 2 k 1 p 1 2 k p i q displaystyle left frac p q right operatorname sgn left prod i 1 frac q 1 2 prod k 1 frac p 1 2 left frac k p frac i q right right nbsp dd Reversing the roles of p and q he obtains the relation between p q and q p One of Eisenstein s proofs 7 begins by showing that q p n 1 p 1 2 sin 2 p q n p sin 2 p n p displaystyle left frac q p right prod n 1 frac p 1 2 frac sin left frac 2 pi qn p right sin left frac 2 pi n p right nbsp dd Using certain elliptic functions instead of the sine function Eisenstein was able to prove cubic and quartic reciprocity as well Related functions editThe Jacobi symbol a n is a generalization of the Legendre symbol that allows for a composite second bottom argument n although n must still be odd and positive This generalization provides an efficient way to compute all Legendre symbols without performing factorization along the way A further extension is the Kronecker symbol in which the bottom argument may be any integer The power residue symbol a n n generalizes the Legendre symbol to higher power n The Legendre symbol represents the power residue symbol for n 2 Computational example editThe above properties including the law of quadratic reciprocity can be used to evaluate any Legendre symbol For example 12345 331 3 331 5 331 823 331 3 331 5 331 161 331 3 331 5 331 7 331 23 331 1 331 3 331 5 1 331 7 1 331 23 1 3 1 5 2 7 9 23 1 3 1 5 2 7 3 2 23 1 1 1 1 1 displaystyle begin aligned left frac 12345 331 right amp left frac 3 331 right left frac 5 331 right left frac 823 331 right amp left frac 3 331 right left frac 5 331 right left frac 161 331 right amp left frac 3 331 right left frac 5 331 right left frac 7 331 right left frac 23 331 right amp 1 left frac 331 3 right left frac 331 5 right 1 left frac 331 7 right 1 left frac 331 23 right amp left frac 1 3 right left frac 1 5 right left frac 2 7 right left frac 9 23 right amp left frac 1 3 right left frac 1 5 right left frac 2 7 right left frac 3 2 23 right amp 1 1 1 1 amp 1 end aligned nbsp Or using a more efficient computation 12345 331 98 331 2 7 2 331 2 331 1 331 2 1 8 1 displaystyle left frac 12345 331 right left frac 98 331 right left frac 2 cdot 7 2 331 right left frac 2 331 right 1 tfrac 331 2 1 8 1 nbsp The article Jacobi symbol has more examples of Legendre symbol manipulation Since no efficient factorization algorithm is known but efficient modular exponentiation algorithms are in general it is more efficient to use Legendre s original definition e g 98 331 98 331 1 2 mod 331 98 165 mod 331 98 98 2 82 mod 331 98 5 82 mod 331 98 25 41 mod 331 133 25 40 mod 331 133 294 20 mod 331 133 45 10 mod 331 133 39 5 mod 331 222 39 4 mod 331 222 197 2 mod 331 222 82 mod 331 1 mod 331 displaystyle begin aligned left frac 98 331 right amp equiv 98 frac 331 1 2 amp pmod 331 amp equiv 98 165 amp pmod 331 amp equiv 98 cdot 98 2 82 amp pmod 331 amp equiv 98 cdot 5 82 amp pmod 331 amp equiv 98 cdot 25 41 amp pmod 331 amp equiv 133 cdot 25 40 amp pmod 331 amp equiv 133 cdot 294 20 amp pmod 331 amp equiv 133 cdot 45 10 amp pmod 331 amp equiv 133 cdot 39 5 amp pmod 331 amp equiv 222 cdot 39 4 amp pmod 331 amp equiv 222 cdot 197 2 amp pmod 331 amp equiv 222 cdot 82 amp pmod 331 amp equiv 1 amp pmod 331 end aligned nbsp using repeated squaring modulo 331 reducing every value using the modulus after every operation to avoid computation with large integers Notes edit Legendre A M 1798 Essai sur la theorie des nombres Paris p 186 Hardy amp Wright Thm 83 Ribenboim p 64 Lemmermeyer ex 2 25 2 28 pp 73 74 Gauss Summierung gewisser Reihen von besonderer Art 1811 reprinted in Untersuchungen pp 463 495 Gauss Neue Beweise und Erweiterungen des Fundamentalsatzes in der Lehre von den quadratischen Resten 1818 reprinted in Untersuchungen pp 501 505 Lemmermeyer ex p 31 1 34 Lemmermeyer pp 236 ff References editGauss Carl Friedrich 1965 Untersuchungen uber hohere Arithmetik Disquisitiones Arithmeticae amp other papers on number theory translated by Maser H Second ed New York Chelsea ISBN 0 8284 0191 8 Gauss Carl Friedrich 1986 Disquisitiones Arithmeticae translated by Clarke Arthur A Second corrected ed New York Springer ISBN 0 387 96254 9 Bach Eric Shallit Jeffrey 1996 Algorithmic Number Theory vol I Efficient Algorithms Cambridge The MIT Press ISBN 0 262 02405 5 Hardy G H Wright E M 1980 An Introduction to the Theory of Numbers Fifth edition Oxford Oxford University Press ISBN 978 0 19 853171 5 Ireland Kenneth Rosen Michael 1990 A Classical Introduction to Modern Number Theory Second ed New York Springer ISBN 0 387 97329 X Lemmermeyer Franz 2000 Reciprocity Laws from Euler to Eisenstein Berlin Springer ISBN 3 540 66957 4 Ribenboim Paulo 1996 The New Book of Prime Number Records New York Springer ISBN 0 387 94457 5External links editJacobi symbol calculator Retrieved from https en wikipedia org w index php title Legendre symbol amp oldid 1219384960, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.