fbpx
Wikipedia

Kibble–Zurek mechanism

The Kibble–Zurek mechanism (KZM) describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate. It is named after Tom W. B. Kibble, who pioneered the study of domain structure formation through cosmological phase transitions in the early universe, and Wojciech H. Zurek, who related the number of defects it creates to the critical exponents of the transition and to its rate—to how quickly the critical point is traversed.

Basic idea edit

Based on the formalism of spontaneous symmetry breaking, Tom Kibble developed the idea for the primordial fluctuations of a two-component scalar field like the Higgs field.[1][2] If a two-component scalar field switches from the isotropic and homogeneous high-temperature phase to the symmetry-broken stage during cooling and expansion of the very early universe (shortly after Big Bang), the order parameter necessarily cannot be the same in regions which are not connected by causality. Regions are not connected by causality if they are separated far enough (at the given age of the universe) that they cannot "communicate" even with the speed of light. This implies that the symmetry cannot be broken globally. The order parameter will take different values in causally disconnected regions, and the domains will be separated by domain walls after further evolution of the universe. Depending on the symmetry of the system and the symmetry of the order parameter, different types of topological defects like monopoles, vortices or textures can arise. It was debated for quite a while if magnetic monopoles might be residuals of defects in the symmetry-broken Higgs field.[3] Up to now, defects like this have not been observed within the event horizon of the visible universe. This is one of the main reasons (beside the isotropy of the cosmic background radiation and the flatness of spacetime) why nowadays an inflationary expansion of the universe is postulated. During the exponentially fast expansion within the first 10−30 second after Big-Bang, all possible defects were diluted so strongly that they lie beyond the event horizon. Today, the two-component primordial scalar field is usually named inflaton.

Relevance in condensed matter edit

 
The blue curve shows the divergence of correlation times as function of the control parameter (e.g. temperature difference to the transition). The red curve indicates the time to reach the transition as function of the control parameter for linear cooling rates. The intersection point marks the temperature/time when the system falls out of equilibrium and gets non-adiabatic.

Wojciech Zurek pointed out, that the same ideas play a role for the phase transition of normal fluid helium to superfluid helium.[4][5][6] The analogy between the Higgs field and superfluid helium is given by the two-component order parameter; superfluid helium is described via a macroscopic quantum mechanical wave function with global phase. In helium, two components of the order parameter are magnitude and phase (or real and imaginary part) of the complex wave function. Defects in superfluid helium are given by vortex lines, where the coherent macroscopic wave function disappears within the core. Those lines are high-symmetry residuals within the symmetry broken phase.

It is characteristic for a continuous phase transition that the energy difference between ordered and disordered phase disappears at the transition point. This implies that fluctuations between both phases will become arbitrarily large. Not only the spatial correlation lengths diverge for those critical phenomena, but fluctuations between both phases also become arbitrarily slow in time, described by the divergence of the relaxation time. If a system is cooled at any non-zero rate (e.g. linearly) through a continuous phase transition, the time to reach the transition will eventually become shorter than the correlation time of the critical fluctuations. At this time, the fluctuations are too slow to follow the cooling rate; the system has fallen out of equilibrium and ceases to be adiabatic. A "fingerprint" of critical fluctuations is taken at this fall-out time and the longest-length scale of the domain size is frozen out. The further evolution of the system is now determined by this length scale. For very fast cooling rates, the system will fall out of equilibrium very early and far away from the transition. The domain size will be small. For very slow rates, the system will fall out of equilibrium in the vicinity of the transition when the length scale of critical fluctuations will be large, thus the domain size will be large, too.[footnote 1] The inverse of this length scale can be used as an estimate of the density of topological defects, and it obeys a power law in the quench rate. This prediction is universal, and the power exponent is given in terms of the critical exponents of the transition.

Derivation of the defect density edit

 
Exponential divergence of correlation times of a Kosterlitz–Thouless transition. Left inset shows the domain structure of a 2D colloidal mono-layer for large cooling rates at the fall-out time. The right inset shows the structure for small cooling rates (after additional coarsening) a late times.
 
Domain size as function of cooling rate in a colloidal mono-layer. The control parameter is given by the interaction strength   in this system.

Consider a system that undergoes a continuous phase transition at the critical value   of a control parameter. The theory of critical phenomena states that, as the control parameter is tuned closer and closer to its critical value, the correlation length   and the relaxation time   of the system tend to diverge algebraically with the critical exponent   as

 
respectively.   is the dynamic exponent which relates spatial with temporal critical fluctuations.

The Kibble–Zurek mechanism describes the nonadiabatic dynamics resulting from driving a high-symmetry (i.e. disordered) phase   to a broken-symmetry (i.e. ordered) phase at  . If the control parameter varies linearly in time,  , equating the time to the critical point to the relaxation time, we obtain the freeze out time  ,

 
This time scale is often referred to as the freeze-out time. It is the intersection point of the blue and the red curve in the figure. The distance to the transition is on one hand side the time to reach the transition as function of cooling rate (red curve) and for linear cooling rates at the same time the difference of the control parameter to the critical point (blue curve). As the system approaches the critical point, it freezes as a result of the critical slowing down and falls out of equilibrium. Adiabaticity is lost around  . Adiabaticity is restored in the broken-symmetry phase after  . The correlation length at this time provides a length scale for coherent domains,
 
The size of the domains in the broken-symmetry phase is set by  . The density of defects immediately follows if   is the dimension of the system, using  

Experimental tests edit

The Kibble–Zurek mechanism generally applies to spontaneous symmetry breaking scenarios where a global symmetry is broken. For gauge symmetries defect formation can arise through the Kibble–Zurek mechanism and the flux trapping mechanism proposed by Hindmarsh and Rajantie.[7][8] In 2005, it was shown that KZM describes as well the dynamics through a quantum phase transition.[9][10][11][12]

The mechanism also applies in the presence of inhomogeneities,[13] ubiquitous in condensed matter experiments, to both classical,[14][15][16] quantum phase transitions[17][18] and even in optics.[19] A variety of experiments have been reported that can be described by the Kibble–Zurek mechanism.[20] A review by T. Kibble discusses the significance and limitations of various experiments (until 2007).[21]

Example in two dimensions edit

A system, where structure formation can be visualized directly is given by a colloidal mono-layer which forms a hexagonal crystal in two dimensions. The phase transition is described by the so-called Kosterlitz–Thouless–Halperin–Nelson–Young theory where translational and orientational symmetry are broken by two Kosterlitz–Thouless transitions. The corresponding topological defects are dislocations and disclinations in two dimensions. The latter are nothing else but the monopoles of the high-symmetry phase within the six-fold director field of crystal axes. A special feature of Kosterlitz–Thouless transitions is the exponential divergence of correlation times and length (instead of algebraic ones). This serves a transcendental equation which can be solved numerically. The figure shows a comparison of the Kibble–Zurek scaling with algebraic and exponential divergences. The data illustrate, that the Kibble–Zurek mechanism also works for transitions of the Kosterlitz–Thoules universality class.[22]

Footnote edit

  1. ^ In condensed matter, the maximal signal velocity is not given by the speed of light but by the sound velocity (or second sound in case of superfluid helium).

References edit

  1. ^ Kibble, T. W. B. (1976). "Topology of cosmic domains and strings". J. Phys. A: Math. Gen. 9 (8): 1387–1398. Bibcode:1976JPhA....9.1387K. doi:10.1088/0305-4470/9/8/029.
  2. ^ Kibble, T. W. B. (1980). "Some implications of a cosmological phase transition". Phys. Rep. 67 (1): 183–199. Bibcode:1980PhR....67..183K. doi:10.1016/0370-1573(80)90091-5.
  3. ^ Guth, A.H. (1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Phys. Rev. D. 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi:10.1103/PhysRevD.23.347.
  4. ^ Zurek, W. H. (1985). "Cosmological experiments in superfluid helium?". Nature. 317 (6037): 505–508. Bibcode:1985Natur.317..505Z. doi:10.1038/317505a0. S2CID 4253800.
  5. ^ Zurek, W. H. (1993). "Cosmic Strings in Laboratory Superfluids and the Topological Remnants of Other Phase Transitions". Acta Phys. Pol. B. 24: 1301.
  6. ^ Zurek, W. H. (1996). "Cosmological experiments in condensed matter systems". Phys. Rep. 276 (4): 177–221. arXiv:cond-mat/9607135. Bibcode:1996PhR...276..177Z. CiteSeerX 10.1.1.242.1418. doi:10.1016/S0370-1573(96)00009-9. S2CID 8182253.
  7. ^ Hindmarsh, M.; Rajantie, A. (2000). "Defect Formation and Local Gauge Invariance". Phys. Rev. Lett. 85 (22): 4660–3. arXiv:cond-mat/0007361. Bibcode:2000PhRvL..85.4660H. doi:10.1103/PhysRevLett.85.4660. PMID 11082621. S2CID 1644900.
  8. ^ Rajantie, A. (2002). "Formation of topological defects in gauge field theories". Int. J. Mod. Phys. A. 17 (1): 1–43. arXiv:hep-ph/0108159. Bibcode:2002IJMPA..17....1R. doi:10.1142/S0217751X02005426. S2CID 17356429.
  9. ^ Damski, B. (2005). "The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective". Phys. Rev. Lett. 95 (3): 035701. arXiv:cond-mat/0411004. Bibcode:2005PhRvL..95c5701D. doi:10.1103/PhysRevLett.95.035701. PMID 16090756. S2CID 29037456.
  10. ^ Zurek, W. H.; Dorner, U.; Zoller, P. (2005). "Dynamics of a Quantum Phase Transition". Phys. Rev. Lett. 95 (10): 105701. arXiv:cond-mat/0503511. Bibcode:2005PhRvL..95j5701Z. doi:10.1103/PhysRevLett.95.105701. PMID 16196941. S2CID 15152437.
  11. ^ Dziarmaga, J. (2005). "Dynamics of a Quantum Phase Transition: Exact Solution of the Quantum Ising Model". Phys. Rev. Lett. 95 (24): 245701. arXiv:cond-mat/0509490. Bibcode:2005PhRvL..95x5701D. doi:10.1103/PhysRevLett.95.245701. PMID 16384394. S2CID 20437466.
  12. ^ Polkovnikov, A. (2005). "Universal adiabatic dynamics in the vicinity of a quantum critical point". Phys. Rev. B. 72 (16): 161201(R). arXiv:cond-mat/0312144. Bibcode:2005PhRvB..72p1201P. doi:10.1103/PhysRevB.72.161201. S2CID 119041907.
  13. ^ del Campo, A.; Kibble, T. W. B.; Zurek, W. H. (2013). "Causality and non-equilibrium second-order phase transitions in inhomogeneous systems". J. Phys.: Condens. Matter. 25 (40): 404210. arXiv:1302.3648. Bibcode:2013JPCM...25N4210D. doi:10.1088/0953-8984/25/40/404210. PMID 24025443. S2CID 45215226.
  14. ^ Kibble, T. W. B.; Volovik, G. E. (1997). "On Phase Ordering Behind the Propagating Front of a Second-Order Transition". JETP Lett. 65 (1): 102. arXiv:cond-mat/9612075. Bibcode:1997JETPL..65..102K. doi:10.1134/1.567332. S2CID 16499963.
  15. ^ Zurek, W. H. (2009). "Causality in Condensates: Gray Solitons as Relics of BEC Formation". Phys. Rev. Lett. 102 (10): 105702. arXiv:0902.3980. Bibcode:2009PhRvL.102j5702Z. doi:10.1103/PhysRevLett.102.105702. PMID 19392126. S2CID 44888876.
  16. ^ del Campo, A.; De Chiara, G.; Morigi, G.; Plenio, M. B.; Retzker, A. (2010). "Structural Defects in Ion Chains by Quenching the External Potential: The Inhomogeneous Kibble-Zurek Mechanism". Phys. Rev. Lett. 105 (7): 075701. arXiv:1002.2524. Bibcode:2010PhRvL.105g5701D. doi:10.1103/PhysRevLett.105.075701. PMID 20868058. S2CID 24142762.
  17. ^ Zurek, W. H.; Dorner, U. (2008). "Phase transition in space: how far does a symmetry bend before it breaks?". Phil. Trans. R. Soc. A. 366 (1877): 2953–72. arXiv:0807.3516. Bibcode:2008RSPTA.366.2953Z. doi:10.1098/rsta.2008.0069. PMID 18534945. S2CID 17438682.
  18. ^ Dziarmaga, J.; Rams, M. M. (2010). "Dynamics of an inhomogeneous quantum phase transition". New J. Phys. 12 (5): 055007. arXiv:0904.0115. Bibcode:2010NJPh...12e5007D. doi:10.1088/1367-2630/12/5/055007. S2CID 119252230.
  19. ^ Pal, V.; et al. (2017). "Observing Dissipative Topological Defects with Coupled Lasers". Phys. Rev. Lett. 119 (1): 013902. arXiv:1611.01622. Bibcode:2017PhRvL.119a3902P. doi:10.1103/PhysRevLett.119.013902. PMID 28731766.
  20. ^ del Campo, A.; Zurek, W. H. (2014). "Universality of phase transition dynamics: topological defects from symmetry breaking". Int. J. Mod. Phys. A. 29 (8): 1430018. arXiv:1310.1600. Bibcode:2014IJMPA..2930018D. doi:10.1142/S0217751X1430018X. S2CID 118873981.
  21. ^ Kibble, T.B.W. (2007). "Phase-transition dynamics in the lab and the universe". Physics Today. 60 (9): 47–52. Bibcode:2007PhT....60i..47K. doi:10.1063/1.2784684.
  22. ^ Deutschländer, S.; Dillmann, P.; Maret, G.; Keim, P. (2015). "Kibble–Zurek mechanism in colloidal monolayers". Proc. Natl. Acad. Sci. USA. 112 (22): 6925–6930. arXiv:1503.08698. Bibcode:2015PNAS..112.6925D. doi:10.1073/pnas.1500763112. PMC 4460445. PMID 25902492.

kibble, zurek, mechanism, describes, equilibrium, dynamics, formation, topological, defects, system, which, driven, through, continuous, phase, transition, finite, rate, named, after, kibble, pioneered, study, domain, structure, formation, through, cosmologica. The Kibble Zurek mechanism KZM describes the non equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate It is named after Tom W B Kibble who pioneered the study of domain structure formation through cosmological phase transitions in the early universe and Wojciech H Zurek who related the number of defects it creates to the critical exponents of the transition and to its rate to how quickly the critical point is traversed Contents 1 Basic idea 2 Relevance in condensed matter 3 Derivation of the defect density 4 Experimental tests 5 Example in two dimensions 6 Footnote 7 ReferencesBasic idea editBased on the formalism of spontaneous symmetry breaking Tom Kibble developed the idea for the primordial fluctuations of a two component scalar field like the Higgs field 1 2 If a two component scalar field switches from the isotropic and homogeneous high temperature phase to the symmetry broken stage during cooling and expansion of the very early universe shortly after Big Bang the order parameter necessarily cannot be the same in regions which are not connected by causality Regions are not connected by causality if they are separated far enough at the given age of the universe that they cannot communicate even with the speed of light This implies that the symmetry cannot be broken globally The order parameter will take different values in causally disconnected regions and the domains will be separated by domain walls after further evolution of the universe Depending on the symmetry of the system and the symmetry of the order parameter different types of topological defects like monopoles vortices or textures can arise It was debated for quite a while if magnetic monopoles might be residuals of defects in the symmetry broken Higgs field 3 Up to now defects like this have not been observed within the event horizon of the visible universe This is one of the main reasons beside the isotropy of the cosmic background radiation and the flatness of spacetime why nowadays an inflationary expansion of the universe is postulated During the exponentially fast expansion within the first 10 30 second after Big Bang all possible defects were diluted so strongly that they lie beyond the event horizon Today the two component primordial scalar field is usually named inflaton Relevance in condensed matter edit nbsp The blue curve shows the divergence of correlation times as function of the control parameter e g temperature difference to the transition The red curve indicates the time to reach the transition as function of the control parameter for linear cooling rates The intersection point marks the temperature time when the system falls out of equilibrium and gets non adiabatic Wojciech Zurek pointed out that the same ideas play a role for the phase transition of normal fluid helium to superfluid helium 4 5 6 The analogy between the Higgs field and superfluid helium is given by the two component order parameter superfluid helium is described via a macroscopic quantum mechanical wave function with global phase In helium two components of the order parameter are magnitude and phase or real and imaginary part of the complex wave function Defects in superfluid helium are given by vortex lines where the coherent macroscopic wave function disappears within the core Those lines are high symmetry residuals within the symmetry broken phase It is characteristic for a continuous phase transition that the energy difference between ordered and disordered phase disappears at the transition point This implies that fluctuations between both phases will become arbitrarily large Not only the spatial correlation lengths diverge for those critical phenomena but fluctuations between both phases also become arbitrarily slow in time described by the divergence of the relaxation time If a system is cooled at any non zero rate e g linearly through a continuous phase transition the time to reach the transition will eventually become shorter than the correlation time of the critical fluctuations At this time the fluctuations are too slow to follow the cooling rate the system has fallen out of equilibrium and ceases to be adiabatic A fingerprint of critical fluctuations is taken at this fall out time and the longest length scale of the domain size is frozen out The further evolution of the system is now determined by this length scale For very fast cooling rates the system will fall out of equilibrium very early and far away from the transition The domain size will be small For very slow rates the system will fall out of equilibrium in the vicinity of the transition when the length scale of critical fluctuations will be large thus the domain size will be large too footnote 1 The inverse of this length scale can be used as an estimate of the density of topological defects and it obeys a power law in the quench rate This prediction is universal and the power exponent is given in terms of the critical exponents of the transition Derivation of the defect density edit nbsp Exponential divergence of correlation times of a Kosterlitz Thouless transition Left inset shows the domain structure of a 2D colloidal mono layer for large cooling rates at the fall out time The right inset shows the structure for small cooling rates after additional coarsening a late times nbsp Domain size as function of cooling rate in a colloidal mono layer The control parameter is given by the interaction strength G displaystyle Gamma nbsp in this system Consider a system that undergoes a continuous phase transition at the critical value l l c 0 displaystyle lambda lambda c 0 nbsp of a control parameter The theory of critical phenomena states that as the control parameter is tuned closer and closer to its critical value the correlation length 3 displaystyle xi nbsp and the relaxation time t displaystyle tau nbsp of the system tend to diverge algebraically with the critical exponent n displaystyle nu nbsp as3 l n t l z n displaystyle xi sim lambda nu qquad tau sim lambda z nu nbsp respectively z displaystyle z nbsp is the dynamic exponent which relates spatial with temporal critical fluctuations The Kibble Zurek mechanism describes the nonadiabatic dynamics resulting from driving a high symmetry i e disordered phase l 0 displaystyle lambda ll 0 nbsp to a broken symmetry i e ordered phase at l 0 displaystyle lambda gg 0 nbsp If the control parameter varies linearly in time l t v t displaystyle lambda t vt nbsp equating the time to the critical point to the relaxation time we obtain the freeze out time t displaystyle bar t nbsp t l t z n t v z n 1 z n displaystyle bar t lambda bar t z nu Rightarrow bar t sim v z nu 1 z nu nbsp This time scale is often referred to as the freeze out time It is the intersection point of the blue and the red curve in the figure The distance to the transition is on one hand side the time to reach the transition as function of cooling rate red curve and for linear cooling rates at the same time the difference of the control parameter to the critical point blue curve As the system approaches the critical point it freezes as a result of the critical slowing down and falls out of equilibrium Adiabaticity is lost around t displaystyle bar t nbsp Adiabaticity is restored in the broken symmetry phase after t displaystyle bar t nbsp The correlation length at this time provides a length scale for coherent domains 3 3 l t v n 1 z n displaystyle bar xi equiv xi lambda bar t sim v nu 1 z nu nbsp The size of the domains in the broken symmetry phase is set by 3 displaystyle bar xi nbsp The density of defects immediately follows if d displaystyle d nbsp is the dimension of the system using r 3 d displaystyle rho sim bar xi d nbsp Experimental tests editThe Kibble Zurek mechanism generally applies to spontaneous symmetry breaking scenarios where a global symmetry is broken For gauge symmetries defect formation can arise through the Kibble Zurek mechanism and the flux trapping mechanism proposed by Hindmarsh and Rajantie 7 8 In 2005 it was shown that KZM describes as well the dynamics through a quantum phase transition 9 10 11 12 The mechanism also applies in the presence of inhomogeneities 13 ubiquitous in condensed matter experiments to both classical 14 15 16 quantum phase transitions 17 18 and even in optics 19 A variety of experiments have been reported that can be described by the Kibble Zurek mechanism 20 A review by T Kibble discusses the significance and limitations of various experiments until 2007 21 Example in two dimensions editA system where structure formation can be visualized directly is given by a colloidal mono layer which forms a hexagonal crystal in two dimensions The phase transition is described by the so called Kosterlitz Thouless Halperin Nelson Young theory where translational and orientational symmetry are broken by two Kosterlitz Thouless transitions The corresponding topological defects are dislocations and disclinations in two dimensions The latter are nothing else but the monopoles of the high symmetry phase within the six fold director field of crystal axes A special feature of Kosterlitz Thouless transitions is the exponential divergence of correlation times and length instead of algebraic ones This serves a transcendental equation which can be solved numerically The figure shows a comparison of the Kibble Zurek scaling with algebraic and exponential divergences The data illustrate that the Kibble Zurek mechanism also works for transitions of the Kosterlitz Thoules universality class 22 Footnote edit In condensed matter the maximal signal velocity is not given by the speed of light but by the sound velocity or second sound in case of superfluid helium References edit Kibble T W B 1976 Topology of cosmic domains and strings J Phys A Math Gen 9 8 1387 1398 Bibcode 1976JPhA 9 1387K doi 10 1088 0305 4470 9 8 029 Kibble T W B 1980 Some implications of a cosmological phase transition Phys Rep 67 1 183 199 Bibcode 1980PhR 67 183K doi 10 1016 0370 1573 80 90091 5 Guth A H 1981 Inflationary universe A possible solution to the horizon and flatness problems Phys Rev D 23 2 347 356 Bibcode 1981PhRvD 23 347G doi 10 1103 PhysRevD 23 347 Zurek W H 1985 Cosmological experiments in superfluid helium Nature 317 6037 505 508 Bibcode 1985Natur 317 505Z doi 10 1038 317505a0 S2CID 4253800 Zurek W H 1993 Cosmic Strings in Laboratory Superfluids and the Topological Remnants of Other Phase Transitions Acta Phys Pol B 24 1301 Zurek W H 1996 Cosmological experiments in condensed matter systems Phys Rep 276 4 177 221 arXiv cond mat 9607135 Bibcode 1996PhR 276 177Z CiteSeerX 10 1 1 242 1418 doi 10 1016 S0370 1573 96 00009 9 S2CID 8182253 Hindmarsh M Rajantie A 2000 Defect Formation and Local Gauge Invariance Phys Rev Lett 85 22 4660 3 arXiv cond mat 0007361 Bibcode 2000PhRvL 85 4660H doi 10 1103 PhysRevLett 85 4660 PMID 11082621 S2CID 1644900 Rajantie A 2002 Formation of topological defects in gauge field theories Int J Mod Phys A 17 1 1 43 arXiv hep ph 0108159 Bibcode 2002IJMPA 17 1R doi 10 1142 S0217751X02005426 S2CID 17356429 Damski B 2005 The Simplest Quantum Model Supporting the Kibble Zurek Mechanism of Topological Defect Production Landau Zener Transitions from a New Perspective Phys Rev Lett 95 3 035701 arXiv cond mat 0411004 Bibcode 2005PhRvL 95c5701D doi 10 1103 PhysRevLett 95 035701 PMID 16090756 S2CID 29037456 Zurek W H Dorner U Zoller P 2005 Dynamics of a Quantum Phase Transition Phys Rev Lett 95 10 105701 arXiv cond mat 0503511 Bibcode 2005PhRvL 95j5701Z doi 10 1103 PhysRevLett 95 105701 PMID 16196941 S2CID 15152437 Dziarmaga J 2005 Dynamics of a Quantum Phase Transition Exact Solution of the Quantum Ising Model Phys Rev Lett 95 24 245701 arXiv cond mat 0509490 Bibcode 2005PhRvL 95x5701D doi 10 1103 PhysRevLett 95 245701 PMID 16384394 S2CID 20437466 Polkovnikov A 2005 Universal adiabatic dynamics in the vicinity of a quantum critical point Phys Rev B 72 16 161201 R arXiv cond mat 0312144 Bibcode 2005PhRvB 72p1201P doi 10 1103 PhysRevB 72 161201 S2CID 119041907 del Campo A Kibble T W B Zurek W H 2013 Causality and non equilibrium second order phase transitions in inhomogeneous systems J Phys Condens Matter 25 40 404210 arXiv 1302 3648 Bibcode 2013JPCM 25N4210D doi 10 1088 0953 8984 25 40 404210 PMID 24025443 S2CID 45215226 Kibble T W B Volovik G E 1997 On Phase Ordering Behind the Propagating Front of a Second Order Transition JETP Lett 65 1 102 arXiv cond mat 9612075 Bibcode 1997JETPL 65 102K doi 10 1134 1 567332 S2CID 16499963 Zurek W H 2009 Causality in Condensates Gray Solitons as Relics of BEC Formation Phys Rev Lett 102 10 105702 arXiv 0902 3980 Bibcode 2009PhRvL 102j5702Z doi 10 1103 PhysRevLett 102 105702 PMID 19392126 S2CID 44888876 del Campo A De Chiara G Morigi G Plenio M B Retzker A 2010 Structural Defects in Ion Chains by Quenching the External Potential The Inhomogeneous Kibble Zurek Mechanism Phys Rev Lett 105 7 075701 arXiv 1002 2524 Bibcode 2010PhRvL 105g5701D doi 10 1103 PhysRevLett 105 075701 PMID 20868058 S2CID 24142762 Zurek W H Dorner U 2008 Phase transition in space how far does a symmetry bend before it breaks Phil Trans R Soc A 366 1877 2953 72 arXiv 0807 3516 Bibcode 2008RSPTA 366 2953Z doi 10 1098 rsta 2008 0069 PMID 18534945 S2CID 17438682 Dziarmaga J Rams M M 2010 Dynamics of an inhomogeneous quantum phase transition New J Phys 12 5 055007 arXiv 0904 0115 Bibcode 2010NJPh 12e5007D doi 10 1088 1367 2630 12 5 055007 S2CID 119252230 Pal V et al 2017 Observing Dissipative Topological Defects with Coupled Lasers Phys Rev Lett 119 1 013902 arXiv 1611 01622 Bibcode 2017PhRvL 119a3902P doi 10 1103 PhysRevLett 119 013902 PMID 28731766 del Campo A Zurek W H 2014 Universality of phase transition dynamics topological defects from symmetry breaking Int J Mod Phys A 29 8 1430018 arXiv 1310 1600 Bibcode 2014IJMPA 2930018D doi 10 1142 S0217751X1430018X S2CID 118873981 Kibble T B W 2007 Phase transition dynamics in the lab and the universe Physics Today 60 9 47 52 Bibcode 2007PhT 60i 47K doi 10 1063 1 2784684 Deutschlander S Dillmann P Maret G Keim P 2015 Kibble Zurek mechanism in colloidal monolayers Proc Natl Acad Sci USA 112 22 6925 6930 arXiv 1503 08698 Bibcode 2015PNAS 112 6925D doi 10 1073 pnas 1500763112 PMC 4460445 PMID 25902492 Retrieved from https en wikipedia org w index php title Kibble Zurek mechanism amp oldid 1188203698, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.