fbpx
Wikipedia

Junkers Jumo 210

The Jumo 210 was Junkers Motoren's first production inverted V12 gasoline aircraft engine, first produced in the early 1930s. Depending on the version it produced between 610 and 730 PS and can be considered a counterpart of the Rolls-Royce Kestrel in many ways. Although originally intended to be used in almost all pre-war designs, rapid progress in aircraft design quickly relegated it to the small end of the power scale by the late 1930s. Almost all aircraft designs switched to the much larger Daimler-Benz DB 600, so the 210 was produced only for a short time before Junkers responded with a larger engine of their own, the Junkers Jumo 211.

Jumo 210
Jumo 210
Type Piston aero-engine
Manufacturer Junkers
First run 1932
Major applications Messerschmitt Bf 109A-D
Junkers Ju 87A

Design and development edit

The first gasoline-burning aviation power plants that the Junkers Motorenwerke ever built were the L1 and L2 single overhead camshaft (SOHC) liquid-cooled inline-six aviation engines of the early and mid-1920s. Development of this line led up through the L8. All of these were developments of the BMW IIIa inline-six SOHC German World War I aviation engine, which BMW allowed as they were no longer interested in development of their WWI designs. The Junkers L55 engine, however, was the very first V12 layout aviation powerplant of any type created by the Junkers firm, using a pair of the earlier straight-six L5 engines as a basis for an "upright" liquid-cooled V12 aviation engine, as the contemporary BMW VI engine already was.

Development of the Jumo 210 itself started in 1931 under the designation L10. The L10 was Germany's first truly modern engine design, featuring three valves per cylinder,[1] an inverted-V layout, a supercharger as standard equipment, and a cast cylinder block. The 210 was odd in that the cylinders were machined into a block along with one side of the crankcase, two such parts being bolted together side-by-side to form the engine. Normal construction techniques used three parts, two cylinder blocks and a separate crankcase.

The L10 was first ran in static tests on October 22, 1932. With the official formation of the RLM in 1933, numerical engine designations by manufacturer was rationalized with Junkers receiving the "200 block", the L10 becoming the 210. Type approval was achieved in March 1934, and it first flew on July 5, 1934 installed in a Junkers W33. The design had initially aimed for 700 PS, but the prototypes delivered only about 600 PS, so there was some disappointment in the industry. Nevertheless, almost all German aircraft designs of the era were based on the 210, which is why they were so small compared to other countries' efforts.

A Junkers W33 was flown with a 680 hp version of the Jumo 210 on 5 July 1934.[2]

Initial production of the 610 PS (602 hp, 449 kW) Jumo 210A started in late 1934. Further development led in 1935 to the 640 PS (631 hp, 471 kW) 210B and 210C. Both added a new supercharger for improved performance, along with a dump valve to avoid overboost. The B model had its propeller geared at 1:1.55 (prop:engine rpm) for high-speed use, while the C model was geared at 1:1.63 for slower flying speeds. In 1936 the new 670 PS (661 hp, 493 kW) 210D and 210E were introduced, which had the same gearing as the B and C but used a new two-speed supercharger to increase takeoff power and altitude performance.

The Jumo 210G had a direct injection system developed by August Lichte. The Jumo system used a small pump piston positioned beside each of the main cylinders, driven off the crank shaft. The injector used a simple check valve to prevent internal pressure from blowing back into the fuel line, and the pump was timed to inject at the proper point in the intake cycle. Inclusion of the injection system increased takeoff performance by about 20 PS without increasing boost rates and it also reduced fuel consumption. For those reasons most newer German engine types were set up with fuel injection systems. The Jumo 210G was rated at 730 PS (720 hp, 534 kW) and was only available for fast aircraft like the Bf 109 and Bf 110 but not for slow aircraft like the Ju 87.

Further developments were planned as Jumo 210F and 210H, but never built. In 1935 the Jumo 210H, with twin exhaust valves for each cylinder, was used for development of the Jumo 211. The Jumo 210-S was a special development by the DVL with rotary disc valves, as used in KM-8 torpedo engine. Production of the Jumo 210 came to an end in about 1938.

Applications edit

Specifications (Jumo 210) edit

General characteristics

  • Type: Twelve-cylinder supercharged liquid-cooled inverted vee aircraft engine
  • Bore: 124 mm (4.88 in)
  • Stroke: 136 mm (5.35 in)
  • Displacement: 19.7 L (1,202 in³)
  • Length: 1,478 mm (58.19 in)
  • Width: 686 mm (27.01 in)
  • Height: 960 mm (37.8 in)
  • Dry weight: 442 kg (974 lb)

Components

Performance

  • Power output:
  • 508 kW (690 PS or 681 hp) at 2,700 rpm for takeoff
  • 515 kW (700 PS or 690 hp) at 2,700 rpm at 1,500 m (4,920 ft), first supercharger speed
  • 501 kW (680 PS or 671 hp) at 2,700 rpm at 3,700 m (12,140 ft), second supercharger speed
  • Specific power: 26.14 kW/L (0.57 hp/in³)
  • Compression ratio: 6.5:1
  • Specific fuel consumption: 322-335 g/(kW•h) (0.53-0.55 lb/(hp•h))
  • Power-to-weight ratio: 1.17 kW/kg (0.71 hp/lb)

See also edit

Related development

Comparable engines

Related lists

References edit

  1. ^ "Flight Magazine, September 9, 1937". flightglobal.com. Flightglobal Archive. September 9, 1937. p. 265. Retrieved March 15, 2017. At the recent international meeting at Zürich, several of the successful German machines were fitted with the new Junkers 210 petrol engine...Three valves per cylinder are provided, two inlets and one exhaust, operated by push rods and rockers from a single camshaft.
  2. ^ Vajda, Ferenc A.; Dancey, Peter (1998). German Aircraft Industry and Production, 1933-1945. McFarland. p. 234. ISBN 978-1-85310-864-8.

Bibliography edit

  • Bingham, Victor (1998). Major Piston Aero Engines of World War II. Shrewsbury, UK: Airlife Publishing. ISBN 1-84037-012-2.
  • Christopher, John (2013). The Race for Hitler's X-Planes: Britain's 1945 Mission to Capture Secret Luftwaffe Technology. Stroud, UK: History Press. ISBN 978-0-7524-6457-2.
  • Gunston, Bill (2006). World Encyclopedia of Aero Engines: From the Pioneers to the Present Day (5th ed.). Stroud, UK: Sutton. ISBN 0-7509-4479-X.
  • Kay, Antony (2004). Junkers Aircraft & Engines 1913–1945. London: Putnam Aeronautical Books. ISBN 0-85177-985-9.
  • A History of Aircraft Piston Engines, Herschel Smith

Further reading edit

  • Zuerl, Walter (1941). Deutsche Flugzeug Konstrukteure. München, Germany: Curt Pechstein Verlag.

External links edit

junkers, jumo, jumo, junkers, motoren, first, production, inverted, gasoline, aircraft, engine, first, produced, early, 1930s, depending, version, produced, between, considered, counterpart, rolls, royce, kestrel, many, ways, although, originally, intended, us. The Jumo 210 was Junkers Motoren s first production inverted V12 gasoline aircraft engine first produced in the early 1930s Depending on the version it produced between 610 and 730 PS and can be considered a counterpart of the Rolls Royce Kestrel in many ways Although originally intended to be used in almost all pre war designs rapid progress in aircraft design quickly relegated it to the small end of the power scale by the late 1930s Almost all aircraft designs switched to the much larger Daimler Benz DB 600 so the 210 was produced only for a short time before Junkers responded with a larger engine of their own the Junkers Jumo 211 Jumo 210Jumo 210Type Piston aero engineManufacturer JunkersFirst run 1932Major applications Messerschmitt Bf 109A DJunkers Ju 87A Contents 1 Design and development 2 Applications 3 Specifications Jumo 210 3 1 General characteristics 3 2 Components 3 3 Performance 4 See also 5 References 6 Bibliography 7 Further reading 8 External linksDesign and development editThe first gasoline burning aviation power plants that the Junkers Motorenwerke ever built were the L1 and L2 single overhead camshaft SOHC liquid cooled inline six aviation engines of the early and mid 1920s Development of this line led up through the L8 All of these were developments of the BMW IIIa inline six SOHC German World War I aviation engine which BMW allowed as they were no longer interested in development of their WWI designs The Junkers L55 engine however was the very first V12 layout aviation powerplant of any type created by the Junkers firm using a pair of the earlier straight six L5 engines as a basis for an upright liquid cooled V12 aviation engine as the contemporary BMW VI engine already was Development of the Jumo 210 itself started in 1931 under the designation L10 The L10 was Germany s first truly modern engine design featuring three valves per cylinder 1 an inverted V layout a supercharger as standard equipment and a cast cylinder block The 210 was odd in that the cylinders were machined into a block along with one side of the crankcase two such parts being bolted together side by side to form the engine Normal construction techniques used three parts two cylinder blocks and a separate crankcase The L10 was first ran in static tests on October 22 1932 With the official formation of the RLM in 1933 numerical engine designations by manufacturer was rationalized with Junkers receiving the 200 block the L10 becoming the 210 Type approval was achieved in March 1934 and it first flew on July 5 1934 installed in a Junkers W33 The design had initially aimed for 700 PS but the prototypes delivered only about 600 PS so there was some disappointment in the industry Nevertheless almost all German aircraft designs of the era were based on the 210 which is why they were so small compared to other countries efforts A Junkers W33 was flown with a 680 hp version of the Jumo 210 on 5 July 1934 2 Initial production of the 610 PS 602 hp 449 kW Jumo 210A started in late 1934 Further development led in 1935 to the 640 PS 631 hp 471 kW 210B and 210C Both added a new supercharger for improved performance along with a dump valve to avoid overboost The B model had its propeller geared at 1 1 55 prop engine rpm for high speed use while the C model was geared at 1 1 63 for slower flying speeds In 1936 the new 670 PS 661 hp 493 kW 210D and 210E were introduced which had the same gearing as the B and C but used a new two speed supercharger to increase takeoff power and altitude performance The Jumo 210G had a direct injection system developed by August Lichte The Jumo system used a small pump piston positioned beside each of the main cylinders driven off the crank shaft The injector used a simple check valve to prevent internal pressure from blowing back into the fuel line and the pump was timed to inject at the proper point in the intake cycle Inclusion of the injection system increased takeoff performance by about 20 PS without increasing boost rates and it also reduced fuel consumption For those reasons most newer German engine types were set up with fuel injection systems The Jumo 210G was rated at 730 PS 720 hp 534 kW and was only available for fast aircraft like the Bf 109 and Bf 110 but not for slow aircraft like the Ju 87 Further developments were planned as Jumo 210F and 210H but never built In 1935 the Jumo 210H with twin exhaust valves for each cylinder was used for development of the Jumo 211 The Jumo 210 S was a special development by the DVL with rotary disc valves as used in KM 8 torpedo engine Production of the Jumo 210 came to an end in about 1938 Applications editArado Ar 68 only in Ar 68E Focke Wulf Fw 159 Focke Wulf Fw 187 Heinkel He 112 Junkers Ju 87 only in Ju 87A Messerschmitt Bf 109 only in Bf 109 A D Messerschmitt Bf 110 only in Bf 110 A B Messerschmitt Me 262 V1 only in first test flight prototype s BMW 003 axial flow jet engines failed shortly after takeoff aircraft brought around and back on the nose mounted Jumo 210 s power alone Specifications Jumo 210 editGeneral characteristics Type Twelve cylinder supercharged liquid cooled inverted vee aircraft engine Bore 124 mm 4 88 in Stroke 136 mm 5 35 in Displacement 19 7 L 1 202 in Length 1 478 mm 58 19 in Width 686 mm 27 01 in Height 960 mm 37 8 in Dry weight 442 kg 974 lb Components Valvetrain Overhead camshaft twin inlet and single exhaust valving Supercharger Two speed centrifugal type supercharger with automatic boost control Fuel system Carburetor Fuel type 87 octane rating gasoline Cooling system Liquid cooled ethylene glycol Reduction gear Spur 1 75 1 or 1 59 1Performance Power output 508 kW 690 PS or 681 hp at 2 700 rpm for takeoff 515 kW 700 PS or 690 hp at 2 700 rpm at 1 500 m 4 920 ft first supercharger speed 501 kW 680 PS or 671 hp at 2 700 rpm at 3 700 m 12 140 ft second supercharger speed Specific power 26 14 kW L 0 57 hp in Compression ratio 6 5 1 Specific fuel consumption 322 335 g kW h 0 53 0 55 lb hp h Power to weight ratio 1 17 kW kg 0 71 hp lb See also editRelated development Junkers Jumo 211Comparable engines Alfa Romeo 122 Argus As 410 de Havilland Gipsy Twelve Isotta Fraschini Gamma Ranger V 770 Renault 12R Walter SagittaRelated lists List of aircraft engines List of aircraft engines of Germany during World War IIReferences edit Flight Magazine September 9 1937 flightglobal com Flightglobal Archive September 9 1937 p 265 Retrieved March 15 2017 At the recent international meeting at Zurich several of the successful German machines were fitted with the new Junkers 210 petrol engine Three valves per cylinder are provided two inlets and one exhaust operated by push rods and rockers from a single camshaft Vajda Ferenc A Dancey Peter 1998 German Aircraft Industry and Production 1933 1945 McFarland p 234 ISBN 978 1 85310 864 8 Bibliography editBingham Victor 1998 Major Piston Aero Engines of World War II Shrewsbury UK Airlife Publishing ISBN 1 84037 012 2 Christopher John 2013 The Race for Hitler s X Planes Britain s 1945 Mission to Capture Secret Luftwaffe Technology Stroud UK History Press ISBN 978 0 7524 6457 2 Gunston Bill 2006 World Encyclopedia of Aero Engines From the Pioneers to the Present Day 5th ed Stroud UK Sutton ISBN 0 7509 4479 X Kay Antony 2004 Junkers Aircraft amp Engines 1913 1945 London Putnam Aeronautical Books ISBN 0 85177 985 9 A History of Aircraft Piston Engines Herschel Smith The Hugo Junkers Homepage engines section on L series enginesFurther reading editZuerl Walter 1941 Deutsche Flugzeug Konstrukteure Munchen Germany Curt Pechstein Verlag External links edit nbsp Wikimedia Commons has media related to Junkers Jumo 210 http hugojunkers bplaced net index html ex junkers de vu has expired https web archive org web 20091027094642 http geocities com hjunkers ju jumo210 a1 htm Retrieved from https en wikipedia org w index php title Junkers Jumo 210 amp oldid 1212083049, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.