fbpx
Wikipedia

Jugular venous pressure

The jugular venous pressure (JVP, sometimes referred to as jugular venous pulse) is the indirectly observed pressure over the venous system via visualization of the internal jugular vein. It can be useful in the differentiation of different forms of heart and lung disease. Classically three upward deflections and two downward deflections have been described.

  • The upward deflections are the "a" (atrial contraction), "c" (ventricular contraction and resulting bulging of tricuspid into the right atrium during isovolumetric systole) and "v" (venous filling).
  • The downward deflections of the wave are the "x" descent (the atrium relaxes and the tricuspid valve moves downward) and the "y" descent (filling of ventricle after tricuspid opening).
A man with congestive heart failure and marked jugular venous distention. External jugular vein marked by an arrow; however, JVP is not measured by looking at the external jugular vein even but is instead measured by pulsations of the skin from the internal jugular vein, which is not visible in this image.

Method edit

Visualization edit

 
The veins of the neck, viewed from in front.

The patient is positioned at a 45° incline, and the filling level of the external jugular vein determined.[1] The internal jugular vein is visualised when looking for the pulsation. In healthy people, the filling level of the jugular vein should be less than 4 centimetres vertical height above the sternal angle.[2] A pen-light can aid in discerning the jugular filling level by providing tangential light.[3]

The JVP is easiest to observe if one looks along the surface of the sternocleidomastoid muscle, as it is easier to appreciate the movement relative to the neck when looking from the side (as opposed to looking at the surface at a 90 degree angle). Like judging the movement of an automobile from a distance, it is easier for an observer to see the movement of an automobile when it is crossing the observer's path at 90 degrees (i.e., moving left to right or right to left), as opposed to coming towards the observer.[citation needed]

Pulses in the JVP are rather hard to observe, but trained cardiologists do try to discern these as signs of the state of the right atrium.

Differentiation from the carotid pulse edit

The JVP and carotid pulse can be differentiated several ways:[citation needed]

  • multiphasic – the JVP "beats" twice (in quick succession) in the cardiac cycle. In other words, there are two waves in the JVP for each contraction-relaxation cycle by the heart. The first beat represents that atrial contraction (termed a) and second beat represents venous filling of the right atrium against a closed tricuspid valve (termed v) and not the commonly mistaken 'ventricular contraction'. These wave forms may be altered by certain medical conditions; therefore, this is not always an accurate way to differentiate the JVP from the carotid pulse. The carotid artery only has one beat in the cardiac cycle.
  • non-palpable – the JVP cannot be palpated. If one feels a pulse in the neck, it is generally the common carotid artery.
  • occludable – the JVP can be stopped by occluding the internal jugular vein by lightly pressing against the neck. It will fill from above.

JVP waveform edit

 
A JVP waveform

The jugular venous pulsation has a biphasic waveform.

  • The a wave corresponds to right atrial contraction and ends synchronously with the carotid artery pulse. The peak of the 'a' wave demarcates the end of atrial systole.
  • The x descent follows the 'a' wave and corresponds to atrial relaxation and rapid atrial filling due to low pressure.
  • The c wave corresponds to right ventricular contraction causing the closed tricuspid valve to bulge towards the right atrium during RV isovolumetric contraction.
  • The x' descent follows the 'c' wave and occurs as a result of the right ventricle pulling the tricuspid valve downward during ventricular systole (ventricular ejection/atrial relaxation). (As stroke volume is ejected, the ventricle takes up less space in the pericardium, allowing relaxed atrium to enlarge). The x' (x prime) descent can be used as a measure of right ventricle contractility.
  • The v wave corresponds to venous filling when the tricuspid valve is closed and venous pressure increases from venous return – this occurs during and following the carotid pulse.
  • The y descent corresponds to the rapid emptying of the atrium into the ventricle following the opening of the tricuspid valve.

Quantification edit

A classical method for quantifying the JVP was described by Borst & Molhuysen in 1952.[4] It has since been modified in various ways. A venous arch may be used to measure the JVP more accurately.

Moodley's sign edit

This sign is used to determine which waveform you are viewing. Feel the radial pulse while simultaneously watching the JVP. The waveform that is seen immediately after the arterial pulsation is felt is the 'v wave' of the JVP[citation needed].

Abdominojugular test edit

The term "hepatojugular reflux" was previously used as it was thought that compression of the liver resulted in "reflux" of blood out of the hepatic sinusoids into the inferior vena cava, thereby elevating right atrial pressure and visualized as jugular venous distention. The exact physiologic mechanism of jugular venous distention with a positive test is much more complex and the commonly accepted term is now "abdominojugular test".[citation needed]

In a prospective randomized study involving 86 patients who underwent right and left cardiac catheterization, the abdominojugular test was shown to correlate best with the pulmonary arterial wedge pressure. Furthermore, patients with a positive response had lower left ventricular ejection fractions and stroke volumes, higher left ventricular filling pressure, higher mean pulmonary arterial, and higher right atrial pressures.[5]

The abdominojugular test, when done in a standardized fashion, correlates best with the pulmonary arterial wedge pressure, and therefore, is probably a reflection of an increased central blood volume. In the absence of isolated right ventricular failure, seen in some patients with right ventricular infarction, a positive abdominojugular test suggests a pulmonary artery wedge pressure of 15 mm Hg or greater.[5]

Interpretation edit

An elevated JVP is the classic sign of venous hypertension (e.g. right-sided heart failure). JVP elevation can be visualized as jugular venous distension, whereby the JVP is visualized at a level of the neck that is higher than normal. The jugular venous pressure is often used to assess the central venous pressure in the absence of invasive measurements (e.g. with a central venous catheter, which is a tube inserted in the neck veins). A 1996 systematic review concluded that a high jugular venous pressure makes a high central venous pressure more likely, but does not significantly help confirm a low central venous pressure. The study also found that agreement between doctors on the jugular venous pressure can be poor, calling into question its reliability as a clinical decision-making tool.[6] Similarly, a 2016 study examined the use of JVP measurements by clinical examination in the evaluation of central venous pressure in patients with heart failure.[7] This study found that JVP examination was not consistent with actual central venous pressures, such that it was unreliable both for ruling in and ruling out heart failure. JVP measurement was especially unreliable in patients with high body fat. Additionally, it was noted that clinicians seemed to "extrapolate" JVP measurements from other, more easily examinable findings (like lung auscultation, body weight, heart rate, brachial blood pressure, and chest radiography findings).

The paradoxical increase of the JVP with inspiration (instead of the expected decrease) is referred to as the Kussmaul sign, and indicates impaired filling of the right ventricle. The differential diagnosis of Kussmaul's sign includes constrictive pericarditis, restrictive cardiomyopathy, pericardial effusion, and severe right-sided heart failure.[citation needed]

Certain wave form abnormalities, include cannon a-waves, or increased amplitude 'a' waves, are associated with AV dissociation (third degree heart block), when the atrium is contracting against a closed tricuspid valve, or even in ventricular tachycardia. Another abnormality, "c-v waves", can be a sign of tricuspid regurgitation. The absence of 'a' waves may be seen in atrial fibrillation.[8]

An exaggerated "y" wave or diastolic collapse of the neck veins from constrictive pericarditis is referred to as Friedreich's sign.[9][10]

Abnormal JVP waveforms
Abnormality Causes
Raised JVP, normal waveform
Raised JVP, absent pulsation
Large 'a' wave (increased atrial contraction pressure)
Cannon 'a' wave (atria contracting against closed tricuspid valve)
Absent 'a' wave (no unifocal atrial depolarisation)
  • Atrial fibrillation
Large 'v' wave (c–v wave)
  • Tricuspid regurgitation
Absent 'x' descent
  • Tricuspid regurgitation (sometimes 'x' wave is replaced by a positive wave)
Prominent 'x' descent
  • Cardiac tamponade
Slow 'y' descent
Prominent & deep 'y' descent
  • Constrictive pericarditis
Parodoxical JVP (Kussmaul's sign: JVP rises with inspiration, drops with expiration)

See also edit

References edit

  1. ^ "Cardiovascular Examination - Cardiovascular Disorders". from the original on 2022-03-06. Retrieved 2022-03-06.
  2. ^ "Evaluation of the Pulmonary Patient - Pulmonary Disorders". from the original on 2020-07-30. Retrieved 2022-03-06.
  3. ^ Gopal, S.; Nagalli, S. (2022). "Jugular Venous Distention". StatPearls. StatPearls. PMID 31971738. from the original on 2022-09-24. Retrieved 2022-03-06.
  4. ^ Borst J, Molhuysen J (1952). "Exact determination of the central venous pressure by a simple clinical method". Lancet. 2 (7): 304–9. doi:10.1016/S0140-6736(52)92474-4. PMID 14955978.
  5. ^ a b Ewy GA (September 1988). "The abdominojugular test: technique and hemodynamic correlates". Annals of Internal Medicine. 109 (6): 456–60. doi:10.7326/0003-4819-109-6-456. PMID 3415106.
  6. ^ Cook DJ, Simel DL (February 1996). "The Rational Clinical Examination. Does this patient have abnormal central venous pressure?". JAMA. 275 (8): 630–4. doi:10.1001/jama.1996.03530320054034. PMID 8594245.
  7. ^ Breidthardt, Tobias; Moreno-Weidmann, Zoraida; Uthoff, Heiko; Sabti, Zaid; Aeppli, Sven; Puelacher, Christian; Stallone, Fabio; Twerenbold, Raphael; Wildi, Karin; Kozhuharov, Nikola; Wussler, Desiree (2018). "How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure? Insights from a prospective study". European Journal of Heart Failure. 20 (7): 1160–1162. doi:10.1002/ejhf.1111. ISSN 1879-0844. PMID 29314487. S2CID 3581825.
  8. ^ Conover, Mary Boudreau (2003). "Bedside Diagnosis". Understanding electrocardiography. St. Louis: Mosby. p. 82. ISBN 0-323-01905-6.
  9. ^ "Friedreich's sign". BMJ Case Reports.
  10. ^ Pittinger, Brook (2018). "Friedreich's sign". BMJ Case Reports. 2018. doi:10.1136/bcr-2018-226820. PMC 6203036. PMID 30333203. from the original on 2020-05-27. Retrieved 2020-04-05.

External links edit

  • page on JVP
  • Normal jugular vein waves – Merck Manual

jugular, venous, pressure, jugular, venous, pressure, sometimes, referred, jugular, venous, pulse, indirectly, observed, pressure, over, venous, system, visualization, internal, jugular, vein, useful, differentiation, different, forms, heart, lung, disease, cl. The jugular venous pressure JVP sometimes referred to as jugular venous pulse is the indirectly observed pressure over the venous system via visualization of the internal jugular vein It can be useful in the differentiation of different forms of heart and lung disease Classically three upward deflections and two downward deflections have been described The upward deflections are the a atrial contraction c ventricular contraction and resulting bulging of tricuspid into the right atrium during isovolumetric systole and v venous filling The downward deflections of the wave are the x descent the atrium relaxes and the tricuspid valve moves downward and the y descent filling of ventricle after tricuspid opening A man with congestive heart failure and marked jugular venous distention External jugular vein marked by an arrow however JVP is not measured by looking at the external jugular vein even but is instead measured by pulsations of the skin from the internal jugular vein which is not visible in this image Contents 1 Method 1 1 Visualization 1 2 Differentiation from the carotid pulse 1 3 JVP waveform 1 4 Quantification 1 5 Moodley s sign 1 6 Abdominojugular test 2 Interpretation 3 See also 4 References 5 External linksMethod editVisualization edit nbsp The veins of the neck viewed from in front The patient is positioned at a 45 incline and the filling level of the external jugular vein determined 1 The internal jugular vein is visualised when looking for the pulsation In healthy people the filling level of the jugular vein should be less than 4 centimetres vertical height above the sternal angle 2 A pen light can aid in discerning the jugular filling level by providing tangential light 3 The JVP is easiest to observe if one looks along the surface of the sternocleidomastoid muscle as it is easier to appreciate the movement relative to the neck when looking from the side as opposed to looking at the surface at a 90 degree angle Like judging the movement of an automobile from a distance it is easier for an observer to see the movement of an automobile when it is crossing the observer s path at 90 degrees i e moving left to right or right to left as opposed to coming towards the observer citation needed Pulses in the JVP are rather hard to observe but trained cardiologists do try to discern these as signs of the state of the right atrium Differentiation from the carotid pulse edit The JVP and carotid pulse can be differentiated several ways citation needed multiphasic the JVP beats twice in quick succession in the cardiac cycle In other words there are two waves in the JVP for each contraction relaxation cycle by the heart The first beat represents that atrial contraction termed a and second beat represents venous filling of the right atrium against a closed tricuspid valve termed v and not the commonly mistaken ventricular contraction These wave forms may be altered by certain medical conditions therefore this is not always an accurate way to differentiate the JVP from the carotid pulse The carotid artery only has one beat in the cardiac cycle non palpable the JVP cannot be palpated If one feels a pulse in the neck it is generally the common carotid artery occludable the JVP can be stopped by occluding the internal jugular vein by lightly pressing against the neck It will fill from above JVP waveform edit nbsp A JVP waveformThe jugular venous pulsation has a biphasic waveform The a wave corresponds to right atrial contraction and ends synchronously with the carotid artery pulse The peak of the a wave demarcates the end of atrial systole The x descent follows the a wave and corresponds to atrial relaxation and rapid atrial filling due to low pressure The c wave corresponds to right ventricular contraction causing the closed tricuspid valve to bulge towards the right atrium during RV isovolumetric contraction The x descent follows the c wave and occurs as a result of the right ventricle pulling the tricuspid valve downward during ventricular systole ventricular ejection atrial relaxation As stroke volume is ejected the ventricle takes up less space in the pericardium allowing relaxed atrium to enlarge The x x prime descent can be used as a measure of right ventricle contractility The v wave corresponds to venous filling when the tricuspid valve is closed and venous pressure increases from venous return this occurs during and following the carotid pulse The y descent corresponds to the rapid emptying of the atrium into the ventricle following the opening of the tricuspid valve Quantification edit A classical method for quantifying the JVP was described by Borst amp Molhuysen in 1952 4 It has since been modified in various ways A venous arch may be used to measure the JVP more accurately Moodley s sign edit This sign is used to determine which waveform you are viewing Feel the radial pulse while simultaneously watching the JVP The waveform that is seen immediately after the arterial pulsation is felt is the v wave of the JVP citation needed Abdominojugular test edit Main article Abdominojugular test The term hepatojugular reflux was previously used as it was thought that compression of the liver resulted in reflux of blood out of the hepatic sinusoids into the inferior vena cava thereby elevating right atrial pressure and visualized as jugular venous distention The exact physiologic mechanism of jugular venous distention with a positive test is much more complex and the commonly accepted term is now abdominojugular test citation needed In a prospective randomized study involving 86 patients who underwent right and left cardiac catheterization the abdominojugular test was shown to correlate best with the pulmonary arterial wedge pressure Furthermore patients with a positive response had lower left ventricular ejection fractions and stroke volumes higher left ventricular filling pressure higher mean pulmonary arterial and higher right atrial pressures 5 The abdominojugular test when done in a standardized fashion correlates best with the pulmonary arterial wedge pressure and therefore is probably a reflection of an increased central blood volume In the absence of isolated right ventricular failure seen in some patients with right ventricular infarction a positive abdominojugular test suggests a pulmonary artery wedge pressure of 15 mm Hg or greater 5 Interpretation editAn elevated JVP is the classic sign of venous hypertension e g right sided heart failure JVP elevation can be visualized as jugular venous distension whereby the JVP is visualized at a level of the neck that is higher than normal The jugular venous pressure is often used to assess the central venous pressure in the absence of invasive measurements e g with a central venous catheter which is a tube inserted in the neck veins A 1996 systematic review concluded that a high jugular venous pressure makes a high central venous pressure more likely but does not significantly help confirm a low central venous pressure The study also found that agreement between doctors on the jugular venous pressure can be poor calling into question its reliability as a clinical decision making tool 6 Similarly a 2016 study examined the use of JVP measurements by clinical examination in the evaluation of central venous pressure in patients with heart failure 7 This study found that JVP examination was not consistent with actual central venous pressures such that it was unreliable both for ruling in and ruling out heart failure JVP measurement was especially unreliable in patients with high body fat Additionally it was noted that clinicians seemed to extrapolate JVP measurements from other more easily examinable findings like lung auscultation body weight heart rate brachial blood pressure and chest radiography findings The paradoxical increase of the JVP with inspiration instead of the expected decrease is referred to as the Kussmaul sign and indicates impaired filling of the right ventricle The differential diagnosis of Kussmaul s sign includes constrictive pericarditis restrictive cardiomyopathy pericardial effusion and severe right sided heart failure citation needed Certain wave form abnormalities include cannon a waves or increased amplitude a waves are associated with AV dissociation third degree heart block when the atrium is contracting against a closed tricuspid valve or even in ventricular tachycardia Another abnormality c v waves can be a sign of tricuspid regurgitation The absence of a waves may be seen in atrial fibrillation 8 An exaggerated y wave or diastolic collapse of the neck veins from constrictive pericarditis is referred to as Friedreich s sign 9 10 Abnormal JVP waveforms Abnormality CausesRaised JVP normal waveform Bradycardia Fluid overload Heart failureRaised JVP absent pulsation Superior vena cava syndromeLarge a wave increased atrial contraction pressure Tricuspid stenosis Right heart failure Pulmonary hypertensionCannon a wave atria contracting against closed tricuspid valve Atrial flutter Premature atrial rhythm or tachycardia Third degree heart block Ventricular ectopics Ventricular tachycardiaAbsent a wave no unifocal atrial depolarisation Atrial fibrillationLarge v wave c v wave Tricuspid regurgitationAbsent x descent Tricuspid regurgitation sometimes x wave is replaced by a positive wave Prominent x descent Cardiac tamponadeSlow y descent Tricuspid stenosis Cardiac tamponadeProminent amp deep y descent Constrictive pericarditisParodoxical JVP Kussmaul s sign JVP rises with inspiration drops with expiration Pericardial effusion Constrictive pericarditis Pericardial tamponadeSee also editWiggers diagramReferences edit Cardiovascular Examination Cardiovascular Disorders Archived from the original on 2022 03 06 Retrieved 2022 03 06 Evaluation of the Pulmonary Patient Pulmonary Disorders Archived from the original on 2020 07 30 Retrieved 2022 03 06 Gopal S Nagalli S 2022 Jugular Venous Distention StatPearls StatPearls PMID 31971738 Archived from the original on 2022 09 24 Retrieved 2022 03 06 Borst J Molhuysen J 1952 Exact determination of the central venous pressure by a simple clinical method Lancet 2 7 304 9 doi 10 1016 S0140 6736 52 92474 4 PMID 14955978 a b Ewy GA September 1988 The abdominojugular test technique and hemodynamic correlates Annals of Internal Medicine 109 6 456 60 doi 10 7326 0003 4819 109 6 456 PMID 3415106 Cook DJ Simel DL February 1996 The Rational Clinical Examination Does this patient have abnormal central venous pressure JAMA 275 8 630 4 doi 10 1001 jama 1996 03530320054034 PMID 8594245 Breidthardt Tobias Moreno Weidmann Zoraida Uthoff Heiko Sabti Zaid Aeppli Sven Puelacher Christian Stallone Fabio Twerenbold Raphael Wildi Karin Kozhuharov Nikola Wussler Desiree 2018 How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure Insights from a prospective study European Journal of Heart Failure 20 7 1160 1162 doi 10 1002 ejhf 1111 ISSN 1879 0844 PMID 29314487 S2CID 3581825 Conover Mary Boudreau 2003 Bedside Diagnosis Understanding electrocardiography St Louis Mosby p 82 ISBN 0 323 01905 6 Friedreich s sign BMJ Case Reports Pittinger Brook 2018 Friedreich s sign BMJ Case Reports 2018 doi 10 1136 bcr 2018 226820 PMC 6203036 PMID 30333203 Archived from the original on 2020 05 27 Retrieved 2020 04 05 External links editClinical Examination page on JVP Normal jugular vein waves Merck Manual Retrieved from https en wikipedia org w index php title Jugular venous pressure amp oldid 1169461678, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.