fbpx
Wikipedia

Ion chromatography

Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger.[1] It works on almost any kind of charged molecule—including small inorganic anions,[2] large proteins,[3] small nucleotides,[4] and amino acids. However, ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein.[5]

A modern ion chromatography system

The two types of ion chromatography are anion-exchange and cation-exchange. Cation-exchange chromatography is used when the molecule of interest is positively charged. The molecule is positively charged because the pH for chromatography is less than the pI (also known as pH(I)).[6] In this type of chromatography, the stationary phase is negatively charged and positively charged molecules are loaded to be attracted to it. Anion-exchange chromatography is when the stationary phase is positively charged and negatively charged molecules (meaning that pH for chromatography is greater than the pI) are loaded to be attracted to it.[7] It is often used in protein purification, water analysis,[8][9] and quality control. The water-soluble and charged molecules such as proteins, amino acids, and peptides bind to moieties which are oppositely charged by forming ionic bonds to the insoluble stationary phase.[10] The equilibrated stationary phase consists of an ionizable functional group where the targeted molecules of a mixture to be separated and quantified can bind while passing through the column—a cationic stationary phase is used to separate anions and an anionic stationary phase is used to separate cations. Cation exchange chromatography is used when the desired molecules to separate are cations and anion exchange chromatography is used to separate anions.[11] The bound molecules then can be eluted and collected using an eluant which contains anions and cations by running a higher concentration of ions through the column or by changing the pH of the column.

One of the primary advantages for the use of ion chromatography is that only one interaction is involved the separation, as opposed to other separation techniques; therefore, ion chromatography may have higher matrix tolerance. Another advantage of ion exchange is the predictability of elution patterns (based on the presence of the ionizable group).[12] For example, when cation exchange chromatography is used, certain cations will elute out first and others later. A local charge balance is always maintained. However, there are also disadvantages involved when performing ion-exchange chromatography, such as constant evolution of the technique which leads to the inconsistency from column to column.[13] A major limitation to this purification technique is that it is limited to ionizable group.[6]

History edit

 
Ion exchange chromatography

Ion chromatography has advanced through the accumulation of knowledge over a course of many years. Starting from 1947, Spedding and Powell used displacement ion-exchange chromatography for the separation of the rare earths. Additionally, they showed the ion-exchange separation of 14N and 15N isotopes in ammonia. At the start of the 1950s, Kraus and Nelson demonstrated the use of many analytical methods for metal ions dependent on their separation of their chloride, fluoride, nitrate or sulfate complexes by anion chromatography. Automatic in-line detection was progressively introduced from 1960 to 1980 as well as novel chromatographic methods for metal ion separations. A groundbreaking method by Small, Stevens and Bauman at Dow Chemical Co. unfolded the creation of the modern ion chromatography. Anions and cations could now be separated efficiently by a system of suppressed conductivity detection. In 1979, a method for anion chromatography with non-suppressed conductivity detection was introduced by Gjerde et al. Following it in 1980, was a similar method for cation chromatography.[14]

As a result, a period of extreme competition began within the IC market, with supporters for both suppressed and non-suppressed conductivity detection. This competition led to fast growth of new forms and the fast evolution of IC.[15] A challenge that needs to be overcome in the future development of IC is the preparation of highly efficient monolithic ion-exchange columns and overcoming this challenge would be of great importance to the development of IC.[16]

The boom of Ion exchange chromatography primarily began between 1935 and 1950 during World War II and it was through the "Manhattan project" that applications and IC were significantly extended. Ion chromatography was originally introduced by two English researchers, agricultural Sir Thompson and chemist J T Way. The works of Thompson and Way involved the action of water-soluble fertilizer salts, ammonium sulfate and potassium chloride. These salts could not easily be extracted from the ground due to the rain. They performed ion methods to treat clays with the salts, resulting in the extraction of ammonia in addition to the release of calcium.[17][unreliable source?] It was in the fifties and sixties that theoretical models were developed for IC for further understanding and it was not until the seventies that continuous detectors were utilized, paving the path for the development from low-pressure to high-performance chromatography. Not until 1975 was "ion chromatography" established as a name in reference to the techniques, and was thereafter used as a name for marketing purposes. Today IC is important for investigating aqueous systems, such as drinking water. It is a popular method for analyzing anionic elements or complexes that help solve environmentally relevant problems. Likewise, it also has great uses in the semiconductor industry.[18]

Because of the abundant separating columns, elution systems, and detectors available, chromatography has developed into the main method for ion analysis.[19]

When this technique was initially developed, it was primarily used for water treatment. Since 1935, ion exchange chromatography rapidly manifested into one of the most heavily leveraged techniques, with its principles often being applied to majority of fields of chemistry, including distillation, adsorption, and filtration.[20]

Principle edit

 
Ion chromatogram displaying anion separation

Ion-exchange chromatography separates molecules based on their respective charged groups. Ion-exchange chromatography retains analyte molecules on the column based on coulombic (ionic) interactions. The ion exchange chromatography matrix consists of positively and negatively charged ions.[21] Essentially, molecules undergo electrostatic interactions with opposite charges on the stationary phase matrix. The stationary phase consists of an immobile matrix that contains charged ionizable functional groups or ligands.[22] The stationary phase surface displays ionic functional groups (R-X) that interact with analyte ions of opposite charge. To achieve electroneutrality, these immobilized charges couple with exchangeable counterions in the solution. Ionizable molecules that are to be purified, compete with these exchangeable counterions, for binding to the immobilized charges on the stationary phase. These ionizable molecules are retained or eluted based on their charge. Initially, molecules that do not bind or bind weakly to the stationary phase are first to be washed away. Altered conditions are needed for the elution of the molecules that bind to the stationary phase. The concentration of the exchangeable counterions, which competes with the molecules for binding, can be increased, or the pH can be changed to affect the ionic charge of the eluent or the solute. A change in pH affects the charge on the particular molecules and, therefore, alter their binding. When reducing the net charge of the solute's molecules, they start eluting out. This way, such adjustments can be used to release the proteins of interest. Additionally, concentration of counterions can be gradually varied to affect the retention of the ionized molecules, thus separate them. This type of elution is called gradient elution. On the other hand, step elution can be used, in which the concentration of counterions are varied in steps.[5] This type of chromatography is further subdivided into cation exchange chromatography and anion-exchange chromatography. Positively charged molecules bind to cation exchange resins, while negatively charged molecules bind to anion exchange resins.[23] The ionic compound consisting of the cationic species M+ and the anionic species B− can be retained by the stationary phase.

Cation exchange chromatography retains positively charged cations because the stationary phase displays a negatively charged functional group:

 

Anion exchange chromatography retains anions using positively charged functional group:

 

Note that the ion strength of either C+ or A− in the mobile phase can be adjusted to shift the equilibrium position, thus retention time.

The ion chromatogram shows a typical chromatogram obtained with an anion exchange column.

Procedure edit

Before ion-exchange chromatography can be initiated, it must be equilibrated. The stationary phase must be equilibrated to certain requirements that depend on the experiment that you are working with. Once equilibrated, the charged ions in the stationary phase will be attached to its opposite charged exchangeable ions, such as Cl- or Na+. Next, a buffer should be chosen in which the desired protein can bind to. After equilibration, the column needs to be washed. The washing phase will help elute out all impurities that does not bind to the matrix while the protein of interest remains bounded. This sample buffer needs to have the same pH as the buffer used for equilibration to help bind the desired proteins. Uncharged proteins will be eluted out of the column at a similar speed of the buffer flowing through the column with no retention. Once the sample has been loaded onto to the column, and the column has been washed with the buffer to elute out all non-desired proteins, elution is carried out at specific conditions to elute the desired proteins that are bound to the matrix. Bound proteins are eluted out by utilizing a gradient of linearly increasing salt concentration. With increasing ionic strength of the buffer, the salt ions will compete with the desired proteins in order to bind to charged groups on the surface of the medium. This will cause desired proteins to be eluted out of the column. Proteins that have a low net charge will be eluted out first as the salt concentration increases causing the ionic strength to increase. Proteins with high net charge will need a higher ionic strength for them to be eluted out of the column.[21]

It is possible to perform ion exchange chromatography in bulk, on thin layers of medium such as glass or plastic plates coated with a layer of the desired stationary phase, or in chromatography columns. Thin layer chromatography or column chromatography share similarities in that they both act within the same governing principles; there is constant and frequent exchange of molecules as the mobile phase travels along the stationary phase. It is not imperative to add the sample in minute volumes as the predetermined conditions for the exchange column have been chosen so that there will be strong interaction between the mobile and stationary phases. Furthermore, the mechanism of the elution process will cause a compartmentalization of the differing molecules based on their respective chemical characteristics. This phenomenon is due to an increase in salt concentrations at or near the top of the column, thereby displacing the molecules at that position, while molecules bound lower are released at a later point when the higher salt concentration reaches that area. These principles are the reasons that ion exchange chromatography is an excellent candidate for initial chromatography steps in a complex purification procedure as it can quickly yield small volumes of target molecules regardless of a greater starting volume.[6]

 
Chamber (left) contains high salt concentration. Stirred chamber (right) contains low salt concentration. Gradual stirring causes the formation of a salt gradient as salt travel from high to low concentrations.

Comparatively simple devices are often used to apply counterions of increasing gradient to a chromatography column. Counterions such as copper (II) are chosen most often for effectively separating peptides and amino acids through complex formation.[24]

A simple device can be used to create a salt gradient. Elution buffer is consistently being drawn from the chamber into the mixing chamber, thereby altering its buffer concentration. Generally, the buffer placed into the chamber is usually of high initial concentration, whereas the buffer placed into the stirred chamber is usually of low concentration. As the high concentration buffer from the left chamber is mixed and drawn into the column, the buffer concentration of the stirred column gradually increase. Altering the shapes of the stirred chamber, as well as of the limit buffer, allows for the production of concave, linear, or convex gradients of counterion.

A multitude of different mediums are used for the stationary phase. Among the most common immobilized charged groups used are trimethylaminoethyl (TAM), triethylaminoethyl (TEAE), diethyl-2-hydroxypropylaminoethyl (QAE), aminoethyl (AE), diethylaminoethyl (DEAE), sulpho (S), sulphomethyl (SM), sulphopropyl (SP), carboxy (C), and carboxymethyl (CM).[5]

Successful packing of the column is an important aspect of ion chromatography. Stability and efficiency of a final column depends on packing methods, solvent used, and factors that affect mechanical properties of the column. In contrast to early inefficient dry- packing methods, wet slurry packing, in which particles that are suspended in an appropriate solvent are delivered into a column under pressure, shows significant improvement. Three different approaches can be employed in performing wet slurry packing: the balanced density method (solvent's density is about that of porous silica particles), the high viscosity method (a solvent of high viscosity is used), and the low viscosity slurry method (performed with low viscosity solvents).[25]

Polystyrene is used as a medium for ion- exchange. It is made from the polymerization of styrene with the use of divinylbenzene and benzoyl peroxide. Such exchangers form hydrophobic interactions with proteins which can be irreversible. Due to this property, polystyrene ion exchangers are not suitable for protein separation. They are used on the other hand for the separation of small molecules in amino acid separation and removal of salt from water. Polystyrene ion exchangers with large pores can be used for the separation of protein but must be coated with a hydrophilic substance.[26]

Cellulose based medium can be used for the separation of large molecules as they contain large pores. Protein binding in this medium is high and has low hydrophobic character. DEAE is an anion exchange matrix that is produced from a positive side group of diethylaminoethyl bound to cellulose or Sephadex.[27]

Agarose gel based medium contain large pores as well but their substitution ability is lower in comparison to dextrans. The ability of the medium to swell in liquid is based on the cross-linking of these substances, the pH and the ion concentrations of the buffers used.[26]

Incorporation of high temperature and pressure allows a significant increase in the efficiency of ion chromatography, along with a decrease in time. Temperature has an influence of selectivity due to its effects on retention properties. The retention factor (k = (tRgtMg)/(tMgtext)) increases with temperature for small ions, and the opposite trend is observed for larger ions.[28][29]

Despite ion selectivity in different mediums, further research is being done to perform ion exchange chromatography through the range of 40–175 °C.[30]

An appropriate solvent can be chosen based on observations of how column particles behave in a solvent. Using an optical microscope, one can easily distinguish a desirable dispersed state of slurry from aggregated particles.[25]

Weak and strong ion exchangers edit

A "strong" ion exchanger will not lose the charge on its matrix once the column is equilibrated and so a wide range of pH buffers can be used. "Weak" ion exchangers have a range of pH values in which they will maintain their charge. If the pH of the buffer used for a weak ion exchange column goes out of the capacity range of the matrix, the column will lose its charge distribution and the molecule of interest may be lost.[31] Despite the smaller pH range of weak ion exchangers, they are often used over strong ion exchangers due to their having greater specificity. In some experiments, the retention times of weak ion exchangers are just long enough to obtain desired data at a high specificity.[32]

Resins (often termed 'beads') of ion exchange columns may include functional groups such as weak/strong acids and weak/strong bases. There are also special columns that have resins with amphoteric functional groups that can exchange both cations and anions.[33] Some examples of functional groups of strong ion exchange resins are quaternary ammonium cation (Q), which is an anion exchanger, and sulfonic acid (S, -SO2OH), which is a cation exchanger.[34] These types of exchangers can maintain their charge density over a pH range of 0–14. Examples of functional groups of Weak ion exchange resins include diethylaminoethyl (DEAE, -C2H4N(CH2H5)2), which is an anion exchanger, and carboxymethyl (CM, -CH2-COOH),[35] which is a cation exchanger. These two types of exchangers can maintain the charge density of their columns over a pH range of 5–9.[citation needed]

In ion chromatography, the interaction of the solute ions and the stationary phase based on their charges determines which ions will bind and to what degree. When the stationary phase features positive groups which attracts anions, it is called an anion exchanger; when there are negative groups on the stationary phase, cations are attracted and it is a cation exchanger.[36] The attraction between ions and stationary phase also depends on the resin, organic particles used as ion exchangers.

Each resin features relative selectivity which varies based on the solute ions present who will compete to bind to the resin group on the stationary phase. The selectivity coefficient, the equivalent to the equilibrium constant, is determined via a ratio of the concentrations between the resin and each ion, however, the general trend is that ion exchangers prefer binding to the ion with a higher charge, smaller hydrated radius, and higher polarizability, or the ability for the electron cloud of an ion to be disrupted by other charges.[37] Despite this selectivity, excess amounts of an ion with a lower selectivity introduced to the column would cause the lesser ion to bind more to the stationary phase as the selectivity coefficient allows fluctuations in the binding reaction that takes place during ion exchange chromatography.

Following table shows the commonly used ion exchangers [38]

Sr. No Name Type Functional group
1 DEAE Cellulose (Anion exchanger) Weakly basic DEAE (Diethylaminoethyl)
2 QAE Sephadex (Anion exchanger) Strongly basic QAE (Quaternary aminoethyl)
3 Q Sepharose (Anion exchanger) Strongly basic Q (Quaternary ammonium)
4 CM- Cellulose (Cation exchanger) Weakly acidic CM (Carboxymethyl)
5 SP Sepharose (Cation exchanger) Strongly acidic SP (Sulfopropyl)
6 SOURCE S (Cation exchanger) Strongly acidic S (Methyl sulfate)

Typical technique edit

A sample is introduced, either manually or with an autosampler, into a sample loop of known volume. A buffered aqueous solution known as the mobile phase carries the sample from the loop onto a column that contains some form of stationary phase material. This is typically a resin or gel matrix consisting of agarose or cellulose beads with covalently bonded charged functional groups. Equilibration of the stationary phase is needed in order to obtain the desired charge of the column. If the column is not properly equilibrated the desired molecule may not bind strongly to the column. The target analytes (anions or cations) are retained on the stationary phase but can be eluted by increasing the concentration of a similarly charged species that displaces the analyte ions from the stationary phase. For example, in cation exchange chromatography, the positively charged analyte can be displaced by adding positively charged sodium ions. The analytes of interest must then be detected by some means, typically by conductivity or UV/visible light absorbance.

Control an IC system usually requires a chromatography data system (CDS). In addition to IC systems, some of these CDSs can also control gas chromatography (GC) and HPLC.

Membrane exchange chromatography edit

A type of ion exchange chromatography, membrane exchange[39][40] is a relatively new method of purification designed to overcome limitations of using columns packed with beads. Membrane Chromatographic[41][42] devices are cheap to mass-produce and disposable unlike other chromatography devices that require maintenance and time to revalidate. There are three types of membrane absorbers that are typically used when separating substances. The three types are flat sheet, hollow fibre, and radial flow. The most common absorber and best suited for membrane chromatography is multiple flat sheets because it has more absorbent volume. It can be used to overcome mass transfer limitations[43] and pressure drop,[44] making it especially advantageous for isolating and purifying viruses, plasmid DNA, and other large macromolecules. The column is packed with microporous membranes with internal pores which contain adsorptive moieties that can bind the target protein. Adsorptive membranes are available in a variety of geometries and chemistry which allows them to be used for purification and also fractionation, concentration, and clarification in an efficiency that is 10 fold that of using beads.[45] Membranes can be prepared through isolation of the membrane itself, where membranes are cut into squares and immobilized. A more recent method involved the use of live cells that are attached to a support membrane and are used for identification and clarification of signaling molecules.[46]

Separating proteins edit

 
Preparative-scale ion exchange column used for protein purification.

Ion exchange chromatography can be used to separate proteins because they contain charged functional groups. The ions of interest (in this case charged proteins) are exchanged for another ions (usually H+) on a charged solid support. The solutes are most commonly in a liquid phase, which tends to be water. Take for example proteins in water, which would be a liquid phase that is passed through a column. The column is commonly known as the solid phase since it is filled with porous synthetic particles that are of a particular charge. These porous particles are also referred to as beads, may be aminated (containing amino groups) or have metal ions in order to have a charge. The column can be prepared using porous polymers, for macromolecules of a mass of over 100 000 Da, the optimum size of the porous particle is about 1 μm2. This is because slow diffusion of the solutes within the pores does not restrict the separation quality.[47] The beads containing positively charged groups, which attract the negatively charged proteins, are commonly referred to as anion exchange resins. The amino acids that have negatively charged side chains at pH 7 (pH of water) are glutamate and aspartate. The beads that are negatively charged are called cation exchange resins, as positively charged proteins will be attracted. The amino acids that have positively charged side chains at pH 7 are lysine, histidine and arginine.[48]

The isoelectric point is the pH at which a compound - in this case a protein - has no net charge. A protein's isoelectric point or PI can be determined using the pKa of the side chains, if the amino (positive chain) is able to cancel out the carboxyl (negative) chain, the protein would be at its PI. Using buffers instead of water for proteins that do not have a charge at pH 7, is a good idea as it enables the manipulation of pH to alter ionic interactions between the proteins and the beads.[49] Weakly acidic or basic side chains are able to have a charge if the pH is high or low enough respectively. Separation can be achieved based on the natural isoelectric point of the protein. Alternatively a peptide tag can be genetically added to the protein to give the protein an isoelectric point away from most natural proteins (e.g., 6 arginines for binding to a cation-exchange resin or 6 glutamates for binding to an anion-exchange resin such as DEAE-Sepharose).

Elution by increasing ionic strength of the mobile phase is more subtle. It works because ions from the mobile phase interact with the immobilized ions on the stationary phase, thus "shielding" the stationary phase from the protein, and letting the protein elute.

Elution from ion-exchange columns can be sensitive to changes of a single charge- chromatofocusing. Ion-exchange chromatography is also useful in the isolation of specific multimeric protein assemblies, allowing purification of specific complexes according to both the number and the position of charged peptide tags.[50][51]

Gibbs–Donnan effect edit

In ion exchange chromatography, the Gibbs–Donnan effect is observed when the pH of the applied buffer and the ion exchanger differ, even up to one pH unit. For example, in anion-exchange columns, the ion exchangers repeal protons so the pH of the buffer near the column differs is higher than the rest of the solvent.[52] As a result, an experimenter has to be careful that the protein(s) of interest is stable and properly charged in the "actual" pH.

This effect comes as a result of two similarly charged particles, one from the resin and one from the solution, failing to distribute properly between the two sides; there is a selective uptake of one ion over another.[53][54] For example, in a sulphonated polystyrene resin, a cation exchange resin, the chlorine ion of a hydrochloric acid buffer should equilibrate into the resin. However, since the concentration of the sulphonic acid in the resin is high, the hydrogen of HCl has no tendency to enter the column. This, combined with the need of electroneutrality, leads to a minimum amount of hydrogen and chlorine entering the resin.[54]

Uses edit

Clinical utility edit

A use of ion chromatography can be seen in argentation chromatography.[citation needed] Usually, silver and compounds containing acetylenic and ethylenic bonds have very weak interactions. This phenomenon has been widely tested on olefin compounds. The ion complexes the olefins make with silver ions are weak and made based on the overlapping of pi, sigma, and d orbitals and available electrons therefore cause no real changes in the double bond. This behavior was manipulated to separate lipids, mainly fatty acids from mixtures in to fractions with differing number of double bonds using silver ions. The ion resins were impregnated with silver ions, which were then exposed to various acids (silicic acid) to elute fatty acids of different characteristics.

Detection limits as low as 1 μM can be obtained for alkali metal ions.[55] It may be used for measurement of HbA1c, porphyrin and with water purification. Ion Exchange Resins(IER) have been widely used especially in medicines due to its high capacity and the uncomplicated system of the separation process. One of the synthetic uses is to use Ion Exchange Resins for kidney dialysis. This method is used to separate the blood elements by using the cellulose membraned artificial kidney.[56]

Another clinical application of ion chromatography is in the rapid anion exchange chromatography technique used to separate creatine kinase (CK) isoenzymes from human serum and tissue sourced in autopsy material (mostly CK rich tissues were used such as cardiac muscle and brain).[citation needed] These isoenzymes include MM, MB, and BB, which all carry out the same function given different amino acid sequences. The functions of these isoenzymes are to convert creatine, using ATP, into phosphocreatine expelling ADP. Mini columns were filled with DEAE-Sephadex A-50 and further eluted with tris- buffer sodium chloride at various concentrations (each concentration was chosen advantageously to manipulate elution). Human tissue extract was inserted in columns for separation. All fractions were analyzed to see total CK activity and it was found that each source of CK isoenzymes had characteristic isoenzymes found within. Firstly, CK- MM was eluted, then CK-MB, followed by CK-BB. Therefore, the isoenzymes found in each sample could be used to identify the source, as they were tissue specific.

Using the information from results, correlation could be made about the diagnosis of patients and the kind of CK isoenzymes found in most abundant activity. From the finding, about 35 out of 71 patients studied suffered from heart attack (myocardial infarction) also contained an abundant amount of the CK-MM and CK-MB isoenzymes. Findings further show that many other diagnosis including renal failure, cerebrovascular disease, and pulmonary disease were only found to have the CK-MM isoenzyme and no other isoenzyme. The results from this study indicate correlations between various diseases and the CK isoenzymes found which confirms previous test results using various techniques. Studies about CK-MB found in heart attack victims have expanded since this study and application of ion chromatography.

Industrial applications edit

Since 1975 ion chromatography has been widely used in many branches of industry. The main beneficial advantages are reliability, very good accuracy and precision, high selectivity, high speed, high separation efficiency, and low cost of consumables. The most significant development related to ion chromatography are new sample preparation methods; improving the speed and selectivity of analytes separation; lowering of limits of detection and limits of quantification; extending the scope of applications; development of new standard methods; miniaturization and extending the scope of the analysis of a new group of substances. Allows for quantitative testing of electrolyte and proprietary additives of electroplating baths.[57] It is an advancement of qualitative hull cell testing or less accurate UV testing. Ions, catalysts, brighteners and accelerators can be measured.[57] Ion exchange chromatography has gradually become a widely known, universal technique for the detection of both anionic and cationic species. Applications for such purposes have been developed, or are under development, for a variety of fields of interest, and in particular, the pharmaceutical industry. The usage of ion exchange chromatography in pharmaceuticals has increased in recent years, and in 2006, a chapter on ion exchange chromatography was officially added to the United States Pharmacopia-National Formulary (USP-NF). Furthermore, in 2009 release of the USP-NF, the United States Pharmacopia made several analyses of ion chromatography available using two techniques: conductivity detection, as well as pulse amperometric detection. Majority of these applications are primarily used for measuring and analyzing residual limits in pharmaceuticals, including detecting the limits of oxalate, iodide, sulfate, sulfamate, phosphate, as well as various electrolytes including potassium, and sodium. In total, the 2009 edition of the USP-NF officially released twenty eight methods of detection for the analysis of active compounds, or components of active compounds, using either conductivity detection or pulse amperometric detection.[58]

Drug development edit

 
An ion chromatography system used to detect and measure cations such as sodium, ammonium and potassium in Expectorant Cough Formulations.

There has been a growing interest in the application of IC in the analysis of pharmaceutical drugs. IC is used in different aspects of product development and quality control testing. For example, IC is used to improve stabilities and solubility properties of pharmaceutical active drugs molecules as well as used to detect systems that have higher tolerance for organic solvents. IC has been used for the determination of analytes as a part of a dissolution test. For instance, calcium dissolution tests have shown that other ions present in the medium can be well resolved among themselves and also from the calcium ion. Therefore, IC has been employed in drugs in the form of tablets and capsules in order to determine the amount of drug dissolve with time.[59] IC is also widely used for detection and quantification of excipients or inactive ingredients used in pharmaceutical formulations. Detection of sugar and sugar alcohol in such formulations through IC has been done due to these polar groups getting resolved in ion column. IC methodology also established in analysis of impurities in drug substances and products. Impurities or any components that are not part of the drug chemical entity are evaluated and they give insights about the maximum and minimum amounts of drug that should be administered in a patient per day.[60]

See also edit

References edit

  1. ^ Muntean, Edward (2022). Food analysis: using ion chromatography. De Gruyter STEM. Berlin Boston: De Gruyter. ISBN 978-3-11-064440-1.
  2. ^ Ngere, Judith B.; Ebrahimi, Kourosh H.; Williams, Rachel; Pires, Elisabete; Walsby-Tickle, John; McCullagh, James S. O. (10 January 2023). "Ion-Exchange Chromatography Coupled to Mass Spectrometry in Life Science, Environmental, and Medical Research". Analytical Chemistry. 95 (1): 152–166. doi:10.1021/acs.analchem.2c04298. ISSN 0003-2700. PMC 9835059. PMID 36625129.
  3. ^ "Ion-Exchange Equilibria", Ion-Exchange Chromatography of Proteins, CRC Press, pp. 121–158, 14 April 1988, doi:10.1201/b15751-8, ISBN 9780429173790, retrieved 13 October 2023
  4. ^ Singhal, Ram P. (1974). "Anion-Exclusion and Anion-Exchange Chromatography of Nucleotides". European Journal of Biochemistry. 43 (2): 245–252. doi:10.1111/j.1432-1033.1974.tb03406.x. ISSN 0014-2956. PMID 4838980.
  5. ^ a b c Ninfa, Alexander J., David P.Ballou, and Marilee Benore (2010). Fundamental Laboratory Approaches for Biochemistry and Biotechnology. Hoboken, NJ: John Wiley
  6. ^ a b c Ninfa, Alexander; Ballou, David; Benore, Marilee (26 May 2009). Fundamental Laboratory Approaches for Biochemistry and Biotechnology. Wiley. pp. 143–145. ISBN 978-0470087664.
  7. ^ "Principles of Ion Exchange Chromatography". separations.us.tosohbioscience.com. Retrieved 1 May 2018.
  8. ^ "Handbook for Monitoring Industrial wastewater". Environmental Protection Agency (USA). August 1973. Retrieved 30 July 2016.
  9. ^ Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91-106.
  10. ^ Luqman, Mohammad, and Inamuddin (2012). Ion Exchange Technology II. Springer Netherlands. p. 1. ISBN 978-94-007-4026-6.
  11. ^ Fritz, James S. (1987). "Ion chromatography". Analytical Chemistry. 59 (4): 335A–344A. doi:10.1021/ac00131a002.
  12. ^ Siegel, Miles (May 1997). "Rapid purification of small molecule libraries by ion exchange chromatography". Tetrahedron Letters. 38 (19): 3357–3358. doi:10.1016/S0040-4039(97)00650-3.
  13. ^ Neubauer, Kenneth (November 2009). "Advantages and Disadvantages of Different Column Types for Speciation Analysis by LC-ICP-MS". Spectroscopy. Spectroscopy-11-01-2009. 24 (11). Retrieved 9 May 2016.
  14. ^ Fritz, J. S. (2004). "Early milestones in the development of ion-exchange chromatography: a personal account". Journal of Chromatography A. 1039 (1–2): 3–12. doi:10.1016/s0021-9673(04)00020-2. PMID 15250395.
  15. ^ Lucy, C. A. (2003). "Evolution of ion-exchange: from Moses to the Manhattan Project to Modern Times". Journal of Chromatography A. 1000 (1–2): 711–24. doi:10.1016/s0021-9673(03)00528-4. PMID 12877196.
  16. ^ "Recent developments and emerging directions in ion chromatography". {{cite journal}}: Cite journal requires |journal= (help)
  17. ^ Andylong. . Ion Chromatography. Archived from the original on 24 April 2016. Retrieved 9 May 2016.
  18. ^ Lue, S. Jessie; Wu, T; Hsu, H; Huang, C (24 April 1998). "Application of ion chromatography to the semiconductor industry: I. Measurement of acidic airborne contaminants in cleanrooms". Journal of Chromatography A. 804 (1): 273–278. doi:10.1016/S0021-9673(98)00028-4. ISSN 0021-9673. PMID 9615406.
  19. ^ Eith, Claudia, Kolb Maximilian, and Seubert Andreas (2002). "Introduction" to Practical Ion Chromatography An Introduction. Ed. Viehweger Kai. Herisau: Metrohm. p. 160.
  20. ^ Nachod, F. C. (1940). Ion Exchange: Theory and Application. Vol. 68. pp. 1, 2. Bibcode:1949SoilS..68S.414.. doi:10.1097/00010694-194911000-00021. ISBN 978-0124312999. {{cite book}}: |journal= ignored (help)
  21. ^ a b Ion Exchange Chromatography Principles and Methods. General Electric Company. 2004. pp. 11–20.
  22. ^ Jungbauer, Alois; Hahn, Rainer (2009). "Chapter 22 Ion-Exchange Chromatography". Guide to Protein Purification, 2nd Edition. Methods in Enzymology. Vol. 463. pp. 349–371. doi:10.1016/S0076-6879(09)63022-6. ISBN 9780123745361. PMID 19892182.
  23. ^ Duong-Ly, K. C.; Gabelli, S. B. (2014). "Using Ion Exchange Chromatography to Purify a Recombinantly Expressed Protein". Laboratory Methods in Enzymology: Protein Part C. Vol. 541. pp. 95–103. doi:10.1016/B978-0-12-420119-4.00008-2. ISBN 9780124201194. PMID 24674065.
  24. ^ Dieter, Debra S.; Walton, Harold F. (1 November 1983). "Counterion effects in ion-exchange partition chromatography". Analytical Chemistry. 55 (13): 2109–2112. doi:10.1021/ac00263a025.
  25. ^ a b Kirkland, J. J.; DeStefano, J. J. (8 September 2006). "The art and science of forming packed analytical high-performance liquid chromatography columns". Journal of Chromatography A. The Role of Theory in Chromatography. 1126 (1–2): 50–57. doi:10.1016/j.chroma.2006.04.027. PMID 16697390.
  26. ^ a b Janson, Jan-Christer. (2011). Protein Purification: Principles, High Resolution Methods, and Applications. John Wiley & Sons.
  27. ^ Lackie, John (2010). A Dictionary of Biochemistry. Oxford University Press. ISBN 9780199549351.
  28. ^ Wouters, Bert; Bruggink, Cees; Desmet, Gert; Agroskin, Yury; Pohl, Christopher A.; Eeltink, Sebastiaan (21 August 2012). "Capillary Ion Chromatography at High Pressure and Temperature". Analytical Chemistry. 84 (16): 7212–7217. doi:10.1021/ac301598j. PMID 22830640.
  29. ^ Escuder-Gilabert, L.; Bermúdez-Saldaña, J. M.; Villanueva-Camañas, R. M.; Medina-Hernández, M. J.; Sagrado, S. (16 April 2004). "Reliability of the retention factor estimations in liquid chromatography". Journal of Chromatography A. 1033 (2): 247–255. doi:10.1016/j.chroma.2004.01.038. PMID 15088745.
  30. ^ Shibukawa, Masami; Shimasaki, Tomomi; Saito, Shingo; Yarita, Takashi (1 October 2009). "Superheated Water Ion-Exchange Chromatography: An Experimental Approach for Interpretation of Separation Selectivity in Ion-Exchange Processes". Analytical Chemistry. 81 (19): 8025–8032. doi:10.1021/ac9011864. PMID 19743878.
  31. ^ Appling, Dean; Anthony-Cahill, Spencer; Mathews, Christopher (2016). Biochemistry: Concepts and Connections. New Jersey: Pearson. p. 134. ISBN 9780321839923.
  32. ^ Alpert, Andrew J.; Hudecz, Otto; Mechtler, Karl (5 May 2015). "Anion-Exchange Chromatography of Phosphopeptides: Weak Anion Exchange versus Strong Anion Exchange and Anion-Exchange Chromatography versus Electrostatic Repulsion–Hydrophilic Interaction Chromatography". Analytical Chemistry. 87 (9): 4704–4711. doi:10.1021/ac504420c. PMC 4423237. PMID 25827581.
  33. ^ Dragan, E. S.; Avram, E.; Dinu, M. V. (1 July 2006). "Organic ion exchangers as beads. Synthesis, characterization and applications". Polymers for Advanced Technologies. 17 (7–8): 571–578. doi:10.1002/pat.755.
  34. ^ Schwellenbach, J., Taft, F., Villain, L., & Strube, J. (2016). Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents. Journal of Chromatography A, 1447, 92-106.
  35. ^ Hollabaugh, C.B.; Burt, Leland H.; Walsh, Anna Peterson (October 1945). "Carboxymethylcellulose... Uses and Applications". Industrial and Engineering Chemistry. 37 (10): 943–947. doi:10.1021/ie50430a015.
  36. ^ Harris, Daniel C. (2010). Quantitative Chemical Analysis. New York: W. H. Freeman and Company. p. 637. ISBN 978-1429218153.
  37. ^ Harris, Daniel C. (2010). Quantitative Chemical Analysis. New York: W. H. Freeman and Company. p. 638. ISBN 978-1429218153.
  38. ^ Kumar, Panav (2018). Fundamentals and Techniques of Biophysics and Molecular Biology. New Delhi: Pathfinder Publication. p. 7. ISBN 978-93-80473-15-4.
  39. ^ Knudsen, H. L., Fahrner, R. L., Xu, Y., Norling, L. A., & Blank, G. S. (2001). Membrane ion-exchange chromatography for process-scale antibody purification. Journal of Chromatography A, 907(1), 145-154.
  40. ^ Charcosset, C. (1998). Purification of proteins by membrane chromatography. Journal of Chemical Technology and Biotechnology, 71(2), 95-110.
  41. ^ Boi, C. (2007). Membrane adsorbers as purification tools for monoclonal antibody purification. Journal of Chromatography B, 848(1), 19-27.
  42. ^ Thömmes, J., & Kula, M. R. (1995). Membrane chromatography—an integrative concept in the downstream processing of proteins. Biotechnology progress, 11(4), 357-367.
  43. ^ Brandt, S (1988). "Membrane-based affinity technology for commercial-scale purifications". Bio/Technology. 6 (7): 779–782. doi:10.1038/nbt0788-779. S2CID 26477901.
  44. ^ Yang, Heewon; Viera, Clarivel; Fischer, Joachim; Etzel, Mark R. (2002). "Purification of a Large Protein Using Ion-Exchange Membranes". Industrial & Engineering Chemistry Research. 41 (6): 1597–1602. doi:10.1021/ie010585l.
  45. ^ Roper, D. Keith; Lightfoot, Edwin N. (1995). "Separation of biomolecules using adsorptive membranes". Journal of Chromatography A. 702 (1–2): 3–26. doi:10.1016/0021-9673(95)00010-K.
  46. ^ Caculitan, Niña G.; Kai, Hiroyuki; Liu, Eulanca Y.; Fay, Nicole; Yu, Yan; Lohmüller, Theobald; O’Donoghue, Geoff P.; Groves, Jay T. (2014). "Size-Based Chromatography of Signaling Clusters in a Living Cell Membrane". Nano Letters. 14 (5): 2293–2298. Bibcode:2014NanoL..14.2293C. doi:10.1021/nl404514e. PMC 4025576. PMID 24655064.
  47. ^ Svec, Frantisek.; Frechet, Jean M. J. (1992). "Continuous rods of macroporous polymer as high-performance liquid chromatography separation media". Analytical Chemistry. 64 (7): 820–822. doi:10.1021/ac00031a022.
  48. ^ Garrett, Reginald H.; Grisham, Charles M. (2009). Biochemistry (4th ed.). Pacific Grove, Calif.: Brooks/Cole. pp. 71–75. ISBN 978-0-495-11464-2.
  49. ^ Dasgupta, Purnendu Κ. (1992). "Ion Chromatography the State of the Art". Analytical Chemistry. 64 (15): 775A–783A. doi:10.1021/ac00039a722.
  50. ^ Sakash, J.B.; Kantrowitz, E.R. (2000). "The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase". J Biol Chem. 275 (37): 28701–7. doi:10.1074/jbc.M005079200. PMID 10875936.
  51. ^ Fairhead, M. (2013). "Plug-and-Play Pairing via Defined Divalent Streptavidins". J Mol Biol. 426 (1): 199–214. doi:10.1016/j.jmb.2013.09.016. PMC 4047826. PMID 24056174.
  52. ^ Heftmann, Erich (2004). Chromatography. Fundamentals and Applications of Chromatography and Related Differential Migration Methods: Applications. Amsterdam: Elsevier. p. 716. ISBN 9780080472256.
  53. ^ Gregor, Harry P. (1951). "Gibbs-Donnan Equilibria in Ion Exchange Resin Systems". Journal of the American Chemical Society. 73 (2): 642–650. doi:10.1021/ja01146a042.
  54. ^ a b Rieman, William, Harold F. Walton, R. Belcher, and H. Freiser (2013). Ion Exchange in Analytical Chemistry International Series of Monographs in Analytical Chemistry. Burlington: Elsevier Science.
  55. ^ Hauser, Peter C. (2016). "Determination of Alkali Ions in Biological and Environmental Samples". In Astrid, Sigel; Helmut, Sigel; Roland K.O., Sigel (eds.). The Alkali Metal Ions: Their Role for Life. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 11–25. doi:10.1007/978-3-319-21756-7_2. ISBN 978-3-319-21755-0. PMID 26860298.
  56. ^ Luqman, Mohammad, and Inamuddin (2012). Ion Exchange Technology II. Springer Netherlands. p. 169. ISBN 978-94-007-4026-6.
  57. ^ a b Robert E. Smith (31 December 1987). Ion Chromatography Applications. CRC Press. ISBN 978-0-8493-4967-6.
  58. ^ Bhattacharyya, Lokesh; Rohrer, Jeffrey (2012). Applications of Ion Chromatography in the Analysis of Pharmaceutical and Biological Products. Wiley. p. 247. ISBN 978-0470467091.
  59. ^ Hanko, Valoran P.; Rohrer, Jeffrey S. (2012). "Ion Chromatography Analysis of Aminoglycoside Antibiotics". Applications of Ion Chromatography for Pharmaceutical and Biological Products. p. 175. doi:10.1002/9781118147009.ch8. ISBN 9781118147009.
  60. ^ Jenke, D. (2011). "Application of Ion Chromatography in Pharmaceutical and Drug Analysis". Journal of Chromatographic Science. 49 (7): 524–39. doi:10.1093/chrsci/49.7.524. PMID 21801484.

Bibliography edit

  • Small, Hamish (1989). Ion chromatography. New York: Plenum Press. ISBN 978-0-306-43290-3.
  • Tatjana Weiss; Weiss, Joachim (2005). Handbook of Ion Chromatography. Weinheim: Wiley-VCH. ISBN 978-3-527-28701-7.
  • Gjerde, Douglas T.; Fritz, James S. (2000). Ion Chromatography. Weinheim: Wiley-VCH. ISBN 978-3-527-29914-0.
  • Jackson, Peter; Haddad, Paul R. (1990). Ion chromatography: principles and applications. Amsterdam: Elsevier. ISBN 978-0-444-88232-5.
  • Mercer, Donald W (1974). "Separation of tissue and serum creatine kinase isoenzymes by ion-exchange column chromatography". Clinical Chemistry. 20 (1): 36–40. doi:10.1093/clinchem/20.1.36. PMID 4809470.
  • Morris, L. J. (1966). "Separations of lipids by silver ion chromatography". Journal of Lipid Research. 7 (6): 717–732. doi:10.1016/S0022-2275(20)38948-3. PMID 5339485.
  • Ghosh, Raja (2002). "Protein separation using membrane chromatography: opportunities and challenges". Journal of Chromatography A. 952 (1): 13–27. doi:10.1016/s0021-9673(02)00057-2. PMID 12064524.

External links edit

  •   Media related to Ion chromatography at Wikimedia Commons

chromatography, exchange, chromatography, form, chromatography, that, separates, ions, ionizable, polar, molecules, based, their, affinity, exchanger, works, almost, kind, charged, molecule, including, small, inorganic, anions, large, proteins, small, nucleoti. Ion chromatography or ion exchange chromatography is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger 1 It works on almost any kind of charged molecule including small inorganic anions 2 large proteins 3 small nucleotides 4 and amino acids However ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein 5 A modern ion chromatography system Ion exchange chromatographyAcronymIC IECClassificationChromatographyOther techniquesRelatedHigh performance liquid chromatographyAqueous normal phase chromatographySize exclusion chromatographyMicellar liquid chromatography The two types of ion chromatography are anion exchange and cation exchange Cation exchange chromatography is used when the molecule of interest is positively charged The molecule is positively charged because the pH for chromatography is less than the pI also known as pH I 6 In this type of chromatography the stationary phase is negatively charged and positively charged molecules are loaded to be attracted to it Anion exchange chromatography is when the stationary phase is positively charged and negatively charged molecules meaning that pH for chromatography is greater than the pI are loaded to be attracted to it 7 It is often used in protein purification water analysis 8 9 and quality control The water soluble and charged molecules such as proteins amino acids and peptides bind to moieties which are oppositely charged by forming ionic bonds to the insoluble stationary phase 10 The equilibrated stationary phase consists of an ionizable functional group where the targeted molecules of a mixture to be separated and quantified can bind while passing through the column a cationic stationary phase is used to separate anions and an anionic stationary phase is used to separate cations Cation exchange chromatography is used when the desired molecules to separate are cations and anion exchange chromatography is used to separate anions 11 The bound molecules then can be eluted and collected using an eluant which contains anions and cations by running a higher concentration of ions through the column or by changing the pH of the column One of the primary advantages for the use of ion chromatography is that only one interaction is involved the separation as opposed to other separation techniques therefore ion chromatography may have higher matrix tolerance Another advantage of ion exchange is the predictability of elution patterns based on the presence of the ionizable group 12 For example when cation exchange chromatography is used certain cations will elute out first and others later A local charge balance is always maintained However there are also disadvantages involved when performing ion exchange chromatography such as constant evolution of the technique which leads to the inconsistency from column to column 13 A major limitation to this purification technique is that it is limited to ionizable group 6 Contents 1 History 2 Principle 3 Procedure 4 Weak and strong ion exchangers 5 Typical technique 6 Membrane exchange chromatography 7 Separating proteins 7 1 Gibbs Donnan effect 8 Uses 8 1 Clinical utility 8 2 Industrial applications 8 3 Drug development 9 See also 10 References 11 Bibliography 12 External linksHistory edit nbsp Ion exchange chromatography Ion chromatography has advanced through the accumulation of knowledge over a course of many years Starting from 1947 Spedding and Powell used displacement ion exchange chromatography for the separation of the rare earths Additionally they showed the ion exchange separation of 14N and 15N isotopes in ammonia At the start of the 1950s Kraus and Nelson demonstrated the use of many analytical methods for metal ions dependent on their separation of their chloride fluoride nitrate or sulfate complexes by anion chromatography Automatic in line detection was progressively introduced from 1960 to 1980 as well as novel chromatographic methods for metal ion separations A groundbreaking method by Small Stevens and Bauman at Dow Chemical Co unfolded the creation of the modern ion chromatography Anions and cations could now be separated efficiently by a system of suppressed conductivity detection In 1979 a method for anion chromatography with non suppressed conductivity detection was introduced by Gjerde et al Following it in 1980 was a similar method for cation chromatography 14 As a result a period of extreme competition began within the IC market with supporters for both suppressed and non suppressed conductivity detection This competition led to fast growth of new forms and the fast evolution of IC 15 A challenge that needs to be overcome in the future development of IC is the preparation of highly efficient monolithic ion exchange columns and overcoming this challenge would be of great importance to the development of IC 16 The boom of Ion exchange chromatography primarily began between 1935 and 1950 during World War II and it was through the Manhattan project that applications and IC were significantly extended Ion chromatography was originally introduced by two English researchers agricultural Sir Thompson and chemist J T Way The works of Thompson and Way involved the action of water soluble fertilizer salts ammonium sulfate and potassium chloride These salts could not easily be extracted from the ground due to the rain They performed ion methods to treat clays with the salts resulting in the extraction of ammonia in addition to the release of calcium 17 unreliable source It was in the fifties and sixties that theoretical models were developed for IC for further understanding and it was not until the seventies that continuous detectors were utilized paving the path for the development from low pressure to high performance chromatography Not until 1975 was ion chromatography established as a name in reference to the techniques and was thereafter used as a name for marketing purposes Today IC is important for investigating aqueous systems such as drinking water It is a popular method for analyzing anionic elements or complexes that help solve environmentally relevant problems Likewise it also has great uses in the semiconductor industry 18 Because of the abundant separating columns elution systems and detectors available chromatography has developed into the main method for ion analysis 19 When this technique was initially developed it was primarily used for water treatment Since 1935 ion exchange chromatography rapidly manifested into one of the most heavily leveraged techniques with its principles often being applied to majority of fields of chemistry including distillation adsorption and filtration 20 Principle edit nbsp Ion chromatogram displaying anion separation Ion exchange chromatography separates molecules based on their respective charged groups Ion exchange chromatography retains analyte molecules on the column based on coulombic ionic interactions The ion exchange chromatography matrix consists of positively and negatively charged ions 21 Essentially molecules undergo electrostatic interactions with opposite charges on the stationary phase matrix The stationary phase consists of an immobile matrix that contains charged ionizable functional groups or ligands 22 The stationary phase surface displays ionic functional groups R X that interact with analyte ions of opposite charge To achieve electroneutrality these immobilized charges couple with exchangeable counterions in the solution Ionizable molecules that are to be purified compete with these exchangeable counterions for binding to the immobilized charges on the stationary phase These ionizable molecules are retained or eluted based on their charge Initially molecules that do not bind or bind weakly to the stationary phase are first to be washed away Altered conditions are needed for the elution of the molecules that bind to the stationary phase The concentration of the exchangeable counterions which competes with the molecules for binding can be increased or the pH can be changed to affect the ionic charge of the eluent or the solute A change in pH affects the charge on the particular molecules and therefore alter their binding When reducing the net charge of the solute s molecules they start eluting out This way such adjustments can be used to release the proteins of interest Additionally concentration of counterions can be gradually varied to affect the retention of the ionized molecules thus separate them This type of elution is called gradient elution On the other hand step elution can be used in which the concentration of counterions are varied in steps 5 This type of chromatography is further subdivided into cation exchange chromatography and anion exchange chromatography Positively charged molecules bind to cation exchange resins while negatively charged molecules bind to anion exchange resins 23 The ionic compound consisting of the cationic species M and the anionic species B can be retained by the stationary phase Cation exchange chromatography retains positively charged cations because the stationary phase displays a negatively charged functional group R X C M B R X M C B displaystyle text R X text C text M text B rightleftarrows text R X text M text C text B nbsp Anion exchange chromatography retains anions using positively charged functional group R X A M B R X B M A displaystyle text R X text A text M text B rightleftarrows text R X text B text M text A nbsp Note that the ion strength of either C or A in the mobile phase can be adjusted to shift the equilibrium position thus retention time The ion chromatogram shows a typical chromatogram obtained with an anion exchange column Procedure editBefore ion exchange chromatography can be initiated it must be equilibrated The stationary phase must be equilibrated to certain requirements that depend on the experiment that you are working with Once equilibrated the charged ions in the stationary phase will be attached to its opposite charged exchangeable ions such as Cl or Na Next a buffer should be chosen in which the desired protein can bind to After equilibration the column needs to be washed The washing phase will help elute out all impurities that does not bind to the matrix while the protein of interest remains bounded This sample buffer needs to have the same pH as the buffer used for equilibration to help bind the desired proteins Uncharged proteins will be eluted out of the column at a similar speed of the buffer flowing through the column with no retention Once the sample has been loaded onto to the column and the column has been washed with the buffer to elute out all non desired proteins elution is carried out at specific conditions to elute the desired proteins that are bound to the matrix Bound proteins are eluted out by utilizing a gradient of linearly increasing salt concentration With increasing ionic strength of the buffer the salt ions will compete with the desired proteins in order to bind to charged groups on the surface of the medium This will cause desired proteins to be eluted out of the column Proteins that have a low net charge will be eluted out first as the salt concentration increases causing the ionic strength to increase Proteins with high net charge will need a higher ionic strength for them to be eluted out of the column 21 It is possible to perform ion exchange chromatography in bulk on thin layers of medium such as glass or plastic plates coated with a layer of the desired stationary phase or in chromatography columns Thin layer chromatography or column chromatography share similarities in that they both act within the same governing principles there is constant and frequent exchange of molecules as the mobile phase travels along the stationary phase It is not imperative to add the sample in minute volumes as the predetermined conditions for the exchange column have been chosen so that there will be strong interaction between the mobile and stationary phases Furthermore the mechanism of the elution process will cause a compartmentalization of the differing molecules based on their respective chemical characteristics This phenomenon is due to an increase in salt concentrations at or near the top of the column thereby displacing the molecules at that position while molecules bound lower are released at a later point when the higher salt concentration reaches that area These principles are the reasons that ion exchange chromatography is an excellent candidate for initial chromatography steps in a complex purification procedure as it can quickly yield small volumes of target molecules regardless of a greater starting volume 6 nbsp Chamber left contains high salt concentration Stirred chamber right contains low salt concentration Gradual stirring causes the formation of a salt gradient as salt travel from high to low concentrations Comparatively simple devices are often used to apply counterions of increasing gradient to a chromatography column Counterions such as copper II are chosen most often for effectively separating peptides and amino acids through complex formation 24 A simple device can be used to create a salt gradient Elution buffer is consistently being drawn from the chamber into the mixing chamber thereby altering its buffer concentration Generally the buffer placed into the chamber is usually of high initial concentration whereas the buffer placed into the stirred chamber is usually of low concentration As the high concentration buffer from the left chamber is mixed and drawn into the column the buffer concentration of the stirred column gradually increase Altering the shapes of the stirred chamber as well as of the limit buffer allows for the production of concave linear or convex gradients of counterion A multitude of different mediums are used for the stationary phase Among the most common immobilized charged groups used are trimethylaminoethyl TAM triethylaminoethyl TEAE diethyl 2 hydroxypropylaminoethyl QAE aminoethyl AE diethylaminoethyl DEAE sulpho S sulphomethyl SM sulphopropyl SP carboxy C and carboxymethyl CM 5 Successful packing of the column is an important aspect of ion chromatography Stability and efficiency of a final column depends on packing methods solvent used and factors that affect mechanical properties of the column In contrast to early inefficient dry packing methods wet slurry packing in which particles that are suspended in an appropriate solvent are delivered into a column under pressure shows significant improvement Three different approaches can be employed in performing wet slurry packing the balanced density method solvent s density is about that of porous silica particles the high viscosity method a solvent of high viscosity is used and the low viscosity slurry method performed with low viscosity solvents 25 Polystyrene is used as a medium for ion exchange It is made from the polymerization of styrene with the use of divinylbenzene and benzoyl peroxide Such exchangers form hydrophobic interactions with proteins which can be irreversible Due to this property polystyrene ion exchangers are not suitable for protein separation They are used on the other hand for the separation of small molecules in amino acid separation and removal of salt from water Polystyrene ion exchangers with large pores can be used for the separation of protein but must be coated with a hydrophilic substance 26 Cellulose based medium can be used for the separation of large molecules as they contain large pores Protein binding in this medium is high and has low hydrophobic character DEAE is an anion exchange matrix that is produced from a positive side group of diethylaminoethyl bound to cellulose or Sephadex 27 Agarose gel based medium contain large pores as well but their substitution ability is lower in comparison to dextrans The ability of the medium to swell in liquid is based on the cross linking of these substances the pH and the ion concentrations of the buffers used 26 Incorporation of high temperature and pressure allows a significant increase in the efficiency of ion chromatography along with a decrease in time Temperature has an influence of selectivity due to its effects on retention properties The retention factor k tRg tMg tMg text increases with temperature for small ions and the opposite trend is observed for larger ions 28 29 Despite ion selectivity in different mediums further research is being done to perform ion exchange chromatography through the range of 40 175 C 30 An appropriate solvent can be chosen based on observations of how column particles behave in a solvent Using an optical microscope one can easily distinguish a desirable dispersed state of slurry from aggregated particles 25 Weak and strong ion exchangers editA strong ion exchanger will not lose the charge on its matrix once the column is equilibrated and so a wide range of pH buffers can be used Weak ion exchangers have a range of pH values in which they will maintain their charge If the pH of the buffer used for a weak ion exchange column goes out of the capacity range of the matrix the column will lose its charge distribution and the molecule of interest may be lost 31 Despite the smaller pH range of weak ion exchangers they are often used over strong ion exchangers due to their having greater specificity In some experiments the retention times of weak ion exchangers are just long enough to obtain desired data at a high specificity 32 Resins often termed beads of ion exchange columns may include functional groups such as weak strong acids and weak strong bases There are also special columns that have resins with amphoteric functional groups that can exchange both cations and anions 33 Some examples of functional groups of strong ion exchange resins are quaternary ammonium cation Q which is an anion exchanger and sulfonic acid S SO2OH which is a cation exchanger 34 These types of exchangers can maintain their charge density over a pH range of 0 14 Examples of functional groups of Weak ion exchange resins include diethylaminoethyl DEAE C2H4N CH2H5 2 which is an anion exchanger and carboxymethyl CM CH2 COOH 35 which is a cation exchanger These two types of exchangers can maintain the charge density of their columns over a pH range of 5 9 citation needed In ion chromatography the interaction of the solute ions and the stationary phase based on their charges determines which ions will bind and to what degree When the stationary phase features positive groups which attracts anions it is called an anion exchanger when there are negative groups on the stationary phase cations are attracted and it is a cation exchanger 36 The attraction between ions and stationary phase also depends on the resin organic particles used as ion exchangers Each resin features relative selectivity which varies based on the solute ions present who will compete to bind to the resin group on the stationary phase The selectivity coefficient the equivalent to the equilibrium constant is determined via a ratio of the concentrations between the resin and each ion however the general trend is that ion exchangers prefer binding to the ion with a higher charge smaller hydrated radius and higher polarizability or the ability for the electron cloud of an ion to be disrupted by other charges 37 Despite this selectivity excess amounts of an ion with a lower selectivity introduced to the column would cause the lesser ion to bind more to the stationary phase as the selectivity coefficient allows fluctuations in the binding reaction that takes place during ion exchange chromatography Following table shows the commonly used ion exchangers 38 Sr No Name Type Functional group 1 DEAE Cellulose Anion exchanger Weakly basic DEAE Diethylaminoethyl 2 QAE Sephadex Anion exchanger Strongly basic QAE Quaternary aminoethyl 3 Q Sepharose Anion exchanger Strongly basic Q Quaternary ammonium 4 CM Cellulose Cation exchanger Weakly acidic CM Carboxymethyl 5 SP Sepharose Cation exchanger Strongly acidic SP Sulfopropyl 6 SOURCE S Cation exchanger Strongly acidic S Methyl sulfate Typical technique editA sample is introduced either manually or with an autosampler into a sample loop of known volume A buffered aqueous solution known as the mobile phase carries the sample from the loop onto a column that contains some form of stationary phase material This is typically a resin or gel matrix consisting of agarose or cellulose beads with covalently bonded charged functional groups Equilibration of the stationary phase is needed in order to obtain the desired charge of the column If the column is not properly equilibrated the desired molecule may not bind strongly to the column The target analytes anions or cations are retained on the stationary phase but can be eluted by increasing the concentration of a similarly charged species that displaces the analyte ions from the stationary phase For example in cation exchange chromatography the positively charged analyte can be displaced by adding positively charged sodium ions The analytes of interest must then be detected by some means typically by conductivity or UV visible light absorbance Control an IC system usually requires a chromatography data system CDS In addition to IC systems some of these CDSs can also control gas chromatography GC and HPLC Membrane exchange chromatography editA type of ion exchange chromatography membrane exchange 39 40 is a relatively new method of purification designed to overcome limitations of using columns packed with beads Membrane Chromatographic 41 42 devices are cheap to mass produce and disposable unlike other chromatography devices that require maintenance and time to revalidate There are three types of membrane absorbers that are typically used when separating substances The three types are flat sheet hollow fibre and radial flow The most common absorber and best suited for membrane chromatography is multiple flat sheets because it has more absorbent volume It can be used to overcome mass transfer limitations 43 and pressure drop 44 making it especially advantageous for isolating and purifying viruses plasmid DNA and other large macromolecules The column is packed with microporous membranes with internal pores which contain adsorptive moieties that can bind the target protein Adsorptive membranes are available in a variety of geometries and chemistry which allows them to be used for purification and also fractionation concentration and clarification in an efficiency that is 10 fold that of using beads 45 Membranes can be prepared through isolation of the membrane itself where membranes are cut into squares and immobilized A more recent method involved the use of live cells that are attached to a support membrane and are used for identification and clarification of signaling molecules 46 Separating proteins edit nbsp Preparative scale ion exchange column used for protein purification Ion exchange chromatography can be used to separate proteins because they contain charged functional groups The ions of interest in this case charged proteins are exchanged for another ions usually H on a charged solid support The solutes are most commonly in a liquid phase which tends to be water Take for example proteins in water which would be a liquid phase that is passed through a column The column is commonly known as the solid phase since it is filled with porous synthetic particles that are of a particular charge These porous particles are also referred to as beads may be aminated containing amino groups or have metal ions in order to have a charge The column can be prepared using porous polymers for macromolecules of a mass of over 100 000 Da the optimum size of the porous particle is about 1 mm2 This is because slow diffusion of the solutes within the pores does not restrict the separation quality 47 The beads containing positively charged groups which attract the negatively charged proteins are commonly referred to as anion exchange resins The amino acids that have negatively charged side chains at pH 7 pH of water are glutamate and aspartate The beads that are negatively charged are called cation exchange resins as positively charged proteins will be attracted The amino acids that have positively charged side chains at pH 7 are lysine histidine and arginine 48 The isoelectric point is the pH at which a compound in this case a protein has no net charge A protein s isoelectric point or PI can be determined using the pKa of the side chains if the amino positive chain is able to cancel out the carboxyl negative chain the protein would be at its PI Using buffers instead of water for proteins that do not have a charge at pH 7 is a good idea as it enables the manipulation of pH to alter ionic interactions between the proteins and the beads 49 Weakly acidic or basic side chains are able to have a charge if the pH is high or low enough respectively Separation can be achieved based on the natural isoelectric point of the protein Alternatively a peptide tag can be genetically added to the protein to give the protein an isoelectric point away from most natural proteins e g 6 arginines for binding to a cation exchange resin or 6 glutamates for binding to an anion exchange resin such as DEAE Sepharose Elution by increasing ionic strength of the mobile phase is more subtle It works because ions from the mobile phase interact with the immobilized ions on the stationary phase thus shielding the stationary phase from the protein and letting the protein elute Elution from ion exchange columns can be sensitive to changes of a single charge chromatofocusing Ion exchange chromatography is also useful in the isolation of specific multimeric protein assemblies allowing purification of specific complexes according to both the number and the position of charged peptide tags 50 51 Gibbs Donnan effect edit In ion exchange chromatography the Gibbs Donnan effect is observed when the pH of the applied buffer and the ion exchanger differ even up to one pH unit For example in anion exchange columns the ion exchangers repeal protons so the pH of the buffer near the column differs is higher than the rest of the solvent 52 As a result an experimenter has to be careful that the protein s of interest is stable and properly charged in the actual pH This effect comes as a result of two similarly charged particles one from the resin and one from the solution failing to distribute properly between the two sides there is a selective uptake of one ion over another 53 54 For example in a sulphonated polystyrene resin a cation exchange resin the chlorine ion of a hydrochloric acid buffer should equilibrate into the resin However since the concentration of the sulphonic acid in the resin is high the hydrogen of HCl has no tendency to enter the column This combined with the need of electroneutrality leads to a minimum amount of hydrogen and chlorine entering the resin 54 Uses editClinical utility edit A use of ion chromatography can be seen in argentation chromatography citation needed Usually silver and compounds containing acetylenic and ethylenic bonds have very weak interactions This phenomenon has been widely tested on olefin compounds The ion complexes the olefins make with silver ions are weak and made based on the overlapping of pi sigma and d orbitals and available electrons therefore cause no real changes in the double bond This behavior was manipulated to separate lipids mainly fatty acids from mixtures in to fractions with differing number of double bonds using silver ions The ion resins were impregnated with silver ions which were then exposed to various acids silicic acid to elute fatty acids of different characteristics Detection limits as low as 1 mM can be obtained for alkali metal ions 55 It may be used for measurement of HbA1c porphyrin and with water purification Ion Exchange Resins IER have been widely used especially in medicines due to its high capacity and the uncomplicated system of the separation process One of the synthetic uses is to use Ion Exchange Resins for kidney dialysis This method is used to separate the blood elements by using the cellulose membraned artificial kidney 56 Another clinical application of ion chromatography is in the rapid anion exchange chromatography technique used to separate creatine kinase CK isoenzymes from human serum and tissue sourced in autopsy material mostly CK rich tissues were used such as cardiac muscle and brain citation needed These isoenzymes include MM MB and BB which all carry out the same function given different amino acid sequences The functions of these isoenzymes are to convert creatine using ATP into phosphocreatine expelling ADP Mini columns were filled with DEAE Sephadex A 50 and further eluted with tris buffer sodium chloride at various concentrations each concentration was chosen advantageously to manipulate elution Human tissue extract was inserted in columns for separation All fractions were analyzed to see total CK activity and it was found that each source of CK isoenzymes had characteristic isoenzymes found within Firstly CK MM was eluted then CK MB followed by CK BB Therefore the isoenzymes found in each sample could be used to identify the source as they were tissue specific Using the information from results correlation could be made about the diagnosis of patients and the kind of CK isoenzymes found in most abundant activity From the finding about 35 out of 71 patients studied suffered from heart attack myocardial infarction also contained an abundant amount of the CK MM and CK MB isoenzymes Findings further show that many other diagnosis including renal failure cerebrovascular disease and pulmonary disease were only found to have the CK MM isoenzyme and no other isoenzyme The results from this study indicate correlations between various diseases and the CK isoenzymes found which confirms previous test results using various techniques Studies about CK MB found in heart attack victims have expanded since this study and application of ion chromatography Industrial applications edit Since 1975 ion chromatography has been widely used in many branches of industry The main beneficial advantages are reliability very good accuracy and precision high selectivity high speed high separation efficiency and low cost of consumables The most significant development related to ion chromatography are new sample preparation methods improving the speed and selectivity of analytes separation lowering of limits of detection and limits of quantification extending the scope of applications development of new standard methods miniaturization and extending the scope of the analysis of a new group of substances Allows for quantitative testing of electrolyte and proprietary additives of electroplating baths 57 It is an advancement of qualitative hull cell testing or less accurate UV testing Ions catalysts brighteners and accelerators can be measured 57 Ion exchange chromatography has gradually become a widely known universal technique for the detection of both anionic and cationic species Applications for such purposes have been developed or are under development for a variety of fields of interest and in particular the pharmaceutical industry The usage of ion exchange chromatography in pharmaceuticals has increased in recent years and in 2006 a chapter on ion exchange chromatography was officially added to the United States Pharmacopia National Formulary USP NF Furthermore in 2009 release of the USP NF the United States Pharmacopia made several analyses of ion chromatography available using two techniques conductivity detection as well as pulse amperometric detection Majority of these applications are primarily used for measuring and analyzing residual limits in pharmaceuticals including detecting the limits of oxalate iodide sulfate sulfamate phosphate as well as various electrolytes including potassium and sodium In total the 2009 edition of the USP NF officially released twenty eight methods of detection for the analysis of active compounds or components of active compounds using either conductivity detection or pulse amperometric detection 58 Drug development edit nbsp An ion chromatography system used to detect and measure cations such as sodium ammonium and potassium in Expectorant Cough Formulations There has been a growing interest in the application of IC in the analysis of pharmaceutical drugs IC is used in different aspects of product development and quality control testing For example IC is used to improve stabilities and solubility properties of pharmaceutical active drugs molecules as well as used to detect systems that have higher tolerance for organic solvents IC has been used for the determination of analytes as a part of a dissolution test For instance calcium dissolution tests have shown that other ions present in the medium can be well resolved among themselves and also from the calcium ion Therefore IC has been employed in drugs in the form of tablets and capsules in order to determine the amount of drug dissolve with time 59 IC is also widely used for detection and quantification of excipients or inactive ingredients used in pharmaceutical formulations Detection of sugar and sugar alcohol in such formulations through IC has been done due to these polar groups getting resolved in ion column IC methodology also established in analysis of impurities in drug substances and products Impurities or any components that are not part of the drug chemical entity are evaluated and they give insights about the maximum and minimum amounts of drug that should be administered in a patient per day 60 See also editAnion exchange chromatography Chromatofocusing High performance liquid chromatography Isoelectric pointReferences edit Muntean Edward 2022 Food analysis using ion chromatography De Gruyter STEM Berlin Boston De Gruyter ISBN 978 3 11 064440 1 Ngere Judith B Ebrahimi Kourosh H Williams Rachel Pires Elisabete Walsby Tickle John McCullagh James S O 10 January 2023 Ion Exchange Chromatography Coupled to Mass Spectrometry in Life Science Environmental and Medical Research Analytical Chemistry 95 1 152 166 doi 10 1021 acs analchem 2c04298 ISSN 0003 2700 PMC 9835059 PMID 36625129 Ion Exchange Equilibria Ion Exchange Chromatography of Proteins CRC Press pp 121 158 14 April 1988 doi 10 1201 b15751 8 ISBN 9780429173790 retrieved 13 October 2023 Singhal Ram P 1974 Anion Exclusion and Anion Exchange Chromatography of Nucleotides European Journal of Biochemistry 43 2 245 252 doi 10 1111 j 1432 1033 1974 tb03406 x ISSN 0014 2956 PMID 4838980 a b c Ninfa Alexander J David P Ballou and Marilee Benore 2010 Fundamental Laboratory Approaches for Biochemistry and Biotechnology Hoboken NJ John Wiley a b c Ninfa Alexander Ballou David Benore Marilee 26 May 2009 Fundamental Laboratory Approaches for Biochemistry and Biotechnology Wiley pp 143 145 ISBN 978 0470087664 Principles of Ion Exchange Chromatography separations us tosohbioscience com Retrieved 1 May 2018 Handbook for Monitoring Industrial wastewater Environmental Protection Agency USA August 1973 Retrieved 30 July 2016 Da browski A Hubicki Z Podkoscielny P amp Robens E 2004 Selective removal of the heavy metal ions from waters and industrial wastewaters by ion exchange method Chemosphere 56 2 91 106 Luqman Mohammad and Inamuddin 2012 Ion Exchange Technology II Springer Netherlands p 1 ISBN 978 94 007 4026 6 Fritz James S 1987 Ion chromatography Analytical Chemistry 59 4 335A 344A doi 10 1021 ac00131a002 Siegel Miles May 1997 Rapid purification of small molecule libraries by ion exchange chromatography Tetrahedron Letters 38 19 3357 3358 doi 10 1016 S0040 4039 97 00650 3 Neubauer Kenneth November 2009 Advantages and Disadvantages of Different Column Types for Speciation Analysis by LC ICP MS Spectroscopy Spectroscopy 11 01 2009 24 11 Retrieved 9 May 2016 Fritz J S 2004 Early milestones in the development of ion exchange chromatography a personal account Journal of Chromatography A 1039 1 2 3 12 doi 10 1016 s0021 9673 04 00020 2 PMID 15250395 Lucy C A 2003 Evolution of ion exchange from Moses to the Manhattan Project to Modern Times Journal of Chromatography A 1000 1 2 711 24 doi 10 1016 s0021 9673 03 00528 4 PMID 12877196 Recent developments and emerging directions in ion chromatography a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Andylong The History Of Ion Exchange Chromatography Ion Chromatography Archived from the original on 24 April 2016 Retrieved 9 May 2016 Lue S Jessie Wu T Hsu H Huang C 24 April 1998 Application of ion chromatography to the semiconductor industry I Measurement of acidic airborne contaminants in cleanrooms Journal of Chromatography A 804 1 273 278 doi 10 1016 S0021 9673 98 00028 4 ISSN 0021 9673 PMID 9615406 Eith Claudia Kolb Maximilian and Seubert Andreas 2002 Introduction to Practical Ion Chromatography An Introduction Ed Viehweger Kai Herisau Metrohm p 160 Nachod F C 1940 Ion Exchange Theory and Application Vol 68 pp 1 2 Bibcode 1949SoilS 68S 414 doi 10 1097 00010694 194911000 00021 ISBN 978 0124312999 a href Template Cite book html title Template Cite book cite book a journal ignored help a b Ion Exchange Chromatography Principles and Methods General Electric Company 2004 pp 11 20 Jungbauer Alois Hahn Rainer 2009 Chapter 22 Ion Exchange Chromatography Guide to Protein Purification 2nd Edition Methods in Enzymology Vol 463 pp 349 371 doi 10 1016 S0076 6879 09 63022 6 ISBN 9780123745361 PMID 19892182 Duong Ly K C Gabelli S B 2014 Using Ion Exchange Chromatography to Purify a Recombinantly Expressed Protein Laboratory Methods in Enzymology Protein Part C Vol 541 pp 95 103 doi 10 1016 B978 0 12 420119 4 00008 2 ISBN 9780124201194 PMID 24674065 Dieter Debra S Walton Harold F 1 November 1983 Counterion effects in ion exchange partition chromatography Analytical Chemistry 55 13 2109 2112 doi 10 1021 ac00263a025 a b Kirkland J J DeStefano J J 8 September 2006 The art and science of forming packed analytical high performance liquid chromatography columns Journal of Chromatography A The Role of Theory in Chromatography 1126 1 2 50 57 doi 10 1016 j chroma 2006 04 027 PMID 16697390 a b Janson Jan Christer 2011 Protein Purification Principles High Resolution Methods and Applications John Wiley amp Sons Lackie John 2010 A Dictionary of Biochemistry Oxford University Press ISBN 9780199549351 Wouters Bert Bruggink Cees Desmet Gert Agroskin Yury Pohl Christopher A Eeltink Sebastiaan 21 August 2012 Capillary Ion Chromatography at High Pressure and Temperature Analytical Chemistry 84 16 7212 7217 doi 10 1021 ac301598j PMID 22830640 Escuder Gilabert L Bermudez Saldana J M Villanueva Camanas R M Medina Hernandez M J Sagrado S 16 April 2004 Reliability of the retention factor estimations in liquid chromatography Journal of Chromatography A 1033 2 247 255 doi 10 1016 j chroma 2004 01 038 PMID 15088745 Shibukawa Masami Shimasaki Tomomi Saito Shingo Yarita Takashi 1 October 2009 Superheated Water Ion Exchange Chromatography An Experimental Approach for Interpretation of Separation Selectivity in Ion Exchange Processes Analytical Chemistry 81 19 8025 8032 doi 10 1021 ac9011864 PMID 19743878 Appling Dean Anthony Cahill Spencer Mathews Christopher 2016 Biochemistry Concepts and Connections New Jersey Pearson p 134 ISBN 9780321839923 Alpert Andrew J Hudecz Otto Mechtler Karl 5 May 2015 Anion Exchange Chromatography of Phosphopeptides Weak Anion Exchange versus Strong Anion Exchange and Anion Exchange Chromatography versus Electrostatic Repulsion Hydrophilic Interaction Chromatography Analytical Chemistry 87 9 4704 4711 doi 10 1021 ac504420c PMC 4423237 PMID 25827581 Dragan E S Avram E Dinu M V 1 July 2006 Organic ion exchangers as beads Synthesis characterization and applications Polymers for Advanced Technologies 17 7 8 571 578 doi 10 1002 pat 755 Schwellenbach J Taft F Villain L amp Strube J 2016 Preparation and characterization of high capacity strong cation exchange fiber based adsorbents Journal of Chromatography A 1447 92 106 Hollabaugh C B Burt Leland H Walsh Anna Peterson October 1945 Carboxymethylcellulose Uses and Applications Industrial and Engineering Chemistry 37 10 943 947 doi 10 1021 ie50430a015 Harris Daniel C 2010 Quantitative Chemical Analysis New York W H Freeman and Company p 637 ISBN 978 1429218153 Harris Daniel C 2010 Quantitative Chemical Analysis New York W H Freeman and Company p 638 ISBN 978 1429218153 Kumar Panav 2018 Fundamentals and Techniques of Biophysics and Molecular Biology New Delhi Pathfinder Publication p 7 ISBN 978 93 80473 15 4 Knudsen H L Fahrner R L Xu Y Norling L A amp Blank G S 2001 Membrane ion exchange chromatography for process scale antibody purification Journal of Chromatography A 907 1 145 154 Charcosset C 1998 Purification of proteins by membrane chromatography Journal of Chemical Technology and Biotechnology 71 2 95 110 Boi C 2007 Membrane adsorbers as purification tools for monoclonal antibody purification Journal of Chromatography B 848 1 19 27 Thommes J amp Kula M R 1995 Membrane chromatography an integrative concept in the downstream processing of proteins Biotechnology progress 11 4 357 367 Brandt S 1988 Membrane based affinity technology for commercial scale purifications Bio Technology 6 7 779 782 doi 10 1038 nbt0788 779 S2CID 26477901 Yang Heewon Viera Clarivel Fischer Joachim Etzel Mark R 2002 Purification of a Large Protein Using Ion Exchange Membranes Industrial amp Engineering Chemistry Research 41 6 1597 1602 doi 10 1021 ie010585l Roper D Keith Lightfoot Edwin N 1995 Separation of biomolecules using adsorptive membranes Journal of Chromatography A 702 1 2 3 26 doi 10 1016 0021 9673 95 00010 K Caculitan Nina G Kai Hiroyuki Liu Eulanca Y Fay Nicole Yu Yan Lohmuller Theobald O Donoghue Geoff P Groves Jay T 2014 Size Based Chromatography of Signaling Clusters in a Living Cell Membrane Nano Letters 14 5 2293 2298 Bibcode 2014NanoL 14 2293C doi 10 1021 nl404514e PMC 4025576 PMID 24655064 Svec Frantisek Frechet Jean M J 1992 Continuous rods of macroporous polymer as high performance liquid chromatography separation media Analytical Chemistry 64 7 820 822 doi 10 1021 ac00031a022 Garrett Reginald H Grisham Charles M 2009 Biochemistry 4th ed Pacific Grove Calif Brooks Cole pp 71 75 ISBN 978 0 495 11464 2 Dasgupta Purnendu K 1992 Ion Chromatography the State of the Art Analytical Chemistry 64 15 775A 783A doi 10 1021 ac00039a722 Sakash J B Kantrowitz E R 2000 The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase J Biol Chem 275 37 28701 7 doi 10 1074 jbc M005079200 PMID 10875936 Fairhead M 2013 Plug and Play Pairing via Defined Divalent Streptavidins J Mol Biol 426 1 199 214 doi 10 1016 j jmb 2013 09 016 PMC 4047826 PMID 24056174 Heftmann Erich 2004 Chromatography Fundamentals and Applications of Chromatography and Related Differential Migration Methods Applications Amsterdam Elsevier p 716 ISBN 9780080472256 Gregor Harry P 1951 Gibbs Donnan Equilibria in Ion Exchange Resin Systems Journal of the American Chemical Society 73 2 642 650 doi 10 1021 ja01146a042 a b Rieman William Harold F Walton R Belcher and H Freiser 2013 Ion Exchange in Analytical Chemistry International Series of Monographs in Analytical Chemistry Burlington Elsevier Science Hauser Peter C 2016 Determination of Alkali Ions in Biological and Environmental Samples In Astrid Sigel Helmut Sigel Roland K O Sigel eds The Alkali Metal Ions Their Role for Life Metal Ions in Life Sciences Vol 16 Springer pp 11 25 doi 10 1007 978 3 319 21756 7 2 ISBN 978 3 319 21755 0 PMID 26860298 Luqman Mohammad and Inamuddin 2012 Ion Exchange Technology II Springer Netherlands p 169 ISBN 978 94 007 4026 6 a b Robert E Smith 31 December 1987 Ion Chromatography Applications CRC Press ISBN 978 0 8493 4967 6 Bhattacharyya Lokesh Rohrer Jeffrey 2012 Applications of Ion Chromatography in the Analysis of Pharmaceutical and Biological Products Wiley p 247 ISBN 978 0470467091 Hanko Valoran P Rohrer Jeffrey S 2012 Ion Chromatography Analysis of Aminoglycoside Antibiotics Applications of Ion Chromatography for Pharmaceutical and Biological Products p 175 doi 10 1002 9781118147009 ch8 ISBN 9781118147009 Jenke D 2011 Application of Ion Chromatography in Pharmaceutical and Drug Analysis Journal of Chromatographic Science 49 7 524 39 doi 10 1093 chrsci 49 7 524 PMID 21801484 Bibliography editSmall Hamish 1989 Ion chromatography New York Plenum Press ISBN 978 0 306 43290 3 Tatjana Weiss Weiss Joachim 2005 Handbook of Ion Chromatography Weinheim Wiley VCH ISBN 978 3 527 28701 7 Gjerde Douglas T Fritz James S 2000 Ion Chromatography Weinheim Wiley VCH ISBN 978 3 527 29914 0 Jackson Peter Haddad Paul R 1990 Ion chromatography principles and applications Amsterdam Elsevier ISBN 978 0 444 88232 5 Mercer Donald W 1974 Separation of tissue and serum creatine kinase isoenzymes by ion exchange column chromatography Clinical Chemistry 20 1 36 40 doi 10 1093 clinchem 20 1 36 PMID 4809470 Morris L J 1966 Separations of lipids by silver ion chromatography Journal of Lipid Research 7 6 717 732 doi 10 1016 S0022 2275 20 38948 3 PMID 5339485 Ghosh Raja 2002 Protein separation using membrane chromatography opportunities and challenges Journal of Chromatography A 952 1 13 27 doi 10 1016 s0021 9673 02 00057 2 PMID 12064524 External links edit nbsp Media related to Ion chromatography at Wikimedia Commons Library resources about Ion exchange chromatography Resources in your library Resources in other libraries LC Instruments at Curlie Retrieved from https en wikipedia org w index php title Ion chromatography amp oldid 1216459136, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.