fbpx
Wikipedia

Black hole information paradox

The black hole information paradox[1] is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation (now called Hawking radiation in his honor). He also argued that the detailed form of the radiation would be independent of the initial state of the black hole,[2] and depend only on its mass, electric charge and angular momentum.

The first image (silhouette or shadow) of a black hole, taken of the supermassive black hole in M87 with the Event Horizon Telescope, released in April 2019

The information paradox appears when one considers a process in which a black hole is formed through a physical process and then evaporates away entirely through Hawking radiation. Hawking's calculation suggests that the final state of radiation would retain information only about the total mass, electric charge and angular momentum of the initial state. Since many different states can have the same mass, charge and angular momentum, this suggests that many initial physical states could evolve into the same final state. Therefore, information about the details of the initial state would be permanently lost; however, this violates a core precept of both classical and quantum physics: that, in principle, the state of a system at one point in time should determine its state at any other time.[3][4] Specifically, in quantum mechanics the state of the system is encoded by its wave function. The evolution of the wave function is determined by a unitary operator, and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future. In 1993, Don Page argued that if a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared.[5] This is called the Page curve.[6]

It is now generally believed that information is preserved in black-hole evaporation.[7][8][9] For many researchers, deriving the Page curve is synonymous with solving the black hole information puzzle.[10]: 291  But views differ as to precisely how Hawking's original semiclassical calculation should be corrected.[8][9][11][12] In recent years, several extensions of the original paradox have been explored. Taken together, these puzzles about black hole evaporation have implications for how gravity and quantum mechanics must be combined. The information paradox remains an active field of research in quantum gravity.

Relevant principles edit

In quantum mechanics, the evolution of the state is governed by the Schrödinger equation. The Schrödinger equation obeys two principles that are relevant to the paradox—quantum determinism, which means that given a present wave function, its future changes are uniquely determined by the evolution operator, and reversibility, which refers to the fact that the evolution operator has an inverse, meaning that the past wave functions are similarly unique. The combination of the two means that information must always be preserved.[13] In this context "information" means all the details of the state, and the statement that information must be preserved means that details corresponding to an earlier time can always be reconstructed at a later time.

Mathematically, the Schrödinger equation implies that the wavefunction at a time t1 can be related to the wavefunction at a time t2 by means of a unitary operator.

 
Since the unitary operator is bijective, the wavefunction at t2 can be obtained from the wavefunction at t1 and vice versa.

The reversibility of time evolution described above applies only at the microscopic level, since the wavefunction provides a complete description of the state. It should not be conflated with thermodynamic irreversibility. A process may appear irreversible if one keeps track only of the system's coarse-grained features and not of its microscopic details, as is usually done in thermodynamics. But at the microscopic level, the principles of quantum mechanics imply that every process is completely reversible.

Starting in the mid-1970s, Stephen Hawking and Jacob Bekenstein put forward theoretical arguments that suggested that black-hole evaporation loses information, and is therefore inconsistent with unitarity. Crucially, these arguments were meant to apply at the microscopic level and suggested that black-hole evaporation is not only thermodynamically but microscopically irreversible. This contradicts the principle of unitarity described above and leads to the information paradox. Since the paradox suggested that quantum mechanics would be violated by black-hole formation and evaporation, Hawking framed the paradox in terms of the "breakdown of predictability in gravitational collapse".[2]

The arguments for microscopic irreversibility were backed by Hawking's calculation of the spectrum of radiation that isolated black holes emit.[14] This calculation utilized the framework of general relativity and quantum field theory. The calculation of Hawking radiation is performed at the black hole horizon and does not account for the backreaction of spacetime geometry; for a large enough black hole the curvature at the horizon is small and therefore both these theories should be valid. Hawking relied on the no-hair theorem to arrive at the conclusion that radiation emitted by black holes would depend only on a few macroscopic parameters, such as the black hole's mass, charge, and spin, but not on the details of the initial state that led to the formation of the black hole. In addition, the argument for information loss relied on the causal structure of the black hole spacetime, which suggests that information in the interior should not affect any observation in the exterior, including observations performed on the radiation the black hole emits. If so, the region of spacetime outside the black hole would lose information about the state of the interior after black-hole evaporation, leading to the loss of information.

Today, some physicists believe that the holographic principle (specifically the AdS/CFT duality) demonstrates that Hawking's conclusion was incorrect, and that information is in fact preserved.[15] Moreover, recent analyses indicate that in semiclassical gravity the information loss paradox cannot be formulated in a self-consistent manner due to the impossibility of simultaneously realizing all of the necessary assumptions required for its formulation.[16][17]

Black hole evaporation edit

 
The Penrose diagram of a black hole which forms, and then completely evaporates away. Time shown on vertical axis from bottom to top; space shown on horizontal axis from left (radius zero) to right (growing radius).

In 1973–1975, Stephen Hawking showed that black holes should slowly radiate away energy, and he later argued that this leads to a contradiction with unitarity. Hawking used the classical no-hair theorem to argue that the form of this radiation—called Hawking radiation—would be completely independent of the initial state of the star or matter that collapsed to form the black hole. He argued that the process of radiation would continue until the black hole had evaporated completely. At the end of this process, all the initial energy in the black hole would have been transferred to the radiation. But, according to Hawking's argument, the radiation would retain no information about the initial state and therefore information about the initial state would be lost.

More specifically, Hawking argued that the pattern of radiation emitted from the black hole would be random, with a probability distribution controlled only by the black hole's initial temperature, charge, and angular momentum, not by the initial state of the collapse. The state produced by such a probabilistic process is called a mixed state in quantum mechanics. Therefore, Hawking argued that if the star or material that collapsed to form the black hole started in a specific pure quantum state, the process of evaporation would transform the pure state into a mixed state. This is inconsistent with the unitarity of quantum-mechanical evolution discussed above.

The loss of information can be quantified in terms of the change in the fine-grained von Neumann entropy of the state. A pure state is assigned a von Neumann entropy of 0, whereas a mixed state has a finite entropy. The unitary evolution of a state according to Schrödinger's equation preserves the entropy. Therefore Hawking's argument suggests that the process of black-hole evaporation cannot be described within the framework of unitary evolution. Although this paradox is often phrased in terms of quantum mechanics, the evolution from a pure state to a mixed state is also inconsistent with Liouville's theorem in classical physics (see e.g.[18]).

In equations, Hawking showed that if one denotes the creation and annihilation operators at a frequency   for a quantum field propagating in the black-hole background by   and   then the expectation value of the product of these operators in the state formed by the collapse of a black hole would satisfy

 
where  , k is the Boltzmann constant, and T is the temperature of the black hole. (See, for example, section 2.2 of.[9]) This formula has two important aspects. The first is that the form of the radiation depends only on a single parameter, temperature, even though the initial state of the black hole cannot be characterized by one parameter. Second, the formula implies that the black hole radiates mass at a rate given by
 
where a is constant related to fundamental constants, including the Stefan–Boltzmann constant and certain properties of the black hole spacetime called its greybody factors.

The temperature of the black hole is in turn dependent on its mass, charge, and angular momentum. For a Schwarzschild black hole the temperature is given by

 
This means that if the black hole starts out with an initial mass  , it evaporates completely in a time proportional to  .

The important aspect of these formulas is that they suggest that the final gas of radiation formed through this process depends only on the black hole's temperature and is independent of other details of the initial state. This leads to the following paradox. Consider two distinct initial states that collapse to form a Schwarzschild black hole of the same mass. Even though the states were distinct at first, since the mass (and hence the temperature) of the black holes is the same, they will emit the same Hawking radiation. Once they evaporate completely, in both cases, one will be left with a featureless gas of radiation. This gas cannot be used to distinguish between the two initial states, and therefore information has been lost.

It is now widely believed that the reasoning leading to the paradox above is flawed. Several solutions are reviewed below.

Popular culture edit

The information paradox has received coverage in the popular media and has been described in popular-science books. Some of this coverage resulted from a widely publicized bet made in 1997 between John Preskill on the one hand with Hawking and Kip Thorne on the other that information was not lost in black holes. The scientific debate on the paradox was described in Leonard Susskind's 2008 book The Black Hole War. (The book carefully notes that the 'war' was purely a scientific one, and that, at a personal level, the participants remained friends.[19]) Susskind writes that Hawking was eventually persuaded that black-hole evaporation was unitary by the holographic principle, which was first proposed by 't Hooft, further developed by Susskind, and later given a precise string theory interpretation by the AdS/CFT correspondence.[20] In 2004, Hawking also conceded the 1997 bet, paying Preskill with a baseball encyclopedia "from which information can be retrieved at will". Thorne refused to concede.[21]

Solutions edit

Since the 1997 proposal of the AdS/CFT correspondence, the predominant belief among physicists is that information is indeed preserved in black hole evaporation. There are broadly two main streams of thought about how this happens. Within what might broadly be termed the "string theory community", the dominant idea is that Hawking radiation is not precisely thermal but receives quantum correlations that encode information about the black hole's interior.[9] This viewpoint has been the subject of extensive recent research and received further support in 2019 when researchers amended the computation of the entropy of the Hawking radiation in certain models and showed that the radiation is in fact dual to the black hole interior at late times.[22][23] Hawking himself was influenced by this view and in 2004 published a paper that assumed the AdS/CFT correspondence and argued that quantum perturbations of the event horizon could allow information to escape from a black hole, which would resolve the information paradox.[24] In this perspective, it is the event horizon of the black hole that is important and not the black-hole singularity. The GISR (Gravity Induced Spontaneous Radiation) mechanism of references[25][26] can be considered an implementation of this idea but with the quantum perturbations of the event horizon replaced by the microscopic states of the black hole.

On the other hand, within what might broadly be termed the "loop quantum gravity community", the dominant belief is that to resolve the information paradox, it is important to understand how the black-hole singularity is resolved. These scenarios are broadly called remnant scenarios since information does not emerge gradually but remains in the black-hole interior only to emerge at the end of black-hole evaporation.[12]

Researchers also study other possibilities, including a modification of the laws of quantum mechanics to allow for non-unitary time evolution.

Some of these solutions are described at greater length below.

GISR mechanism resolution to the paradox edit

Source:[25][26]

This resolution takes GISR as the underlying mechanism for Hawking radiation and considers the latter only as a result. The physics ingredients of GISR are reflected in the following explicitly hermitian hamiltonian

 

The first term of   is a diagonal matrix representing the microscopic state of black holes no heavier than the initial one; The second term describes the vacuum fluctuation of particles around the black hole and is represented by many harmonic oscillators; The third term couples the vacuum fluctuation modes to the black hole so that, for each mode whose energy matches the difference between two states of the black hole, the latter transits at an amplitude proportional to the similarity factor of the two states’ microscopic wave function. Transitions from the higher energy state   to lower one   and vice versa are equally allowed at the hamiltonian level. The form of this coupling is an imitation of the photon-atom's coupling in Jaynes–Cummings model of atomic physics. It just replaces the vector potential of the photon in JC model with the binding energy of the to be radiated particles in black hole case and the dipole moment of the initial-to-final state of the atom with the similarity factor of the black hole's initial and final state wave function. Although this form of coupling is ad hoc in a sense, it introduces no new interaction except gravitation and it must happen this way or the other no matter how the final quantum gravitation theory grows like.

From the hamiltonian of GISR and the standard Schrodinger equation controlling the evolution of wave function of the system

 

 

where   is the index of the radiated particles set with total energy  . In the short time evolution or single quantum emission case, Wigner-Wiesskopf approximation allows one[25][26] to show that the power spectrum of GISR is exactly of thermal type and the corresponding temperature equates to that of Hawking radiation. But in the long time evolution or continuous quantum emission case, the process is off-equilibrium and is characterised by an initial state dependent black hole mass or temperature vs. time curve. The observers far away can retrieve the information stored in the initial black hole from this mass or temperature vs. time curve.

The hamiltonian and wave function description of GISR allows one to calculate of the entanglement entropy between the black hole and its Hawking particles explicitly.

 

 

 

Since the hamiltonian of GISR is explicitly hermitian, the result is the expected Page curve naturally except some late time Rabi-type oscillation, which arises from the equal chance emission and absorption transition of the black hole as it approaches the vanishing stage. The most important lesson this calculation brings to one is, the middle state of an evaporating black hole cannot be considered as a semiclassical object with time dependent mass. It must be considered as a superposition of many different mass ratio combinations of black hole + Hawking particles. References[25][26] designed a Schrödinger cat-type gedanken experiment to illustrate this fact, in which each Hawking particle kills a cat. Since, in the quantum description, when a black hole radiates and how many particles it has radiated can not be determined definitely, the middle state of the evaporating black hole has to be considered as a superposition of many cat groups, each having a different ratio of dead members. The biggest loophole in the argument for the information missing puzzle is the ignoring of this superposition.

Small-corrections resolution to the paradox edit

This idea suggests that Hawking's computation fails to keep track of small corrections that are eventually sufficient to preserve information about the initial state.[27][28][9] This can be thought of as analogous to what happens during the mundane process of "burning": the radiation produced appears to be thermal, but its fine-grained features encode the precise details of the object that was burnt. This idea is consistent with reversibility, as required by quantum mechanics. It is the dominant idea in what might broadly be termed the string-theory approach to quantum gravity.

More precisely, this line of resolution suggests that Hawking's computation is corrected so that the two point correlator computed by Hawking and described above becomes

 
and higher-point correlators are similarly corrected
 
The equations above utilize a concise notation and the correction factors   may depend on the temperature, the frequencies of the operators that enter the correlation function and other details of the black hole.

Maldacena initially explored such corrections in a simple version of the paradox.[29] They were then analyzed by Papadodimas and Raju,[30][31][32] who showed that corrections to low-point correlators (such as   above ) that were exponentially suppressed in the black-hole entropy were sufficient to preserve unitarity, and significant corrections were required only for very high-point correlators. The mechanism that allowed the right small corrections to form was initially postulated in terms of a loss of exact locality in quantum gravity so that the black-hole interior and the radiation were described by the same degrees of freedom. Recent developments suggest that such a mechanism can be realized precisely within semiclassical gravity and allows information to escape.[8] See § Recent developments.

Fuzzball resolution to the paradox edit

Some researchers, most notably Samir Mathur, have argued[11] that the small corrections required to preserve information cannot be obtained while preserving the semiclassical form of the black-hole interior and instead require a modification of the black-hole geometry to a fuzzball.[33][34][35]

The defining characteristic of the fuzzball is that it has structure at the horizon scale. This should be contrasted with the conventional picture of the black-hole interior as a largely featureless region of space. For a large enough black hole, tidal effects are very small at the black-hole horizon and remain small in the interior until one approaches the black-hole singularity. Therefore, in the conventional picture, an observer who crosses the horizon may not even realize they have done so until they start approaching the singularity. In contrast, the fuzzball proposal suggests that the black hole horizon is not empty. Consequently, it is also not information-free, since the details of the structure at the surface of the horizon preserve information about the black hole's initial state. This structure also affects the outgoing Hawking radiation and thereby allows information to escape from the fuzzball.

The fuzzball proposal is supported by the existence of a large number of gravitational solutions called microstate geometries.[36][37][38][39][40]

The firewall proposal can be thought of as a variant of the fuzzball proposal that posits that the black-hole interior is replaced by a firewall rather than a fuzzball. Operationally, the difference between the fuzzball and the firewall proposals has to do with whether an observer crossing the horizon of the black hole encounters high-energy matter, suggested by the firewall proposal, or merely low-energy structure, suggested by the fuzzball proposal. The firewall proposal also originated with an exploration of Mathur's argument that small corrections are insufficient to resolve the information paradox.[11]

The fuzzball and firewall proposals have been questioned for lacking an appropriate mechanism that can generate structure at the horizon scale.[9]

Strong-quantum-effects resolution to the paradox edit

In the final stages of black-hole evaporation, quantum effects become important and cannot be ignored. The precise understanding of this phase of black-hole evaporation requires a complete theory of quantum gravity. Within what might be termed the loop-quantum-gravity approach to black holes, it is believed that understanding this phase of evaporation is crucial to resolving the information paradox.

This perspective holds that Hawking's computation is reliable until the final stages of black-hole evaporation, when information suddenly escapes.[27][28][41][12] Another possibility along the same lines is that black-hole evaporation simply stops when the black hole becomes Planck-sized. Such scenarios are called "remnant scenarios".[27][28]

An appealing aspect of this perspective is that a significant deviation from classical and semiclassical gravity is needed only in the regime in which the effects of quantum gravity are expected to dominate. On the other hand, this idea implies that just before the sudden escape of information, a very small black hole must be able to store an arbitrary amount of information and have a very large number of internal states. Therefore, researchers who follow this idea must take care to avoid the common criticism of remnant-type scenarios, which is that they might may violate the Bekenstein bound and lead to a violation of effective field theory due to the production of remnants as virtual particles in ordinary scattering events.[42][43]

Soft-hair resolution to the paradox edit

In 2016, Hawking, Perry and Strominger noted that black holes must contain "soft hair".[44][45][46] Particles that have no rest mass, like photons and gravitons, can exist with arbitrarily low-energy and are called soft particles. The soft-hair resolution posits that information about the initial state is stored in such soft particles. The existence of such soft hair is a peculiarity of four-dimensional asymptotically flat space and therefore this resolution to the paradox does not carry over to black holes in Anti-de Sitter space or black holes in other dimensions.

Information is irretrievably lost edit

A minority view in the theoretical physics community is that information is genuinely lost when black holes form and evaporate.[27][28] This conclusion follows if one assumes that the predictions of semiclassical gravity and the causal structure of the black-hole spacetime are exact.

But this conclusion leads to the loss of unitarity. Banks, Susskind and Peskin argue that, in some cases, loss of unitarity also implies violation of energy–momentum conservation or locality, but this argument may possibly be evaded in systems with a large number of degrees of freedom.[47] According to Roger Penrose, loss of unitarity in quantum systems is not a problem: quantum measurements are by themselves already non-unitary. Penrose claims that quantum systems will in fact no longer evolve unitarily as soon as gravitation comes into play, precisely as in black holes. The Conformal Cyclic Cosmology Penrose advocates critically depends on the condition that information is in fact lost in black holes. This new cosmological model might be tested experimentally by detailed analysis of the cosmic microwave background radiation (CMB): if true, the CMB should exhibit circular patterns with slightly lower or slightly higher temperatures. In November 2010, Penrose and V. G. Gurzadyan announced they had found evidence of such circular patterns in data from the Wilkinson Microwave Anisotropy Probe (WMAP), corroborated by data from the BOOMERanG experiment.[48] The significance of these findings was debated.[49][50][51][52]

Along similar lines, Modak, Ortíz, Peña, and Sudarsky have argued that the paradox can be dissolved by invoking foundational issues of quantum theory often called the measurement problem of quantum mechanics.[53] This work built on an earlier proposal by Okon and Sudarsky on the benefits of objective collapse theory in a much broader context.[54] The original motivation of these studies was Penrose's long-standing proposal wherein collapse of the wave-function is said to be inevitable in the presence of black holes (and even under the influence of gravitational field).[55][56] Experimental verification of collapse theories is an ongoing effort.[57]

Other proposed resolutions edit

Some other resolutions to the paradox have also been explored. These are listed briefly below.

  • Information is stored in a large remnant[58][59]
    This idea suggests that Hawking radiation stops before the black hole reaches the Planck size. Since the black hole never evaporates, information about its initial state can remain inside the black hole and the paradox disappears. But there is no accepted mechanism that would allow Hawking radiation to stop while the black hole remains macroscopic.
  • Information is stored in a baby universe that separates from our own universe.[28][60]
    Some models of gravity, such as the Einstein–Cartan theory of gravity, which extends general relativity to matter with intrinsic angular momentum (spin), predict the formation of such baby universes. No violation of known general principles of physics is needed. There are no physical constraints on the number of the universes, even though only one remains observable.
    The Einstein–Cartan theory is difficult to test because its predictions are significantly different from general-relativistic ones only at extremely high densities.
  • Information is encoded in the correlations between future and past[61][62]
    The final-state proposal[63] suggests that boundary conditions must be imposed at the black-hole singularity, which, from a causal perspective, is to the future of all events in the black-hole interior. This helps reconcile black-hole evaporation with unitarity but contradicts the intuitive idea of causality and locality of time-evolution.
  • Quantum-channel theory
    In 2014, Chris Adami argued that analysis using quantum channel theory causes any apparent paradox to disappear; Adami rejects black hole complementarity, arguing instead that no space-like surface contains duplicated quantum information.[64][65]

Recent developments edit

Significant progress was made in 2019, when, starting with work by Penington[66] and Almheiri, Engelhardt, Marolf and Maxfield,[67] researchers were able to compute the von Neumann entropy of the radiation black holes emit in specific models of quantum gravity.[8][22][23][68] These calculations showed that, in these models, the entropy of this radiation first rises and then falls back to zero. As explained above, one way to frame the information paradox is that Hawking's calculation appears to show that the von Neumann entropy of Hawking radiation increases throughout the lifetime of the black hole. But if the black hole formed from a pure state with zero entropy, unitarity implies that the entropy of the Hawking radiation must decrease back to zero once the black hole evaporates completely, i.e., the Page curve.[6] Therefore, the results above provide a resolution to the information paradox, at least in the specific models of gravity considered in these models.

These calculations compute the entropy by first analytically continuing the spacetime to a Euclidean spacetime and then using the replica trick. The path integral that computes the entropy receives contributions from novel Euclidean configurations called "replica wormholes". (These wormholes exist in a Wick rotated spacetime and should not be conflated with wormholes in the original spacetime.) The inclusion of these wormhole geometries in the computation prevents the entropy from increasing indefinitely.[7]

These calculations also imply that for sufficiently old black holes, one can perform operations on the Hawking radiation that affect the black hole interior. This result has implications for the related firewall paradox, and provides evidence for the physical picture suggested by the ER=EPR proposal,[7] black hole complementarity, and the Papadodimas–Raju proposal.

It has been noted that the models used to perform the Page curve computations above have consistently involved theories where the graviton has mass, unlike the real world, where the graviton is massless.[69] These models have also involved a "nongravitational bath", which can be thought of as an artificial interface where gravity ceases to act. It has also been argued that a key technique used in the Page-curve computations, the "island proposal", is inconsistent in standard theories of gravity with a Gauss law.[70] This would suggest that the Page curve computations are inapplicable to realistic black holes and work only in special toy models of gravity. The validity of these criticisms remains under investigation; there is no consensus in the research community.[71][72]

In 2020, Laddha, Prabhu, Raju, and Shrivastava argued that, as a result of the effects of quantum gravity, information should always be available outside the black hole.[73] This would imply that the von Neumann entropy of the region outside the black hole always remains zero, as opposed to the proposal above, where the von Neumann entropy first rises and then falls. Extending this, Raju argued that Hawking's error was to assume that the region outside the black hole would have no information about its interior. [74]

Hawking formalized this assumption in terms of a "principle of ignorance".[2] The principle of ignorance is correct in classical gravity, when quantum-mechanical effects are neglected, by virtue of the no-hair theorem. It is also correct when only quantum-mechanical effects are considered and gravitational effects are neglected. But Raju argued that when both quantum mechanical and gravitational effects are accounted for, the principle of ignorance should be replaced by a "principle of holography of information"[9] that would imply just the opposite: all the information about the interior can be regained from the exterior through suitably precise measurements.

The two recent resolutions of the information paradox described above—via replica wormholes and the holography of information—share the feature that observables in the black-hole interior also describe observables far from the black hole. This implies a loss of exact locality in quantum gravity. Although this loss of locality is very small, it persists over large distance scales. This feature has been challenged by some researchers.[75]

See also edit

References edit

  1. ^ The short form "ínformation paradox" is also used for the Arrow information paradox.
  2. ^ a b c Hawking, S. W. (1976). "Breakdown of predictability in gravitational collapse". Physical Review D. 14 (10): 2460–2473. Bibcode:1976PhRvD..14.2460H. doi:10.1103/PhysRevD.14.2460.
  3. ^ Hawking, Stephen (2006). . Discovery Channel. Archived from the original on 2 August 2013. Retrieved 13 August 2013.
  4. ^ Overbye, Dennis (12 August 2013). "A Black Hole Mystery Wrapped in a Firewall Paradox". The New York Times. Retrieved 12 August 2013.
  5. ^ Page, Don N. (6 December 1993). "Information in Black Hole Radiation". Physical Review Letters. 71 (23): 3743–3746. arXiv:hep-th/9306083. Bibcode:1993PhRvL..71.3743P. doi:10.1103/PhysRevLett.71.3743. PMID 10055062. S2CID 9363821.
  6. ^ a b Cox, Brian; Forshaw, Jeff (2022). Black Holes: the key to understanding the Universe. New York, NY: HarperCollins Publishers. p. 220-225. ISBN 9780062936691. Page curve
  7. ^ a b c Musser, Gerge (30 October 2020). "The Most Famous Paradox in Physics Nears Its End". Quanta Magazine. Retrieved 31 October 2020.
  8. ^ a b c d Almheiri, Ahmed; Hartman, Thomas; Maldacena, Juan; Shaghoulian, Edgar; Tajdini, Amirhossein (21 July 2021). "The entropy of Hawking radiation". Reviews of Modern Physics. 93 (3): 035002. arXiv:2006.06872. Bibcode:2021RvMP...93c5002A. doi:10.1103/RevModPhys.93.035002. S2CID 219635921.
  9. ^ a b c d e f g Raju, Suvrat (January 2022). "Lessons from the information paradox". Physics Reports. 943: 1–80. arXiv:2012.05770. Bibcode:2022PhR...943....1R. doi:10.1016/j.physrep.2021.10.001. S2CID 228083488.
  10. ^ Grumiller, Daniel; Sheikh-Jabbari, Mohammad Mehdi (2022). Black Hole Physics: From Collapse to Evaporation. Switzerland: Springer Graduate Texts in Physics. doi:10.1007/978-3-031-10343-8. ISBN 978-3-031-10342-1. S2CID 253372811.
  11. ^ a b c Mathur, Samir D (21 November 2009). "The information paradox: a pedagogical introduction". Classical and Quantum Gravity. 26 (22): 224001. arXiv:0909.1038. Bibcode:2009CQGra..26v4001M. doi:10.1088/0264-9381/26/22/224001. S2CID 18878424.
  12. ^ a b c Perez, Alejandro (1 December 2017). "Black holes in loop quantum gravity". Reports on Progress in Physics. 80 (12): 126901. arXiv:1703.09149. Bibcode:2017RPPh...80l6901P. doi:10.1088/1361-6633/aa7e14. PMID 28696338. S2CID 7047942.
  13. ^ Hossenfelder, Sabine (23 August 2019). "How do black holes destroy information and why is that a problem?". Back ReAction. Retrieved 23 November 2019.
  14. ^ Hawking, Stephen (1 August 1975). "Particle Creation by Black Holes" (PDF). Commun. Math. Phys. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
  15. ^ Barbón, J L F (2009). "Black holes, information and holography". Journal of Physics: Conference Series. 171 (1): 012009. Bibcode:2009JPhCS.171a2009B. doi:10.1088/1742-6596/171/1/012009. http://iopscience.iop.org/1742-6596/171/1/012009 p.1: "The most important departure from conventional thinking in recent years, the holographic principle...provides a definition of quantum gravity...[and] guarantees that the whole process is unitary."
  16. ^ Luca Buoninfante; Francesco Di Filippo; Shinji Mukohyama (2021). "On the assumptions leading to the information loss paradox". Journal of High Energy Physics. 2021 (10): 81. arXiv:2107.05662. Bibcode:2021JHEP...10..081B. doi:10.1007/JHEP10(2021)081. S2CID 235828913.
  17. ^ Robert B. Mann; Sebastian Murk; Daniel R. Terno (2022). "Surface gravity and the information loss problem". Physical Review D. 105 (12): 124032. arXiv:2109.13939. Bibcode:2022PhRvD.105l4032M. doi:10.1103/PhysRevD.105.124032. S2CID 249799593.
  18. ^ L. Susskind and J. Lindesay, Black Holes, Information and the String Theory Revolution, World Scientific, 2005, pp. 69-84; ISBN 978-981-256-083-4.
  19. ^ Susskind, Leonard (7 July 2008). The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Little, Brown. p. 10. ISBN 9780316032698. Retrieved 7 April 2015. It was not a war between angry enemies; indeed the main participants are all friends. But it was a fierce intellectual struggle of ideas between people who deeply respected each other but also profoundly disagreed.
  20. ^ . CALIFORNIA LITERARY REVIEW. 9 July 2008. Archived from the original on 2 April 2012.
  21. ^ "July 21, 2004: Hawking concedes bet on black hole information loss". www.aps.org. American Physical Society. Retrieved 5 January 2022.
  22. ^ a b Penington, G.; Shenker, S.; Stanford, D.; Yang, Z. (2019). "Replica wormholes and the black hole interior". arXiv:1911.11977 [hep-th].
  23. ^ a b Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. (2019). "Replica Wormholes and the Entropy of Hawking Radiation". Journal of High Energy Physics. 2020 (5). arXiv:1911.12333. doi:10.1007/JHEP05(2020)013. S2CID 208310010.
  24. ^ Baez, John. "This Week's Finds in Mathematical Physics (Week 207)". Retrieved 25 September 2011.
  25. ^ a b c d Ding-fang, Zeng (2022). "Spontaneous Radiation of Black Holes". Nuclear Physics B. 977: 115722. arXiv:2112.12531. Bibcode:2022NuPhB.97715722Z. doi:10.1016/j.nuclphysb.2022.115722. S2CID 245425064.
  26. ^ a b c d Ding-fang, Zeng (2022). "Gravitation Induced Spontaneous Radiation". Nuclear Physics B. 990: 116171. arXiv:2207.05158. doi:10.1016/j.nuclphysb.2023.116171. S2CID 257840729.
  27. ^ a b c d Giddings, Steven B. (1995). "The black hole information paradox". Particles, Strings and Cosmology. Johns Hopkins Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5. arXiv:hep-th/9508151. Bibcode:1995hep.th....8151G.
  28. ^ a b c d e Preskill, John (1992). Do Black Holes Destroy Information?. International Symposium on Black Holes, Membranes, Wormholes, and Superstrings. arXiv:hep-th/9209058. Bibcode:1993bhmw.conf...22P.
  29. ^ Maldacena, Juan (12 April 2003). "Eternal black holes in anti-de Sitter". Journal of High Energy Physics. 2003 (4): 021. arXiv:hep-th/0106112. Bibcode:2003JHEP...04..021M. doi:10.1088/1126-6708/2003/04/021. S2CID 7767700.
  30. ^ Papadodimas, Kyriakos; Raju, Suvrat (30 October 2013). "An infalling observer in AdS/CFT". Journal of High Energy Physics. 2013 (10): 212. arXiv:1211.6767. Bibcode:2013JHEP...10..212P. doi:10.1007/JHEP10(2013)212. S2CID 53650802.
  31. ^ Papadodimas, Kyriakos; Raju, Suvrat (29 April 2014). "State-dependent bulk-boundary maps and black hole complementarity". Physical Review D. 89 (8): 086010. arXiv:1310.6335. Bibcode:2014PhRvD..89h6010P. doi:10.1103/PhysRevD.89.086010. S2CID 119118804.
  32. ^ Papadodimas, Kyriakos; Raju, Suvrat (5 February 2014). "Black Hole Interior in the Holographic Correspondence and the Information Paradox". Physical Review Letters. 112 (5): 051301. arXiv:1310.6334. Bibcode:2014PhRvL.112e1301P. doi:10.1103/PhysRevLett.112.051301. PMID 24580584. S2CID 118867229.
  33. ^ Skenderis, Kostas; Taylor, Marika (October 2008). "The fuzzball proposal for black holes". Physics Reports. 467 (4–5): 117–171. arXiv:0804.0552. Bibcode:2008PhR...467..117S. doi:10.1016/j.physrep.2008.08.001. S2CID 118403957.
  34. ^ Lunin, Oleg; Mathur, Samir D. (February 2002). "AdS/CFT duality and the black hole information paradox". Nuclear Physics B. 623 (1–2): 342–394. arXiv:hep-th/0109154. Bibcode:2002NuPhB.623..342L. doi:10.1016/S0550-3213(01)00620-4. S2CID 12265416.
  35. ^ Mathur, S.D. (15 July 2005). "The fuzzball proposal for black holes: an elementary review". Fortschritte der Physik. 53 (7–8): 793–827. arXiv:hep-th/0502050. Bibcode:2005ForPh..53..793M. doi:10.1002/prop.200410203. S2CID 15083147.
  36. ^ Mathur, Samir D.; Saxena, Ashish; Srivastava, Yogesh K. (March 2004). "Constructing "hair" for the three charge hole". Nuclear Physics B. 680 (1–3): 415–449. arXiv:hep-th/0311092. Bibcode:2004NuPhB.680..415M. doi:10.1016/j.nuclphysb.2003.12.022. S2CID 119490735.
  37. ^ Kanitscheider, Ingmar; Skenderis, Kostas; Taylor, Marika (15 June 2007). "Fuzzballs with internal excitations". Journal of High Energy Physics. 2007 (6): 056. arXiv:0704.0690. Bibcode:2007JHEP...06..056K. doi:10.1088/1126-6708/2007/06/056. ISSN 1029-8479. S2CID 18638163.
  38. ^ Bena, Iosif; Warner, Nicholas P. (2008). "Black Holes, Black Rings, and their Microstates". Supersymmetric Mechanics - Vol. 3. Lecture Notes in Physics. Vol. 755. pp. 1–92. arXiv:hep-th/0701216. doi:10.1007/978-3-540-79523-0_1. ISBN 978-3-540-79523-0. S2CID 119096225.
  39. ^ Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; Shigemori, Masaki; Warner, Nicholas P. (May 2015). "Habemus Superstratum! A constructive proof of the existence of superstrata". Journal of High Energy Physics. 2015 (5): 110. arXiv:1503.01463. Bibcode:2015JHEP...05..110B. doi:10.1007/JHEP05(2015)110. ISSN 1029-8479. S2CID 53476809.
  40. ^ Bena, Iosif; Giusto, Stefano; Martinec, Emil J.; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P. (8 November 2016). "Smooth horizonless geometries deep inside the black-hole regime". Physical Review Letters. 117 (20): 201601. arXiv:1607.03908. Bibcode:2016PhRvL.117t1601B. doi:10.1103/PhysRevLett.117.201601. ISSN 0031-9007. PMID 27886509. S2CID 29536476.
  41. ^ Ashtekar, Abhay (24 January 2020). "Black Hole Evaporation: A Perspective from Loop Quantum Gravity". Universe. 6 (2): 21. arXiv:2001.08833. Bibcode:2020Univ....6...21A. doi:10.3390/universe6020021.
  42. ^ Giddings, Steven B. (15 January 1994). "Constraints on black hole remnants". Physical Review D. 49 (2): 947–957. arXiv:hep-th/9304027. Bibcode:1994PhRvD..49..947G. doi:10.1103/PhysRevD.49.947. PMID 10017053. S2CID 10123547.
  43. ^ Giddings, Steven B. (1998). "Comments on information loss and remnants". Physical Review D. 49 (8): 4078–4088. arXiv:hep-th/9310101. Bibcode:1994PhRvD..49.4078G. doi:10.1103/PhysRevD.49.4078. PMID 10017412. S2CID 17746408.
  44. ^ "Stephen Hawking's New Black-Hole Paper, Translated: An Interview with Co-Author Andrew Strominger". Scientific American Blog Network. Retrieved 9 January 2016.
  45. ^ Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew (5 January 2016). "Soft Hair on Black Holes". Physical Review Letters. 116 (23): 231301. arXiv:1601.00921. Bibcode:2016PhRvL.116w1301H. doi:10.1103/PhysRevLett.116.231301. PMID 27341223. S2CID 16198886.
  46. ^ Castelvecchi, Davide (27 January 2016). "Hawking's Latest Black Hole Paper Splits Physicists (Nature)". Scientific American. Retrieved 31 October 2020.
  47. ^ Nikolic, Hrvoje (2015). "Violation of unitarity by Hawking radiation does not violate energy-momentum conservation". Journal of Cosmology and Astroparticle Physics. 2015 (4): 002. arXiv:1502.04324. Bibcode:2015JCAP...04..002N. doi:10.1088/1475-7516/2015/04/002. S2CID 44000069.
  48. ^ Gurzadyan, V. G.; Penrose, R. (2010). "Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity". arXiv:1011.3706 [astro-ph.CO].
  49. ^ Wehus, I. K.; Eriksen, H. K. (2010). "A search for concentric circles in the 7-year WMAP temperature sky maps". The Astrophysical Journal. 733 (2): L29. arXiv:1012.1268. Bibcode:2011ApJ...733L..29W. doi:10.1088/2041-8205/733/2/L29. S2CID 119284906.
  50. ^ Moss, A.; Scott, D.; Zibin, J. P. (2010). "No evidence for anomalously low variance circles on the sky". Journal of Cosmology and Astroparticle Physics. 2011 (4): 033. arXiv:1012.1305. Bibcode:2011JCAP...04..033M. doi:10.1088/1475-7516/2011/04/033. S2CID 118433733.
  51. ^ Hajian, A. (2010). "Are There Echoes From The Pre-Big Bang Universe? A Search for Low Variance Circles in the CMB Sky". The Astrophysical Journal. 740 (2): 52. arXiv:1012.1656. Bibcode:2011ApJ...740...52H. doi:10.1088/0004-637X/740/2/52. S2CID 118515562.
  52. ^ Eriksen, H. K.; Wehus, I. K. (2010). "Comment on "CCC-predicted low-variance circles in CMB sky and LCDM"". arXiv:1105.1081 [astro-ph.CO].
  53. ^ Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel (2015). "Black hole evaporation: information loss but no paradox". General Relativity and Gravitation. 47 (10): 120. arXiv:1406.4898. Bibcode:2015GReGr..47..120M. doi:10.1007/s10714-015-1960-y. ISSN 1572-9532. S2CID 118447230.
  54. ^ Okon, Elias; Sudarsky, Daniel (2014). "Benefits of Objective Collapse Models for Cosmology and Quantum Gravity". Foundations of Physics. 44 (2): 114–143. arXiv:1309.1730. Bibcode:2014FoPh...44..114O. doi:10.1007/s10701-014-9772-6. ISSN 1572-9516. S2CID 67831520.
  55. ^ Penrose, Roger (1989). "Newton, quantum theory and reality". Three Hundred Years of Gravitation. Cambridge University Press. p. 17. ISBN 9780521379762.
  56. ^ Penrose, Roger (1996). "On Gravity's role in Quantum State Reduction". General Relativity and Gravitation. 28 (5): 581–600. Bibcode:1996GReGr..28..581P. CiteSeerX 10.1.1.468.2731. doi:10.1007/BF02105068. ISSN 1572-9532. S2CID 44038399.
  57. ^ Bassi, Angelo; et al. (2013). "Models of wave-function collapse, underlying theories, and experimental tests". Rev. Mod. Phys. 85 (2): 471–527. arXiv:1204.4325. Bibcode:2013RvMP...85..471B. doi:10.1103/RevModPhys.85.471. ISSN 1539-0756. S2CID 119261020.
  58. ^ Giddings, Steven (1992). "Black Holes and Massive Remnants". Physical Review D. 46 (4): 1347–1352. arXiv:hep-th/9203059. Bibcode:1992PhRvD..46.1347G. doi:10.1103/PhysRevD.46.1347. PMID 10015052. S2CID 1741527.
  59. ^ Nikolic, Hrvoje (2015). "Gravitational crystal inside the black hole". Modern Physics Letters A. 30 (37): 1550201. arXiv:1505.04088. Bibcode:2015MPLA...3050201N. doi:10.1142/S0217732315502016. S2CID 62789858.
  60. ^ Popławski, Nikodem J. (2010). "Cosmology with torsion: An alternative to cosmic inflation". Physics Letters B. 694 (3): 181–185. arXiv:1007.0587. Bibcode:2010PhLB..694..181P. doi:10.1016/j.physletb.2010.09.056.
  61. ^ Hartle, James B. (1998). "Generalized Quantum Theory in Evaporating Black Hole Spacetimes". Black Holes and Relativistic Stars: 195. arXiv:gr-qc/9705022. Bibcode:1998bhrs.conf..195H.
  62. ^ Nikolic, Hrvoje (2009). "Resolving the black-hole information paradox by treating time on an equal footing with space". Physics Letters B. 678 (2): 218–221. arXiv:0905.0538. Bibcode:2009PhLB..678..218N. doi:10.1016/j.physletb.2009.06.029. S2CID 15074164.
  63. ^ Horowitz, Gary T; Maldacena, Juan (6 February 2004). "The black hole final state". Journal of High Energy Physics. 2004 (2): 008. arXiv:hep-th/0310281. Bibcode:2004JHEP...02..008H. doi:10.1088/1126-6708/2004/02/008. S2CID 1615746.
  64. ^ Bradler, Kamil; Adami, Christoph (2014). "The capacity of black holes to transmit quantum information". Journal of High Energy Physics. 2014 (5): 95. arXiv:1310.7914. Bibcode:2014JHEP...05..095B. doi:10.1007/JHEP05(2014)095. ISSN 1029-8479. S2CID 118353646.
  65. ^ Gyongyosi, Laszlo (2014). "A statistical model of information evaporation of perfectly reflecting black holes". International Journal of Quantum Information. 12 (7n08): 1560025. arXiv:1311.3598. Bibcode:2014IJQI...1260025G. doi:10.1142/s0219749915600254. S2CID 5203875.
  66. ^ Penington, Geoffrey (September 2020). "Entanglement wedge reconstruction and the information paradox". Journal of High Energy Physics. 2020 (9): 2. arXiv:1905.08255. Bibcode:2020JHEP...09..002P. doi:10.1007/JHEP09(2020)002. S2CID 160009640.
  67. ^ Almheiri, Ahmed; Engelhardt, Netta; Marolf, Donald; Maxfield, Henry (December 2019). "The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole". Journal of High Energy Physics. 2019 (12): 63. arXiv:1905.08762. Bibcode:2019JHEP...12..063A. doi:10.1007/JHEP12(2019)063. S2CID 160009599.
  68. ^ Bousso, Raphael; Dong, Xi; Engelhardt, Netta; Faulkner, Thomas; Hartman, Thomas; Shenker, Stephen H.; Stanford, Douglas (2 March 2022). "Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence of Spacetime". arXiv:2201.03096 [hep-th].
  69. ^ Geng, Hao; Karch, Andreas (September 2020). "Massive islands". Journal of High Energy Physics. 2020 (9): 121. arXiv:2006.02438. Bibcode:2020JHEP...09..121G. doi:10.1007/JHEP09(2020)121. S2CID 219304676.
  70. ^ Geng, Hao; Karch, Andreas; Perez-Pardavila, Carlos; Raju, Suvrat; Randall, Lisa; Riojas, Marcos; Shashi, Sanjit (January 2022). "Inconsistency of islands in theories with long-range gravity". Journal of High Energy Physics. 2022 (1): 182. arXiv:2107.03390. Bibcode:2022JHEP...01..182G. doi:10.1007/JHEP01(2022)182. S2CID 235765761.
  71. ^ Bousso, Raphael; Dong, Xi; Engelhardt, Netta; Faulkner, Thomas; Hartman, Thomas; Shenker, Stephen H.; Stanford, Douglas (2 March 2022). "Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence of Spacetime". arXiv:2201.03096 [hep-th].
  72. ^ Agrawal, Prateek; Cesarotti, Cari; Karch, Andreas; Mishra, Rashmish K.; Randall, Lisa; Sundrum, Raman (14 March 2022). "Warped Compactifications in Particle Physics, Cosmology and Quantum Gravity". arXiv:2203.07533 [hep-th].
  73. ^ Laddha, Alok; Prabhu, Siddharth; Raju, Suvrat; Shrivastava, Pushkal (18 February 2021). "The Holographic Nature of Null Infinity". SciPost Physics. 10 (2): 041. arXiv:2002.02448. Bibcode:2021ScPP...10...41L. doi:10.21468/SciPostPhys.10.2.041. S2CID 211044141.
  74. ^ Raju, Suvrat (2022). "Failure of the split property in gravity and the information paradox". Classical and Quantum Gravity. 39 (6): 064002. arXiv:2110.05470. Bibcode:2022CQGra..39f4002R. doi:10.1088/1361-6382/ac482b. S2CID 238583439.
  75. ^ Guo, Bin; Hughes, Marcel R. R.; Mathur, Samir D; Mehta, Mathur (28 December 2021). "Contrasting the fuzzball and wormhole paradigms for black holes". Turkish Journal of Physics. 45 (6): 281–365. arXiv:2111.05295. doi:10.3906/fiz-2111-13. S2CID 243861186.

External links edit

  • , a USENET physics FAQ page
  • Preskill, John (1992). "Do black holes destroy information?". arXiv:hep-th/9209058.. Discusses methods of attack on the problem, and their apparent shortcomings.
  • Peplow, Mark (2004). "Hawking changes his mind about black holes". Nature. doi:10.1038/news040712-12. Report on Hawking's 2004 theory in Nature.
  • Hawking, S. W. (2005). "Information loss in black holes". Physical Review D. 72 (8): 084013. arXiv:hep-th/0507171. Bibcode:2005PhRvD..72h4013H. doi:10.1103/PhysRevD.72.084013. S2CID 118893360. Stephen Hawking's purported solution to the black hole unitarity paradox.
  • Hawking and unitarity: a July 2005 discussion of the information loss paradox and Stephen Hawking's role in it
  • The Hawking Paradox - BBC Horizon documentary (2005)
  • "Horizon" The Hawking Paradox at IMDb  

black, hole, information, paradox, black, hole, information, paradox, paradox, that, appears, when, predictions, quantum, mechanics, general, relativity, combined, theory, general, relativity, predicts, existence, black, holes, that, regions, spacetime, from, . The black hole information paradox 1 is a paradox that appears when the predictions of quantum mechanics and general relativity are combined The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing not even light can escape In the 1970s Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation now called Hawking radiation in his honor He also argued that the detailed form of the radiation would be independent of the initial state of the black hole 2 and depend only on its mass electric charge and angular momentum The first image silhouette or shadow of a black hole taken of the supermassive black hole in M87 with the Event Horizon Telescope released in April 2019 The information paradox appears when one considers a process in which a black hole is formed through a physical process and then evaporates away entirely through Hawking radiation Hawking s calculation suggests that the final state of radiation would retain information only about the total mass electric charge and angular momentum of the initial state Since many different states can have the same mass charge and angular momentum this suggests that many initial physical states could evolve into the same final state Therefore information about the details of the initial state would be permanently lost however this violates a core precept of both classical and quantum physics that in principle the state of a system at one point in time should determine its state at any other time 3 4 Specifically in quantum mechanics the state of the system is encoded by its wave function The evolution of the wave function is determined by a unitary operator and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future In 1993 Don Page argued that if a black hole starts in a pure quantum state and evaporates completely by a unitary process the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared 5 This is called the Page curve 6 It is now generally believed that information is preserved in black hole evaporation 7 8 9 For many researchers deriving the Page curve is synonymous with solving the black hole information puzzle 10 291 But views differ as to precisely how Hawking s original semiclassical calculation should be corrected 8 9 11 12 In recent years several extensions of the original paradox have been explored Taken together these puzzles about black hole evaporation have implications for how gravity and quantum mechanics must be combined The information paradox remains an active field of research in quantum gravity Contents 1 Relevant principles 2 Black hole evaporation 3 Popular culture 4 Solutions 4 1 GISR mechanism resolution to the paradox 4 2 Small corrections resolution to the paradox 4 3 Fuzzball resolution to the paradox 4 4 Strong quantum effects resolution to the paradox 4 5 Soft hair resolution to the paradox 4 6 Information is irretrievably lost 4 7 Other proposed resolutions 5 Recent developments 6 See also 7 References 8 External linksRelevant principles editIn quantum mechanics the evolution of the state is governed by the Schrodinger equation The Schrodinger equation obeys two principles that are relevant to the paradox quantum determinism which means that given a present wave function its future changes are uniquely determined by the evolution operator and reversibility which refers to the fact that the evolution operator has an inverse meaning that the past wave functions are similarly unique The combination of the two means that information must always be preserved 13 In this context information means all the details of the state and the statement that information must be preserved means that details corresponding to an earlier time can always be reconstructed at a later time Mathematically the Schrodinger equation implies that the wavefunction at a time t1 can be related to the wavefunction at a time t2 by means of a unitary operator PS t 1 U t 1 t 2 PS t 2 displaystyle Psi t 1 rangle U t 1 t 2 Psi t 2 rangle nbsp Since the unitary operator is bijective the wavefunction at t2 can be obtained from the wavefunction at t1 and vice versa The reversibility of time evolution described above applies only at the microscopic level since the wavefunction provides a complete description of the state It should not be conflated with thermodynamic irreversibility A process may appear irreversible if one keeps track only of the system s coarse grained features and not of its microscopic details as is usually done in thermodynamics But at the microscopic level the principles of quantum mechanics imply that every process is completely reversible Starting in the mid 1970s Stephen Hawking and Jacob Bekenstein put forward theoretical arguments that suggested that black hole evaporation loses information and is therefore inconsistent with unitarity Crucially these arguments were meant to apply at the microscopic level and suggested that black hole evaporation is not only thermodynamically but microscopically irreversible This contradicts the principle of unitarity described above and leads to the information paradox Since the paradox suggested that quantum mechanics would be violated by black hole formation and evaporation Hawking framed the paradox in terms of the breakdown of predictability in gravitational collapse 2 The arguments for microscopic irreversibility were backed by Hawking s calculation of the spectrum of radiation that isolated black holes emit 14 This calculation utilized the framework of general relativity and quantum field theory The calculation of Hawking radiation is performed at the black hole horizon and does not account for the backreaction of spacetime geometry for a large enough black hole the curvature at the horizon is small and therefore both these theories should be valid Hawking relied on the no hair theorem to arrive at the conclusion that radiation emitted by black holes would depend only on a few macroscopic parameters such as the black hole s mass charge and spin but not on the details of the initial state that led to the formation of the black hole In addition the argument for information loss relied on the causal structure of the black hole spacetime which suggests that information in the interior should not affect any observation in the exterior including observations performed on the radiation the black hole emits If so the region of spacetime outside the black hole would lose information about the state of the interior after black hole evaporation leading to the loss of information Today some physicists believe that the holographic principle specifically the AdS CFT duality demonstrates that Hawking s conclusion was incorrect and that information is in fact preserved 15 Moreover recent analyses indicate that in semiclassical gravity the information loss paradox cannot be formulated in a self consistent manner due to the impossibility of simultaneously realizing all of the necessary assumptions required for its formulation 16 17 Black hole evaporation editMain article Hawking radiation nbsp The Penrose diagram of a black hole which forms and then completely evaporates away Time shown on vertical axis from bottom to top space shown on horizontal axis from left radius zero to right growing radius In 1973 1975 Stephen Hawking showed that black holes should slowly radiate away energy and he later argued that this leads to a contradiction with unitarity Hawking used the classical no hair theorem to argue that the form of this radiation called Hawking radiation would be completely independent of the initial state of the star or matter that collapsed to form the black hole He argued that the process of radiation would continue until the black hole had evaporated completely At the end of this process all the initial energy in the black hole would have been transferred to the radiation But according to Hawking s argument the radiation would retain no information about the initial state and therefore information about the initial state would be lost More specifically Hawking argued that the pattern of radiation emitted from the black hole would be random with a probability distribution controlled only by the black hole s initial temperature charge and angular momentum not by the initial state of the collapse The state produced by such a probabilistic process is called a mixed state in quantum mechanics Therefore Hawking argued that if the star or material that collapsed to form the black hole started in a specific pure quantum state the process of evaporation would transform the pure state into a mixed state This is inconsistent with the unitarity of quantum mechanical evolution discussed above The loss of information can be quantified in terms of the change in the fine grained von Neumann entropy of the state A pure state is assigned a von Neumann entropy of 0 whereas a mixed state has a finite entropy The unitary evolution of a state according to Schrodinger s equation preserves the entropy Therefore Hawking s argument suggests that the process of black hole evaporation cannot be described within the framework of unitary evolution Although this paradox is often phrased in terms of quantum mechanics the evolution from a pure state to a mixed state is also inconsistent with Liouville s theorem in classical physics see e g 18 In equations Hawking showed that if one denotes the creation and annihilation operators at a frequency w displaystyle omega nbsp for a quantum field propagating in the black hole background by a w displaystyle a omega nbsp and a w displaystyle a omega dagger nbsp then the expectation value of the product of these operators in the state formed by the collapse of a black hole would satisfy a w a w h a w k 1 1 e b w displaystyle langle a omega a omega dagger rangle rm hawk 1 over 1 e beta omega nbsp where b 1 k T displaystyle beta 1 kT nbsp k is the Boltzmann constant and T is the temperature of the black hole See for example section 2 2 of 9 This formula has two important aspects The first is that the form of the radiation depends only on a single parameter temperature even though the initial state of the black hole cannot be characterized by one parameter Second the formula implies that the black hole radiates mass at a rate given by d M d t a T 4 displaystyle dM over dt aT 4 nbsp where a is constant related to fundamental constants including the Stefan Boltzmann constant and certain properties of the black hole spacetime called its greybody factors The temperature of the black hole is in turn dependent on its mass charge and angular momentum For a Schwarzschild black hole the temperature is given byT ℏ c 3 8 p k G M displaystyle T hbar c 3 over 8 pi kGM nbsp This means that if the black hole starts out with an initial mass M 0 displaystyle M 0 nbsp it evaporates completely in a time proportional to M 0 3 displaystyle M 0 3 nbsp The important aspect of these formulas is that they suggest that the final gas of radiation formed through this process depends only on the black hole s temperature and is independent of other details of the initial state This leads to the following paradox Consider two distinct initial states that collapse to form a Schwarzschild black hole of the same mass Even though the states were distinct at first since the mass and hence the temperature of the black holes is the same they will emit the same Hawking radiation Once they evaporate completely in both cases one will be left with a featureless gas of radiation This gas cannot be used to distinguish between the two initial states and therefore information has been lost It is now widely believed that the reasoning leading to the paradox above is flawed Several solutions are reviewed below Popular culture editThe information paradox has received coverage in the popular media and has been described in popular science books Some of this coverage resulted from a widely publicized bet made in 1997 between John Preskill on the one hand with Hawking and Kip Thorne on the other that information was not lost in black holes The scientific debate on the paradox was described in Leonard Susskind s 2008 book The Black Hole War The book carefully notes that the war was purely a scientific one and that at a personal level the participants remained friends 19 Susskind writes that Hawking was eventually persuaded that black hole evaporation was unitary by the holographic principle which was first proposed by t Hooft further developed by Susskind and later given a precise string theory interpretation by the AdS CFT correspondence 20 In 2004 Hawking also conceded the 1997 bet paying Preskill with a baseball encyclopedia from which information can be retrieved at will Thorne refused to concede 21 Solutions editSince the 1997 proposal of the AdS CFT correspondence the predominant belief among physicists is that information is indeed preserved in black hole evaporation There are broadly two main streams of thought about how this happens Within what might broadly be termed the string theory community the dominant idea is that Hawking radiation is not precisely thermal but receives quantum correlations that encode information about the black hole s interior 9 This viewpoint has been the subject of extensive recent research and received further support in 2019 when researchers amended the computation of the entropy of the Hawking radiation in certain models and showed that the radiation is in fact dual to the black hole interior at late times 22 23 Hawking himself was influenced by this view and in 2004 published a paper that assumed the AdS CFT correspondence and argued that quantum perturbations of the event horizon could allow information to escape from a black hole which would resolve the information paradox 24 In this perspective it is the event horizon of the black hole that is important and not the black hole singularity The GISR Gravity Induced Spontaneous Radiation mechanism of references 25 26 can be considered an implementation of this idea but with the quantum perturbations of the event horizon replaced by the microscopic states of the black hole On the other hand within what might broadly be termed the loop quantum gravity community the dominant belief is that to resolve the information paradox it is important to understand how the black hole singularity is resolved These scenarios are broadly called remnant scenarios since information does not emerge gradually but remains in the black hole interior only to emerge at the end of black hole evaporation 12 Researchers also study other possibilities including a modification of the laws of quantum mechanics to allow for non unitary time evolution Some of these solutions are described at greater length below GISR mechanism resolution to the paradox edit Source 25 26 This resolution takes GISR as the underlying mechanism for Hawking radiation and considers the latter only as a result The physics ingredients of GISR are reflected in the following explicitly hermitian hamiltonianH w i w j 0 1 q ℏ w q a q a q u v u v ℏ w q g u n v ℓ b u n v ℓ a q g u n v ℓ ℏ G M u M v m a x S i m l PS M u n r PS M v ℓ r displaystyle begin aligned H amp begin pmatrix w i amp w j amp amp ddots amp amp amp scriptstyle it 0 scriptscriptstyle it 1 end pmatrix sum q hbar omega q a q dagger a q sum u v u v hbar omega q g u n v ell b u n v ell dagger a q g u n v ell amp propto frac hbar G M u M v mathrm max mathrm Siml Psi M u n r Psi M v ell r end aligned nbsp The first term of H displaystyle H nbsp is a diagonal matrix representing the microscopic state of black holes no heavier than the initial one The second term describes the vacuum fluctuation of particles around the black hole and is represented by many harmonic oscillators The third term couples the vacuum fluctuation modes to the black hole so that for each mode whose energy matches the difference between two states of the black hole the latter transits at an amplitude proportional to the similarity factor of the two states microscopic wave function Transitions from the higher energy state u displaystyle u nbsp to lower one v displaystyle v nbsp and vice versa are equally allowed at the hamiltonian level The form of this coupling is an imitation of the photon atom s coupling in Jaynes Cummings model of atomic physics It just replaces the vector potential of the photon in JC model with the binding energy of the to be radiated particles in black hole case and the dipole moment of the initial to final state of the atom with the similarity factor of the black hole s initial and final state wave function Although this form of coupling is ad hoc in a sense it introduces no new interaction except gravitation and it must happen this way or the other no matter how the final quantum gravitation theory grows like From the hamiltonian of GISR and the standard Schrodinger equation controlling the evolution of wave function of the system ps t u w 0 n 1 u w s w u w e i u t i w s t c u n w s t u n w s displaystyle psi t rangle sum u w 0 sum n 1 u sum omega s omega u w e iut i omega st c u n omega s t u n otimes omega s rangle nbsp i ℏ t ps t H ps t displaystyle i hbar partial t psi t rangle H psi t rangle nbsp where w s displaystyle omega s nbsp is the index of the radiated particles set with total energy w displaystyle omega nbsp In the short time evolution or single quantum emission case Wigner Wiesskopf approximation allows one 25 26 to show that the power spectrum of GISR is exactly of thermal type and the corresponding temperature equates to that of Hawking radiation But in the long time evolution or continuous quantum emission case the process is off equilibrium and is characterised by an initial state dependent black hole mass or temperature vs time curve The observers far away can retrieve the information stored in the initial black hole from this mass or temperature vs time curve The hamiltonian and wave function description of GISR allows one to calculate of the entanglement entropy between the black hole and its Hawking particles explicitly s B R tr B r B log r B t r R r R log r R displaystyle s BR operatorname tr B rho B log rho B tr R rho R log rho R nbsp r B tr R u w 0 n 1 u w s w u w c u n w s c u n w s displaystyle rho B operatorname tr R sum u w 0 sum n 1 u sum omega s omega u w c u n omega s rangle langle c u n omega s nbsp r R tr B u w 0 n 1 u w s w u w c u n w s c u n w s displaystyle rho R operatorname tr B sum u w 0 sum n 1 u sum omega s omega u w c u n omega s rangle langle c u n omega s nbsp Since the hamiltonian of GISR is explicitly hermitian the result is the expected Page curve naturally except some late time Rabi type oscillation which arises from the equal chance emission and absorption transition of the black hole as it approaches the vanishing stage The most important lesson this calculation brings to one is the middle state of an evaporating black hole cannot be considered as a semiclassical object with time dependent mass It must be considered as a superposition of many different mass ratio combinations of black hole Hawking particles References 25 26 designed a Schrodinger cat type gedanken experiment to illustrate this fact in which each Hawking particle kills a cat Since in the quantum description when a black hole radiates and how many particles it has radiated can not be determined definitely the middle state of the evaporating black hole has to be considered as a superposition of many cat groups each having a different ratio of dead members The biggest loophole in the argument for the information missing puzzle is the ignoring of this superposition Small corrections resolution to the paradox edit This idea suggests that Hawking s computation fails to keep track of small corrections that are eventually sufficient to preserve information about the initial state 27 28 9 This can be thought of as analogous to what happens during the mundane process of burning the radiation produced appears to be thermal but its fine grained features encode the precise details of the object that was burnt This idea is consistent with reversibility as required by quantum mechanics It is the dominant idea in what might broadly be termed the string theory approach to quantum gravity More precisely this line of resolution suggests that Hawking s computation is corrected so that the two point correlator computed by Hawking and described above becomes a w a w e x a c t a w a w h a w k 1 ϵ 2 displaystyle langle a omega a omega dagger rangle rm exact langle a omega a omega dagger rangle rm hawk 1 epsilon 2 nbsp and higher point correlators are similarly corrected a w 1 a w 1 a w 2 a w 2 a w n a w n e x a c t a w a w h a w k 1 ϵ n displaystyle langle a omega 1 a omega 1 dagger a omega 2 a omega 2 dagger ldots a omega n a omega n dagger rangle rm exact langle a omega a omega dagger rangle rm hawk 1 epsilon n nbsp The equations above utilize a concise notation and the correction factors ϵ i displaystyle epsilon i nbsp may depend on the temperature the frequencies of the operators that enter the correlation function and other details of the black hole Maldacena initially explored such corrections in a simple version of the paradox 29 They were then analyzed by Papadodimas and Raju 30 31 32 who showed that corrections to low point correlators such as ϵ 2 displaystyle epsilon 2 nbsp above that were exponentially suppressed in the black hole entropy were sufficient to preserve unitarity and significant corrections were required only for very high point correlators The mechanism that allowed the right small corrections to form was initially postulated in terms of a loss of exact locality in quantum gravity so that the black hole interior and the radiation were described by the same degrees of freedom Recent developments suggest that such a mechanism can be realized precisely within semiclassical gravity and allows information to escape 8 See Recent developments Fuzzball resolution to the paradox edit Some researchers most notably Samir Mathur have argued 11 that the small corrections required to preserve information cannot be obtained while preserving the semiclassical form of the black hole interior and instead require a modification of the black hole geometry to a fuzzball 33 34 35 The defining characteristic of the fuzzball is that it has structure at the horizon scale This should be contrasted with the conventional picture of the black hole interior as a largely featureless region of space For a large enough black hole tidal effects are very small at the black hole horizon and remain small in the interior until one approaches the black hole singularity Therefore in the conventional picture an observer who crosses the horizon may not even realize they have done so until they start approaching the singularity In contrast the fuzzball proposal suggests that the black hole horizon is not empty Consequently it is also not information free since the details of the structure at the surface of the horizon preserve information about the black hole s initial state This structure also affects the outgoing Hawking radiation and thereby allows information to escape from the fuzzball The fuzzball proposal is supported by the existence of a large number of gravitational solutions called microstate geometries 36 37 38 39 40 The firewall proposal can be thought of as a variant of the fuzzball proposal that posits that the black hole interior is replaced by a firewall rather than a fuzzball Operationally the difference between the fuzzball and the firewall proposals has to do with whether an observer crossing the horizon of the black hole encounters high energy matter suggested by the firewall proposal or merely low energy structure suggested by the fuzzball proposal The firewall proposal also originated with an exploration of Mathur s argument that small corrections are insufficient to resolve the information paradox 11 The fuzzball and firewall proposals have been questioned for lacking an appropriate mechanism that can generate structure at the horizon scale 9 Strong quantum effects resolution to the paradox edit In the final stages of black hole evaporation quantum effects become important and cannot be ignored The precise understanding of this phase of black hole evaporation requires a complete theory of quantum gravity Within what might be termed the loop quantum gravity approach to black holes it is believed that understanding this phase of evaporation is crucial to resolving the information paradox This perspective holds that Hawking s computation is reliable until the final stages of black hole evaporation when information suddenly escapes 27 28 41 12 Another possibility along the same lines is that black hole evaporation simply stops when the black hole becomes Planck sized Such scenarios are called remnant scenarios 27 28 An appealing aspect of this perspective is that a significant deviation from classical and semiclassical gravity is needed only in the regime in which the effects of quantum gravity are expected to dominate On the other hand this idea implies that just before the sudden escape of information a very small black hole must be able to store an arbitrary amount of information and have a very large number of internal states Therefore researchers who follow this idea must take care to avoid the common criticism of remnant type scenarios which is that they might may violate the Bekenstein bound and lead to a violation of effective field theory due to the production of remnants as virtual particles in ordinary scattering events 42 43 Soft hair resolution to the paradox edit In 2016 Hawking Perry and Strominger noted that black holes must contain soft hair 44 45 46 Particles that have no rest mass like photons and gravitons can exist with arbitrarily low energy and are called soft particles The soft hair resolution posits that information about the initial state is stored in such soft particles The existence of such soft hair is a peculiarity of four dimensional asymptotically flat space and therefore this resolution to the paradox does not carry over to black holes in Anti de Sitter space or black holes in other dimensions Information is irretrievably lost edit A minority view in the theoretical physics community is that information is genuinely lost when black holes form and evaporate 27 28 This conclusion follows if one assumes that the predictions of semiclassical gravity and the causal structure of the black hole spacetime are exact But this conclusion leads to the loss of unitarity Banks Susskind and Peskin argue that in some cases loss of unitarity also implies violation of energy momentum conservation or locality but this argument may possibly be evaded in systems with a large number of degrees of freedom 47 According to Roger Penrose loss of unitarity in quantum systems is not a problem quantum measurements are by themselves already non unitary Penrose claims that quantum systems will in fact no longer evolve unitarily as soon as gravitation comes into play precisely as in black holes The Conformal Cyclic Cosmology Penrose advocates critically depends on the condition that information is in fact lost in black holes This new cosmological model might be tested experimentally by detailed analysis of the cosmic microwave background radiation CMB if true the CMB should exhibit circular patterns with slightly lower or slightly higher temperatures In November 2010 Penrose and V G Gurzadyan announced they had found evidence of such circular patterns in data from the Wilkinson Microwave Anisotropy Probe WMAP corroborated by data from the BOOMERanG experiment 48 The significance of these findings was debated 49 50 51 52 Along similar lines Modak Ortiz Pena and Sudarsky have argued that the paradox can be dissolved by invoking foundational issues of quantum theory often called the measurement problem of quantum mechanics 53 This work built on an earlier proposal by Okon and Sudarsky on the benefits of objective collapse theory in a much broader context 54 The original motivation of these studies was Penrose s long standing proposal wherein collapse of the wave function is said to be inevitable in the presence of black holes and even under the influence of gravitational field 55 56 Experimental verification of collapse theories is an ongoing effort 57 Other proposed resolutions edit Some other resolutions to the paradox have also been explored These are listed briefly below Information is stored in a large remnant 58 59 This idea suggests that Hawking radiation stops before the black hole reaches the Planck size Since the black hole never evaporates information about its initial state can remain inside the black hole and the paradox disappears But there is no accepted mechanism that would allow Hawking radiation to stop while the black hole remains macroscopic Information is stored in a baby universe that separates from our own universe 28 60 Some models of gravity such as the Einstein Cartan theory of gravity which extends general relativity to matter with intrinsic angular momentum spin predict the formation of such baby universes No violation of known general principles of physics is needed There are no physical constraints on the number of the universes even though only one remains observable The Einstein Cartan theory is difficult to test because its predictions are significantly different from general relativistic ones only at extremely high densities Information is encoded in the correlations between future and past 61 62 The final state proposal 63 suggests that boundary conditions must be imposed at the black hole singularity which from a causal perspective is to the future of all events in the black hole interior This helps reconcile black hole evaporation with unitarity but contradicts the intuitive idea of causality and locality of time evolution Quantum channel theoryIn 2014 Chris Adami argued that analysis using quantum channel theory causes any apparent paradox to disappear Adami rejects black hole complementarity arguing instead that no space like surface contains duplicated quantum information 64 65 Recent developments editSignificant progress was made in 2019 when starting with work by Penington 66 and Almheiri Engelhardt Marolf and Maxfield 67 researchers were able to compute the von Neumann entropy of the radiation black holes emit in specific models of quantum gravity 8 22 23 68 These calculations showed that in these models the entropy of this radiation first rises and then falls back to zero As explained above one way to frame the information paradox is that Hawking s calculation appears to show that the von Neumann entropy of Hawking radiation increases throughout the lifetime of the black hole But if the black hole formed from a pure state with zero entropy unitarity implies that the entropy of the Hawking radiation must decrease back to zero once the black hole evaporates completely i e the Page curve 6 Therefore the results above provide a resolution to the information paradox at least in the specific models of gravity considered in these models These calculations compute the entropy by first analytically continuing the spacetime to a Euclidean spacetime and then using the replica trick The path integral that computes the entropy receives contributions from novel Euclidean configurations called replica wormholes These wormholes exist in a Wick rotated spacetime and should not be conflated with wormholes in the original spacetime The inclusion of these wormhole geometries in the computation prevents the entropy from increasing indefinitely 7 These calculations also imply that for sufficiently old black holes one can perform operations on the Hawking radiation that affect the black hole interior This result has implications for the related firewall paradox and provides evidence for the physical picture suggested by the ER EPR proposal 7 black hole complementarity and the Papadodimas Raju proposal It has been noted that the models used to perform the Page curve computations above have consistently involved theories where the graviton has mass unlike the real world where the graviton is massless 69 These models have also involved a nongravitational bath which can be thought of as an artificial interface where gravity ceases to act It has also been argued that a key technique used in the Page curve computations the island proposal is inconsistent in standard theories of gravity with a Gauss law 70 This would suggest that the Page curve computations are inapplicable to realistic black holes and work only in special toy models of gravity The validity of these criticisms remains under investigation there is no consensus in the research community 71 72 In 2020 Laddha Prabhu Raju and Shrivastava argued that as a result of the effects of quantum gravity information should always be available outside the black hole 73 This would imply that the von Neumann entropy of the region outside the black hole always remains zero as opposed to the proposal above where the von Neumann entropy first rises and then falls Extending this Raju argued that Hawking s error was to assume that the region outside the black hole would have no information about its interior 74 Hawking formalized this assumption in terms of a principle of ignorance 2 The principle of ignorance is correct in classical gravity when quantum mechanical effects are neglected by virtue of the no hair theorem It is also correct when only quantum mechanical effects are considered and gravitational effects are neglected But Raju argued that when both quantum mechanical and gravitational effects are accounted for the principle of ignorance should be replaced by a principle of holography of information 9 that would imply just the opposite all the information about the interior can be regained from the exterior through suitably precise measurements The two recent resolutions of the information paradox described above via replica wormholes and the holography of information share the feature that observables in the black hole interior also describe observables far from the black hole This implies a loss of exact locality in quantum gravity Although this loss of locality is very small it persists over large distance scales This feature has been challenged by some researchers 75 See also editAdS CFT correspondence Beyond black holes Black hole complementarity Cosmic censorship hypothesis Firewall physics Fuzzball string theory Holographic principle List of paradoxes Maxwell s demon No hair theorem No hiding theorem Thorne Hawking Preskill betReferences edit The short form information paradox is also used for the Arrow information paradox a b c Hawking S W 1976 Breakdown of predictability in gravitational collapse Physical Review D 14 10 2460 2473 Bibcode 1976PhRvD 14 2460H doi 10 1103 PhysRevD 14 2460 Hawking Stephen 2006 The Hawking Paradox Discovery Channel Archived from the original on 2 August 2013 Retrieved 13 August 2013 Overbye Dennis 12 August 2013 A Black Hole Mystery Wrapped in a Firewall Paradox The New York Times Retrieved 12 August 2013 Page Don N 6 December 1993 Information in Black Hole Radiation Physical Review Letters 71 23 3743 3746 arXiv hep th 9306083 Bibcode 1993PhRvL 71 3743P doi 10 1103 PhysRevLett 71 3743 PMID 10055062 S2CID 9363821 a b Cox Brian Forshaw Jeff 2022 Black Holes the key to understanding the Universe New York NY HarperCollins Publishers p 220 225 ISBN 9780062936691 Page curve a b c Musser Gerge 30 October 2020 The Most Famous Paradox in Physics Nears Its End Quanta Magazine Retrieved 31 October 2020 a b c d Almheiri Ahmed Hartman Thomas Maldacena Juan Shaghoulian Edgar Tajdini Amirhossein 21 July 2021 The entropy of Hawking radiation Reviews of Modern Physics 93 3 035002 arXiv 2006 06872 Bibcode 2021RvMP 93c5002A doi 10 1103 RevModPhys 93 035002 S2CID 219635921 a b c d e f g Raju Suvrat January 2022 Lessons from the information paradox Physics Reports 943 1 80 arXiv 2012 05770 Bibcode 2022PhR 943 1R doi 10 1016 j physrep 2021 10 001 S2CID 228083488 Grumiller Daniel Sheikh Jabbari Mohammad Mehdi 2022 Black Hole Physics From Collapse to Evaporation Switzerland Springer Graduate Texts in Physics doi 10 1007 978 3 031 10343 8 ISBN 978 3 031 10342 1 S2CID 253372811 a b c Mathur Samir D 21 November 2009 The information paradox a pedagogical introduction Classical and Quantum Gravity 26 22 224001 arXiv 0909 1038 Bibcode 2009CQGra 26v4001M doi 10 1088 0264 9381 26 22 224001 S2CID 18878424 a b c Perez Alejandro 1 December 2017 Black holes in loop quantum gravity Reports on Progress in Physics 80 12 126901 arXiv 1703 09149 Bibcode 2017RPPh 80l6901P doi 10 1088 1361 6633 aa7e14 PMID 28696338 S2CID 7047942 Hossenfelder Sabine 23 August 2019 How do black holes destroy information and why is that a problem Back ReAction Retrieved 23 November 2019 Hawking Stephen 1 August 1975 Particle Creation by Black Holes PDF Commun Math Phys 43 3 199 220 Bibcode 1975CMaPh 43 199H doi 10 1007 BF02345020 S2CID 55539246 Barbon J L F 2009 Black holes information and holography Journal of Physics Conference Series 171 1 012009 Bibcode 2009JPhCS 171a2009B doi 10 1088 1742 6596 171 1 012009 http iopscience iop org 1742 6596 171 1 012009 p 1 The most important departure from conventional thinking in recent years the holographic principle provides a definition of quantum gravity and guarantees that the whole process is unitary Luca Buoninfante Francesco Di Filippo Shinji Mukohyama 2021 On the assumptions leading to the information loss paradox Journal of High Energy Physics 2021 10 81 arXiv 2107 05662 Bibcode 2021JHEP 10 081B doi 10 1007 JHEP10 2021 081 S2CID 235828913 Robert B Mann Sebastian Murk Daniel R Terno 2022 Surface gravity and the information loss problem Physical Review D 105 12 124032 arXiv 2109 13939 Bibcode 2022PhRvD 105l4032M doi 10 1103 PhysRevD 105 124032 S2CID 249799593 L Susskind and J Lindesay Black Holes Information and the String Theory Revolution World Scientific 2005 pp 69 84 ISBN 978 981 256 083 4 Susskind Leonard 7 July 2008 The Black Hole War My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics Little Brown p 10 ISBN 9780316032698 Retrieved 7 April 2015 It was not a war between angry enemies indeed the main participants are all friends But it was a fierce intellectual struggle of ideas between people who deeply respected each other but also profoundly disagreed Susskind Quashes Hawking in Quarrel Over Quantum Quandary CALIFORNIA LITERARY REVIEW 9 July 2008 Archived from the original on 2 April 2012 July 21 2004 Hawking concedes bet on black hole information loss www aps org American Physical Society Retrieved 5 January 2022 a b Penington G Shenker S Stanford D Yang Z 2019 Replica wormholes and the black hole interior arXiv 1911 11977 hep th a b Almheiri A Hartman T Maldacena J Shaghoulian E Tajdini A 2019 Replica Wormholes and the Entropy of Hawking Radiation Journal of High Energy Physics 2020 5 arXiv 1911 12333 doi 10 1007 JHEP05 2020 013 S2CID 208310010 Baez John This Week s Finds in Mathematical Physics Week 207 Retrieved 25 September 2011 a b c d Ding fang Zeng 2022 Spontaneous Radiation of Black Holes Nuclear Physics B 977 115722 arXiv 2112 12531 Bibcode 2022NuPhB 97715722Z doi 10 1016 j nuclphysb 2022 115722 S2CID 245425064 a b c d Ding fang Zeng 2022 Gravitation Induced Spontaneous Radiation Nuclear Physics B 990 116171 arXiv 2207 05158 doi 10 1016 j nuclphysb 2023 116171 S2CID 257840729 a b c d Giddings Steven B 1995 The black hole information paradox Particles Strings and Cosmology Johns Hopkins Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5 arXiv hep th 9508151 Bibcode 1995hep th 8151G a b c d e Preskill John 1992 Do Black Holes Destroy Information International Symposium on Black Holes Membranes Wormholes and Superstrings arXiv hep th 9209058 Bibcode 1993bhmw conf 22P Maldacena Juan 12 April 2003 Eternal black holes in anti de Sitter Journal of High Energy Physics 2003 4 021 arXiv hep th 0106112 Bibcode 2003JHEP 04 021M doi 10 1088 1126 6708 2003 04 021 S2CID 7767700 Papadodimas Kyriakos Raju Suvrat 30 October 2013 An infalling observer in AdS CFT Journal of High Energy Physics 2013 10 212 arXiv 1211 6767 Bibcode 2013JHEP 10 212P doi 10 1007 JHEP10 2013 212 S2CID 53650802 Papadodimas Kyriakos Raju Suvrat 29 April 2014 State dependent bulk boundary maps and black hole complementarity Physical Review D 89 8 086010 arXiv 1310 6335 Bibcode 2014PhRvD 89h6010P doi 10 1103 PhysRevD 89 086010 S2CID 119118804 Papadodimas Kyriakos Raju Suvrat 5 February 2014 Black Hole Interior in the Holographic Correspondence and the Information Paradox Physical Review Letters 112 5 051301 arXiv 1310 6334 Bibcode 2014PhRvL 112e1301P doi 10 1103 PhysRevLett 112 051301 PMID 24580584 S2CID 118867229 Skenderis Kostas Taylor Marika October 2008 The fuzzball proposal for black holes Physics Reports 467 4 5 117 171 arXiv 0804 0552 Bibcode 2008PhR 467 117S doi 10 1016 j physrep 2008 08 001 S2CID 118403957 Lunin Oleg Mathur Samir D February 2002 AdS CFT duality and the black hole information paradox Nuclear Physics B 623 1 2 342 394 arXiv hep th 0109154 Bibcode 2002NuPhB 623 342L doi 10 1016 S0550 3213 01 00620 4 S2CID 12265416 Mathur S D 15 July 2005 The fuzzball proposal for black holes an elementary review Fortschritte der Physik 53 7 8 793 827 arXiv hep th 0502050 Bibcode 2005ForPh 53 793M doi 10 1002 prop 200410203 S2CID 15083147 Mathur Samir D Saxena Ashish Srivastava Yogesh K March 2004 Constructing hair for the three charge hole Nuclear Physics B 680 1 3 415 449 arXiv hep th 0311092 Bibcode 2004NuPhB 680 415M doi 10 1016 j nuclphysb 2003 12 022 S2CID 119490735 Kanitscheider Ingmar Skenderis Kostas Taylor Marika 15 June 2007 Fuzzballs with internal excitations Journal of High Energy Physics 2007 6 056 arXiv 0704 0690 Bibcode 2007JHEP 06 056K doi 10 1088 1126 6708 2007 06 056 ISSN 1029 8479 S2CID 18638163 Bena Iosif Warner Nicholas P 2008 Black Holes Black Rings and their Microstates Supersymmetric Mechanics Vol 3 Lecture Notes in Physics Vol 755 pp 1 92 arXiv hep th 0701216 doi 10 1007 978 3 540 79523 0 1 ISBN 978 3 540 79523 0 S2CID 119096225 Bena Iosif Giusto Stefano Russo Rodolfo Shigemori Masaki Warner Nicholas P May 2015 Habemus Superstratum A constructive proof of the existence of superstrata Journal of High Energy Physics 2015 5 110 arXiv 1503 01463 Bibcode 2015JHEP 05 110B doi 10 1007 JHEP05 2015 110 ISSN 1029 8479 S2CID 53476809 Bena Iosif Giusto Stefano Martinec Emil J Russo Rodolfo Shigemori Masaki Turton David Warner Nicholas P 8 November 2016 Smooth horizonless geometries deep inside the black hole regime Physical Review Letters 117 20 201601 arXiv 1607 03908 Bibcode 2016PhRvL 117t1601B doi 10 1103 PhysRevLett 117 201601 ISSN 0031 9007 PMID 27886509 S2CID 29536476 Ashtekar Abhay 24 January 2020 Black Hole Evaporation A Perspective from Loop Quantum Gravity Universe 6 2 21 arXiv 2001 08833 Bibcode 2020Univ 6 21A doi 10 3390 universe6020021 Giddings Steven B 15 January 1994 Constraints on black hole remnants Physical Review D 49 2 947 957 arXiv hep th 9304027 Bibcode 1994PhRvD 49 947G doi 10 1103 PhysRevD 49 947 PMID 10017053 S2CID 10123547 Giddings Steven B 1998 Comments on information loss and remnants Physical Review D 49 8 4078 4088 arXiv hep th 9310101 Bibcode 1994PhRvD 49 4078G doi 10 1103 PhysRevD 49 4078 PMID 10017412 S2CID 17746408 Stephen Hawking s New Black Hole Paper Translated An Interview with Co Author Andrew Strominger Scientific American Blog Network Retrieved 9 January 2016 Hawking Stephen W Perry Malcolm J Strominger Andrew 5 January 2016 Soft Hair on Black Holes Physical Review Letters 116 23 231301 arXiv 1601 00921 Bibcode 2016PhRvL 116w1301H doi 10 1103 PhysRevLett 116 231301 PMID 27341223 S2CID 16198886 Castelvecchi Davide 27 January 2016 Hawking s Latest Black Hole Paper Splits Physicists Nature Scientific American Retrieved 31 October 2020 Nikolic Hrvoje 2015 Violation of unitarity by Hawking radiation does not violate energy momentum conservation Journal of Cosmology and Astroparticle Physics 2015 4 002 arXiv 1502 04324 Bibcode 2015JCAP 04 002N doi 10 1088 1475 7516 2015 04 002 S2CID 44000069 Gurzadyan V G Penrose R 2010 Concentric circles in WMAP data may provide evidence of violent pre Big Bang activity arXiv 1011 3706 astro ph CO Wehus I K Eriksen H K 2010 A search for concentric circles in the 7 year WMAP temperature sky maps The Astrophysical Journal 733 2 L29 arXiv 1012 1268 Bibcode 2011ApJ 733L 29W doi 10 1088 2041 8205 733 2 L29 S2CID 119284906 Moss A Scott D Zibin J P 2010 No evidence for anomalously low variance circles on the sky Journal of Cosmology and Astroparticle Physics 2011 4 033 arXiv 1012 1305 Bibcode 2011JCAP 04 033M doi 10 1088 1475 7516 2011 04 033 S2CID 118433733 Hajian A 2010 Are There Echoes From The Pre Big Bang Universe A Search for Low Variance Circles in the CMB Sky The Astrophysical Journal 740 2 52 arXiv 1012 1656 Bibcode 2011ApJ 740 52H doi 10 1088 0004 637X 740 2 52 S2CID 118515562 Eriksen H K Wehus I K 2010 Comment on CCC predicted low variance circles in CMB sky and LCDM arXiv 1105 1081 astro ph CO Modak Sujoy K Ortiz Leonardo Pena Igor Sudarsky Daniel 2015 Black hole evaporation information loss but no paradox General Relativity and Gravitation 47 10 120 arXiv 1406 4898 Bibcode 2015GReGr 47 120M doi 10 1007 s10714 015 1960 y ISSN 1572 9532 S2CID 118447230 Okon Elias Sudarsky Daniel 2014 Benefits of Objective Collapse Models for Cosmology and Quantum Gravity Foundations of Physics 44 2 114 143 arXiv 1309 1730 Bibcode 2014FoPh 44 114O doi 10 1007 s10701 014 9772 6 ISSN 1572 9516 S2CID 67831520 Penrose Roger 1989 Newton quantum theory and reality Three Hundred Years of Gravitation Cambridge University Press p 17 ISBN 9780521379762 Penrose Roger 1996 On Gravity s role in Quantum State Reduction General Relativity and Gravitation 28 5 581 600 Bibcode 1996GReGr 28 581P CiteSeerX 10 1 1 468 2731 doi 10 1007 BF02105068 ISSN 1572 9532 S2CID 44038399 Bassi Angelo et al 2013 Models of wave function collapse underlying theories and experimental tests Rev Mod Phys 85 2 471 527 arXiv 1204 4325 Bibcode 2013RvMP 85 471B doi 10 1103 RevModPhys 85 471 ISSN 1539 0756 S2CID 119261020 Giddings Steven 1992 Black Holes and Massive Remnants Physical Review D 46 4 1347 1352 arXiv hep th 9203059 Bibcode 1992PhRvD 46 1347G doi 10 1103 PhysRevD 46 1347 PMID 10015052 S2CID 1741527 Nikolic Hrvoje 2015 Gravitational crystal inside the black hole Modern Physics Letters A 30 37 1550201 arXiv 1505 04088 Bibcode 2015MPLA 3050201N doi 10 1142 S0217732315502016 S2CID 62789858 Poplawski Nikodem J 2010 Cosmology with torsion An alternative to cosmic inflation Physics Letters B 694 3 181 185 arXiv 1007 0587 Bibcode 2010PhLB 694 181P doi 10 1016 j physletb 2010 09 056 Hartle James B 1998 Generalized Quantum Theory in Evaporating Black Hole Spacetimes Black Holes and Relativistic Stars 195 arXiv gr qc 9705022 Bibcode 1998bhrs conf 195H Nikolic Hrvoje 2009 Resolving the black hole information paradox by treating time on an equal footing with space Physics Letters B 678 2 218 221 arXiv 0905 0538 Bibcode 2009PhLB 678 218N doi 10 1016 j physletb 2009 06 029 S2CID 15074164 Horowitz Gary T Maldacena Juan 6 February 2004 The black hole final state Journal of High Energy Physics 2004 2 008 arXiv hep th 0310281 Bibcode 2004JHEP 02 008H doi 10 1088 1126 6708 2004 02 008 S2CID 1615746 Bradler Kamil Adami Christoph 2014 The capacity of black holes to transmit quantum information Journal of High Energy Physics 2014 5 95 arXiv 1310 7914 Bibcode 2014JHEP 05 095B doi 10 1007 JHEP05 2014 095 ISSN 1029 8479 S2CID 118353646 Gyongyosi Laszlo 2014 A statistical model of information evaporation of perfectly reflecting black holes International Journal of Quantum Information 12 7n08 1560025 arXiv 1311 3598 Bibcode 2014IJQI 1260025G doi 10 1142 s0219749915600254 S2CID 5203875 Penington Geoffrey September 2020 Entanglement wedge reconstruction and the information paradox Journal of High Energy Physics 2020 9 2 arXiv 1905 08255 Bibcode 2020JHEP 09 002P doi 10 1007 JHEP09 2020 002 S2CID 160009640 Almheiri Ahmed Engelhardt Netta Marolf Donald Maxfield Henry December 2019 The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole Journal of High Energy Physics 2019 12 63 arXiv 1905 08762 Bibcode 2019JHEP 12 063A doi 10 1007 JHEP12 2019 063 S2CID 160009599 Bousso Raphael Dong Xi Engelhardt Netta Faulkner Thomas Hartman Thomas Shenker Stephen H Stanford Douglas 2 March 2022 Snowmass White Paper Quantum Aspects of Black Holes and the Emergence of Spacetime arXiv 2201 03096 hep th Geng Hao Karch Andreas September 2020 Massive islands Journal of High Energy Physics 2020 9 121 arXiv 2006 02438 Bibcode 2020JHEP 09 121G doi 10 1007 JHEP09 2020 121 S2CID 219304676 Geng Hao Karch Andreas Perez Pardavila Carlos Raju Suvrat Randall Lisa Riojas Marcos Shashi Sanjit January 2022 Inconsistency of islands in theories with long range gravity Journal of High Energy Physics 2022 1 182 arXiv 2107 03390 Bibcode 2022JHEP 01 182G doi 10 1007 JHEP01 2022 182 S2CID 235765761 Bousso Raphael Dong Xi Engelhardt Netta Faulkner Thomas Hartman Thomas Shenker Stephen H Stanford Douglas 2 March 2022 Snowmass White Paper Quantum Aspects of Black Holes and the Emergence of Spacetime arXiv 2201 03096 hep th Agrawal Prateek Cesarotti Cari Karch Andreas Mishra Rashmish K Randall Lisa Sundrum Raman 14 March 2022 Warped Compactifications in Particle Physics Cosmology and Quantum Gravity arXiv 2203 07533 hep th Laddha Alok Prabhu Siddharth Raju Suvrat Shrivastava Pushkal 18 February 2021 The Holographic Nature of Null Infinity SciPost Physics 10 2 041 arXiv 2002 02448 Bibcode 2021ScPP 10 41L doi 10 21468 SciPostPhys 10 2 041 S2CID 211044141 Raju Suvrat 2022 Failure of the split property in gravity and the information paradox Classical and Quantum Gravity 39 6 064002 arXiv 2110 05470 Bibcode 2022CQGra 39f4002R doi 10 1088 1361 6382 ac482b S2CID 238583439 Guo Bin Hughes Marcel R R Mathur Samir D Mehta Mathur 28 December 2021 Contrasting the fuzzball and wormhole paradigms for black holes Turkish Journal of Physics 45 6 281 365 arXiv 2111 05295 doi 10 3906 fiz 2111 13 S2CID 243861186 External links editBlack Hole Information Loss Problem a USENET physics FAQ page Preskill John 1992 Do black holes destroy information arXiv hep th 9209058 Discusses methods of attack on the problem and their apparent shortcomings Peplow Mark 2004 Hawking changes his mind about black holes Nature doi 10 1038 news040712 12 Report on Hawking s 2004 theory in Nature Hawking S W 2005 Information loss in black holes Physical Review D 72 8 084013 arXiv hep th 0507171 Bibcode 2005PhRvD 72h4013H doi 10 1103 PhysRevD 72 084013 S2CID 118893360 Stephen Hawking s purported solution to the black hole unitarity paradox Hawking and unitarity a July 2005 discussion of the information loss paradox and Stephen Hawking s role in it The Hawking Paradox BBC Horizon documentary 2005 Horizon The Hawking Paradox at IMDb nbsp A Black Hole Mystery Wrapped in a Firewall Paradox Retrieved from https en wikipedia org w index php title Black hole information paradox amp oldid 1214373530, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.