fbpx
Wikipedia

Hot-wire barretter

The hot-wire barretter was a demodulating detector, invented in 1902 by Reginald Fessenden, that found limited use in early radio receivers. In effect, it was a highly sensitive thermoresistor, which could demodulate amplitude-modulated signals, something that the coherer (the standard detector of the time) could not do.[1]

Fessenden barretter

The first device used to demodulate amplitude modulated signals, it was later superseded by the electrolytic detector, also generally attributed to Fessenden. The barretter principle is still used as a detector for microwave radiation, similar to a bolometer.

Description and construction edit

Fessenden's 1902 patent describes the construction of the device. A fine platinum wire, about 0.003 inches (0.08 mm) in diameter, is embedded in the middle of a silver tube having a diameter of about 0.1 inches (2.5 mm). This compound wire is then drawn until the silver wire has a diameter of about 0.002 inches (0.05 mm); as the platinum wire within it is reduced in the same ratio, it is drawn down to a final diameter of 0.00006 inches (1.5 μm). The result is called Wollaston wire.

The silver cladding is etched off a short piece of the composite wire, leaving an extremely fine platinum wire; this is supported, on two heavier silver wires, in a loop inside a glass bulb. The leads are taken out through the glass envelope, and the whole device is put under vacuum and then sealed.

Operation edit

The hot-wire barretter depends upon the increase of a metal resistivity with increasing temperature. The device is biased by a direct current adjusted to heat the wire to its most sensitive temperature. When there is an oscillating current from the antenna through the extremely fine platinum wire loop, the wire is further heated as the current increases and cools as the current decreases again. As the wire heats and cools, it varies its resistance in response to the signals passing through it. Because of the low thermal mass of the wire, it is capable of responding quickly enough to vary its resistance in response to audio signals. However, it cannot vary its resistance fast enough to respond to the much higher radio frequencies. The signal is demodulated because the current supplied by the biasing source varies with the changing wire resistance. Headphones are connected in series with the DC circuit, and the variations in the current are rendered as sound.

See also edit

References edit

  1. ^ Tapan K. Sarkar, Robert Mailloux, Arthur A. Oliner, Magdalena Salazar-Palma, Dipak L. Sengupta, "History of Wireless", ISBN 978-0-471-78301-5, January 2006, Wiley-IEEE Press, page 369.

External links edit

Patents edit

  • US 706744 , "Current Actuated Wave Responsive Device" – August, 1902 ("barretter" detector)
  • US 727331 , "Receiver for Electromagnetic Waves" – May, 1903 (improved "barretter")

Other edit

  • United States Early Radio History
  • Secor, H. Winfield (January, 1917). Radio Detector Development. The Electrical Experimenter, pages 652+, accessed 2007-12-20.

wire, barretter, wire, barretter, demodulating, detector, invented, 1902, reginald, fessenden, that, found, limited, early, radio, receivers, effect, highly, sensitive, thermoresistor, which, could, demodulate, amplitude, modulated, signals, something, that, c. The hot wire barretter was a demodulating detector invented in 1902 by Reginald Fessenden that found limited use in early radio receivers In effect it was a highly sensitive thermoresistor which could demodulate amplitude modulated signals something that the coherer the standard detector of the time could not do 1 Fessenden barretterThe first device used to demodulate amplitude modulated signals it was later superseded by the electrolytic detector also generally attributed to Fessenden The barretter principle is still used as a detector for microwave radiation similar to a bolometer Contents 1 Description and construction 2 Operation 3 See also 4 References 5 External links 5 1 Patents 5 2 OtherDescription and construction editFessenden s 1902 patent describes the construction of the device A fine platinum wire about 0 003 inches 0 08 mm in diameter is embedded in the middle of a silver tube having a diameter of about 0 1 inches 2 5 mm This compound wire is then drawn until the silver wire has a diameter of about 0 002 inches 0 05 mm as the platinum wire within it is reduced in the same ratio it is drawn down to a final diameter of 0 00006 inches 1 5 mm The result is called Wollaston wire The silver cladding is etched off a short piece of the composite wire leaving an extremely fine platinum wire this is supported on two heavier silver wires in a loop inside a glass bulb The leads are taken out through the glass envelope and the whole device is put under vacuum and then sealed Operation editThe hot wire barretter depends upon the increase of a metal resistivity with increasing temperature The device is biased by a direct current adjusted to heat the wire to its most sensitive temperature When there is an oscillating current from the antenna through the extremely fine platinum wire loop the wire is further heated as the current increases and cools as the current decreases again As the wire heats and cools it varies its resistance in response to the signals passing through it Because of the low thermal mass of the wire it is capable of responding quickly enough to vary its resistance in response to audio signals However it cannot vary its resistance fast enough to respond to the much higher radio frequencies The signal is demodulated because the current supplied by the biasing source varies with the changing wire resistance Headphones are connected in series with the DC circuit and the variations in the current are rendered as sound See also edit nbsp Electronics portal Electrolytic detector a development of the barretter detector Iron hydrogen resistorReferences edit Tapan K Sarkar Robert Mailloux Arthur A Oliner Magdalena Salazar Palma Dipak L Sengupta History of Wireless ISBN 978 0 471 78301 5 January 2006 Wiley IEEE Press page 369 External links editPatents edit US 706744 Current Actuated Wave Responsive Device August 1902 barretter detector US 727331 Receiver for Electromagnetic Waves May 1903 improved barretter Other edit Detectors of electrical oscillations Tech Definitions Radio Concepts United States Early Radio History Secor H Winfield January 1917 Radio Detector Development The Electrical Experimenter pages 652 accessed 2007 12 20 Retrieved from https en wikipedia org w index php title Hot wire barretter amp oldid 1187864533, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.