fbpx
Wikipedia

Wagonway

Wagonways (also spelt Waggonways), also known as horse-drawn railways and horse-drawn railroad consisted of the horses, equipment and tracks used for hauling wagons, which preceded steam-powered railways. The terms plateway, tramway, dramway, were used. The advantage of wagonways was that far bigger loads could be transported with the same power.

Benjamin Outram's Little Eaton Gangway in July 1908 with the last train of loaded coal wagons arriving.

Ancient systems edit

The earliest [citation needed] evidence is of the 6 to 8.5 km (3.7 to 5.3 mi) long Diolkos paved trackway, which transported boats across the Isthmus of Corinth in Greece from around 600 BC.[1][2][3][4][5] Wheeled vehicles pulled by men and animals ran in grooves in limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos was in use for over 650 years, until at least the 1st century AD.[5] Paved trackways were later built in Roman Egypt.[6]

Wooden rails edit

 
Minecart shown in De Re Metallica (1556). The guide pin fits in a groove between two wooden planks.

Such an operation was illustrated in Germany in 1556 by Georgius Agricola (image right) in his work De re metallica.[7] This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde ("dogs") from the noise they made on the tracks.[8]

 
Minecart from 16th century, found in Transylvania

Around 1568, German miners working in the Mines Royal near Keswick used such a system. Archaeological work at the Mines Royal site at Caldbeck in the English Lake District confirmed the use of "hunds".[9][10]

In 1604, Huntingdon Beaumont completed the Wollaton Wagonway, built to transport coal from the mines at Strelley to Wollaton Lane End, just west of Nottingham, England. Wagonways have been discovered between Broseley and Jackfield in Shropshire from 1605, used by James Clifford to transport coal from his mines in Broseley to the Severn River. It has been suggested that these are somewhat older than that at Wollaton.[10][11]

The Middleton Railway in Leeds, which was built in 1758 as a wagonway, later became the world's first operational railway (other than funiculars), albeit in an upgraded form. In 1764, the first railway in the America was built in Lewiston, New York as a wagonway.[12]

Wagonways improved coal transport by allowing one horse to deliver between 10 and 13 long tons (10.2 and 13.2 t; 11.2 and 14.6 short tons) of coal per run— an approximate fourfold increase. Wagonways were usually designed to carry the fully loaded wagons downhill to a canal or boat dock and then return the empty wagons back to the mine.

Metal rails edit

Until the beginning of the Industrial Revolution, rails were made of wood, were a few inches wide and were fastened end to end, on logs of wood or "sleepers", placed crosswise at intervals of two or three feet. In time, it became common to cover them with a thin flat sheathing or "plating" of iron, in order to add to their life[13] and reduce friction. This caused more wear on the wooden rollers of the wagons and towards the middle of the 18th century, led to the introduction of iron wheels. However, the iron sheathing was not strong enough to resist buckling under the passage of the loaded wagons, so rails made wholly of iron were invented.[13]

In 1760, the Coalbrookdale Iron Works began to reinforce their wooden-railed tramway with iron bars,[14] which were found to facilitate passage and diminish expenses. As a result, in 1767, they began to make cast iron rails. These were probably 6 ft (1.829 m) long, with four projecting ears or lugs 3 in (75 mm) by 3+34 in (95 mm) to enable them to be fixed to the sleepers. The rails were 3+34 in (95 mm) wide and 1+14 in (30 mm) thick. Later, descriptions also refer to rails 3 ft (914 mm) long and only 2 in (50 mm) wide.[15]

Plateways, flangeways edit

 
A replica of a "Little Eaton Tramway" wagon, the tracks are plateways

A later system involved L-shaped iron rails or plates, each 3 ft (914 mm) long and 4 in (102 mm) wide, having on the inner side an upright ledge or flange, 3 in (76 mm) high at the centre and tapering to 2 in (51 mm) at the ends, for the purpose of keeping the flat wheels on the track. Subsequently, to increase strength, a similar flange might be added below the rail.[13] Wooden sleepers continued to be used—the rails were secured by spikes passing through the extremities—but, circa 1793, stone blocks began to be used, an innovation associated with Benjamin Outram, although he was not the originator. This type of rail was known as the plate-rail, tramway-plate or way-plate, names that are preserved in the modern term "platelayer" applied to the workers who lay and maintain the permanent way.[13] The wheels of flangeway wagons were plain, but they could not operate on ordinary roads as the narrow rims would dig into the surface.

Edgeways edit

 
Cast iron fishbelly edge rail manufactured by Outram at the Butterley Company ironworks for the Cromford and High Peak Railway (1831). These are smooth edgerails for wheels with flanges.

Another form of rail, the edge rail, was first used by William Jessop on a line that was opened as part of the Charnwood Forest Canal between Loughborough and Nanpantan in Leicestershire in 1789.[13] This line was originally designed as a plateway on the Outram system, but objections were raised to laying rails with upstanding ledges or flanges on the turnpike. This difficulty was overcome by paving or "causewaying" the road up to the level of the top of the flanges.[13] In 1790, Jessop and his partner Outram began to manufacture edge-rails. Another example of the edge rail application was the Lake Lock Rail Road in the West Riding of Yorkshire (now West Yorkshire) used primarily for coal transport. The railway charged a toll and opened for traffic in 1798, making it the world's oldest public railway. The route started at Lake Lock, Stanley, on the Aire & Calder Navigation, running from Wakefield to Outwood, a distance of approximately 3 miles (4.8 km). Edge-rails (with a side rack) were used on the nearby Middleton-Leeds rack railway (a length of this rail is on display in Leeds City Museum). The wheels of an edgeway have flanges, like modern railways and tramways. Causewaying is also done on modern level crossings and tramways.

These two systems of constructing iron railways continued to exist until the early 19th century.[13] In most parts of England the plate-rail was preferred.[13] Plate-rails were used on the Surrey Iron Railway (SIR), from Wandsworth to West Croydon.[13] The SIR was sanctioned by Parliament in 1801 and finished in 1803.[13] Like the Lake Lock Rail Road, the SIR was available to the public on payment of tolls; previous lines had all been private and reserved exclusively for the use of their owners.[13] Since it was used by individual operators, vehicles would vary greatly in wheel spacing (gauge) and the plate rail coped better. In South Wales again, where in 1811 the railways were connected with canals, collieries, ironworks, and copper works, and had a total length of nearly 150 miles (241 km),[14] the plateway was almost universal.[13] But in the North of England and in Scotland the edge-rail was held in greater favor, and soon its superiority was generally established.[13] Wheels tended to bind against the flange of the plate rail and mud and stones would build up.

 
Lengths of fishbelly rail on stone support blocks. These are edgerails for wheels with flanges.

The manufacture of the rails themselves was gradually improved.[13] By making them in longer lengths, the number of joints per mile was reduced.[13] Joints were always the weakest part of the line.[13] Another advance was the substitution of wrought iron for cast iron, though that material did not gain wide adoption until after the patent for an improved method of rolling rails was granted in 1820 to John Birkinshaw, of the Bedlington Ironworks.[13] His rails were wedge-shaped in section, much wider at the top than at the bottom, with the intermediate portion or web thinner still. He recommended that they be made 18 ft (5.49 m) long, suggesting that several might be welded together end to end to form considerable lengths. They were supported on sleepers by chairs at intervals of 3 ft (914 mm), and were fish-bellied between the support points. As used by George Stephenson on the Stockton & Darlington, and Canterbury & Whitstable lines, they weighed 28 lb/yd (13.9 kg/m).[13] On the Liverpool and Manchester Railway they were usually 12 or 15 ft (3.66 or 4.57 m) long and weighed 35 lb/yd (17.4 kg/m) and were fastened by iron wedges to chairs weighing 15 or 17 lb (6.8 or 7.7 kg) each. The chairs were in turn fixed to the sleepers by two iron spikes, half-round wooden cross sleepers employed on embankments and stone blocks 20 in (508 mm) square by 10 in (254 mm) deep in cuttings. The fish-bellied rails were found to break near the chairs and starting in 1834, they were gradually replaced with parallel rails weighing 50 lb/yd (24.8 kg/m).[13]

Steam power edit

 
A replica of Trevithick's engine at the National Waterfront Museum, Swansea

In 1804, Richard Trevithick, in the first recorded use of steam power on a railway, ran a high-pressure steam locomotive with smooth wheels on an 'L' section plateway near Merthyr Tydfil, but it was more expensive than horses.[13] He made three trips from the iron mines at Penydarren to the Merthyr-Cardiff Canal and each time broke the rails that were designed for horse wagon loads. There was general doubt at the time that smooth wheels could obtain traction on smooth rails. This resulted in proposals using rack or other drive mechanisms.

 
The Salamanca locomotive

Mr Blenkinsop of Middleton Colliery patented the use of cogged wheels in 1811 and in 1812, the Middleton Railway (edgeway, rack rail) successfully used twin cylinder steam locomotives made by Matthew Murray of Holbeck, Leeds. George Stephenson made his first steam locomotive in 1813 (patented 1815) for the Killingworth colliery,[14] and found smooth wheels on smooth rails provided adequate grip. Although he later recounted that they called this locomotive 'My Lord' as it was financed by Lord Ravensworth, it seems that it was known at the time as Blücher. In 1814 William Stewart was engaged by Parkend Coal Co in the Forest of Dean for the construction of a steam locomotive, which when trialled was reported to be successful.[14] Stewart did not receive his expected reward and the two parties parted on bad terms. Stewart was 'obliged to abandon the engine to that Company'.[16] In 1821, a wagonway was proposed to connect the mines at West Durham, Darlington and the River Tees at Stockton, George Stephenson successfully argued that horse-drawn wagonways were obsolete and a steam-powered railway could carry 50 times as much coal. [citation needed] In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in England's northeast, which became the world's first public steam railway in 1825, via both horse power and steam power on different runs.

Stationary steam engines for mining were generally available around the middle of the 18th century.[citation needed] Wagonways and steam-powered railways had steep uphill sections and would employ a cable powered by a stationary steam engine to work the inclined sections. British troops in Lewiston, New York used a cable wagonway to move supplies to bases before the American Revolutionary War. The Stockton and Darlington had two inclined sections powered by cable. The transition from a wagonway to a fully steam-powered railway was gradual. Railways up to the 1830s that were steam-powered often made runs with horses when the steam locomotives were unavailable. Even in the steam age, it was convenient to use horses in station yards to shunt wagons from one place to another. Horses do not need lengthy times to raise steam in the boiler, and can take shortcuts from one siding to another. At Hamley Bridge tenders were called for the supply of horses, in part because normal railway staff lacked horse handling skills.

Pole road edit

 
Perdido, a steam pole road locomotive

Wooden rails continued to be used for temporary railroads into the twentieth century. Some timber harvesting companies in the southeastern United States created pole roads using unmarketable logs, which were effectively free, to create tracks at a cost of between $100 and $500 per mile. Permanence was not an issue, as the lumberjacks moved on to other stands of timber as each area was cleared.[17] At least one such pole road system reportedly extended some 20 miles (32 km).[18]

Typically the pole rails were logs of 8 to 12 inches (20 to 30 cm) diameter, laid parallel directly on the ground without cross-ties, and joined end-to-end with lap joints and wooden pegs. Rolling stock typically had wheels either with concave rims that hugged the top of the pole rails, or un-flanged wheels with separate guide wheels running against the side of each rail. Steam traction engines and some purpose-built locomotives were successfully used for hauling trains of logs. For example, Perdido was built by Adams & Price Locomotive and Machinery Works of Nashville, Tennessee in 1885 for the Wallace, Sanford and Company sawmill at Williams Station, Alabama, where it hauled up to seven cars of 3 or 4 logs each. This was a geared engine (4.5 to 1 gear ratio), driving four individually-rotating concave-rim wheels on stationary axles via chain drives; powerful but running less than 5 miles per hour (8.0 km/h).[17] Still later, modified semitrailer tractors have been used.[19]

Decline edit

As steam power gradually replaced horse power throughout the 19th century, the term "wagonway" became obsolete and was superseded by the term "railway". As of 2024, very few horse or cable freight railways are operating, notable examples being the cable-hauled St Michael's Mount Tramway and the Reisszug, which has been in continuous operation since around 1500. A few passenger lines continue to operate, including the horse-hauled Douglas Bay Horse Tramway and the cable-hauled San Francisco cable cars.

See also edit

References edit

  1. ^ Verdelis, Nikolaos (1957). "Le diolkos de L'Isthme". Bulletin de Correspondance Hellénique. 81: 526–529.
  2. ^ Cook, R.M. (1979). "Archaic Greek Trade: Three Conjectures 1. The Diolkos". The Journal of Hellenic Studies. 99: 152–155. doi:10.2307/630641. JSTOR 630641. S2CID 161378605.
  3. ^ Drijvers, J.W. (1992). "Strabo VIII 2,1 (C335): Porthmeia and the Diolkos". Mnemosyne. 45: 75–76.
  4. ^ Raepsaet, G.; Tolley, M. (1993). "Le Diolkos de l'Isthme à Corinthe: son tracé, son fonctionnement" (PDF). Bulletin de Correspondance Hellénique. 117: 233–261. doi:10.3406/bch.1993.1679.
  5. ^ a b Lewis, M.J.T. (2001). (PDF). In Guy, A.; Rees, J. (eds.). Early Railways. A Selection of Papers from the First International Early Railways Conference. pp. 8–19. Archived from the original (PDF) on 21 July 2011.
  6. ^ Fraser, P. M. (1961). "The ΔΙΟΛΚΟΣ of Alexandria". The Journal of Egyptian Archaeology. 47: 134–138. doi:10.2307/3855873. JSTOR 3855873.
  7. ^ Agricola, Georgius (1913). De re metallica (Hoover translation ed.). p. 156.
  8. ^ Lee, Charles E. (1943). The Evolution of Railways (2 ed.). London: Railway Gazette. p. 16. OCLC 1591369.
  9. ^ Allison, Warren; Murphy, Samuel; Smith, Richard (2010). "An Early Railway in the German Mines of Caldbeck". In Boyes, G. (ed.). Early Railways 4: Papers from the 4th International Early Railways Conference 2008. Sudbury: Six Martlets. pp. 52–69.
  10. ^ a b "Time line for early railway developments & Wollaton Waggonway associated dates". Stephenson Locomotive Society & Waggonway Research Circle. 15 October 2007. Retrieved 1 September 2009.
  11. ^ King, Peter (2010). "The First Shropshire Railways". In Boyes, G. (ed.). Early Railways 4: Papers from the 4th International Early Railways Conference 2008. Sudbury: Six Martlets. pp. 70–84.
  12. ^ Porter, Peter (1914). Landmarks of the Niagara Frontier. The Author. ISBN 0-665-78347-7.
  13. ^ a b c d e f g h i j k l m n o p q r s t Ross, Hugh Munro (1911). "Railways" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 21 (11th ed.). Cambridge University Press. pp. 819–820.
  14. ^ a b c d "Historical Notes on Railways". The Practical Mechanic and Engineers Magazine. November 1844. pp. 57–60.
  15. ^ Lewis, Michael Jonathan Taunton (1970). Early Wooden Railways. London: Routledge & K. Paul. pp. 160–65. ISBN 0-7100-6674-0. OCLC 138270.
  16. ^ Stewart, William (October 1844). "Inventors and Capitalists". The Practical Mechanic and Engineer's Magazine. p. 24.
  17. ^ a b "Pole Road Locomotives of the Early Days". Trains. February 1948.
  18. ^ (untitled) [dead link]
  19. ^ A Pole Road in use: A logging engine moves on tracks made from logs of wood in A...HD Stock Footage. YouTube. CriticalPast. June 21, 2014. Archived from the original on 2021-12-11.

Bibliography edit

  • Smiles, Samuel; Stephenson, George (1857). The life of George Stephenson, Railway Engineer (PDF). London. OCLC 162233825. (PDF) from the original on 2015-07-03.{{cite book}}: CS1 maint: location missing publisher (link)
  • Westwood, John Norton (1988). The Pictorial History of Railways. London: Bison Books. ISBN 0-86124-446-X. OCLC 34774624.

External links edit

  • The two and a half mile long Dafen (Llanelli) railway opened in 1833.

wagonway, also, tramway, industrial, minecart, horsecar, list, horse, drawn, railways, also, spelt, waggonways, also, known, horse, drawn, railways, horse, drawn, railroad, consisted, horses, equipment, tracks, used, hauling, wagons, which, preceded, steam, po. See also Tramway industrial Minecart Horsecar and List of horse drawn railways Wagonways also spelt Waggonways also known as horse drawn railways and horse drawn railroad consisted of the horses equipment and tracks used for hauling wagons which preceded steam powered railways The terms plateway tramway dramway were used The advantage of wagonways was that far bigger loads could be transported with the same power Benjamin Outram s Little Eaton Gangway in July 1908 with the last train of loaded coal wagons arriving Contents 1 Ancient systems 2 Wooden rails 3 Metal rails 3 1 Plateways flangeways 3 2 Edgeways 4 Steam power 5 Pole road 6 Decline 7 See also 8 References 9 Bibliography 10 External linksAncient systems editThe earliest citation needed evidence is of the 6 to 8 5 km 3 7 to 5 3 mi long Diolkos paved trackway which transported boats across the Isthmus of Corinth in Greece from around 600 BC 1 2 3 4 5 Wheeled vehicles pulled by men and animals ran in grooves in limestone which provided the track element preventing the wagons from leaving the intended route The Diolkos was in use for over 650 years until at least the 1st century AD 5 Paved trackways were later built in Roman Egypt 6 Wooden rails edit nbsp Minecart shown in De Re Metallica 1556 The guide pin fits in a groove between two wooden planks Such an operation was illustrated in Germany in 1556 by Georgius Agricola image right in his work De re metallica 7 This line used Hund carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way The miners called the wagons Hunde dogs from the noise they made on the tracks 8 nbsp Minecart from 16th century found in Transylvania Around 1568 German miners working in the Mines Royal near Keswick used such a system Archaeological work at the Mines Royal site at Caldbeck in the English Lake District confirmed the use of hunds 9 10 In 1604 Huntingdon Beaumont completed the Wollaton Wagonway built to transport coal from the mines at Strelley to Wollaton Lane End just west of Nottingham England Wagonways have been discovered between Broseley and Jackfield in Shropshire from 1605 used by James Clifford to transport coal from his mines in Broseley to the Severn River It has been suggested that these are somewhat older than that at Wollaton 10 11 The Middleton Railway in Leeds which was built in 1758 as a wagonway later became the world s first operational railway other than funiculars albeit in an upgraded form In 1764 the first railway in the America was built in Lewiston New York as a wagonway 12 Wagonways improved coal transport by allowing one horse to deliver between 10 and 13 long tons 10 2 and 13 2 t 11 2 and 14 6 short tons of coal per run an approximate fourfold increase Wagonways were usually designed to carry the fully loaded wagons downhill to a canal or boat dock and then return the empty wagons back to the mine Metal rails editUntil the beginning of the Industrial Revolution rails were made of wood were a few inches wide and were fastened end to end on logs of wood or sleepers placed crosswise at intervals of two or three feet In time it became common to cover them with a thin flat sheathing or plating of iron in order to add to their life 13 and reduce friction This caused more wear on the wooden rollers of the wagons and towards the middle of the 18th century led to the introduction of iron wheels However the iron sheathing was not strong enough to resist buckling under the passage of the loaded wagons so rails made wholly of iron were invented 13 In 1760 the Coalbrookdale Iron Works began to reinforce their wooden railed tramway with iron bars 14 which were found to facilitate passage and diminish expenses As a result in 1767 they began to make cast iron rails These were probably 6 ft 1 829 m long with four projecting ears or lugs 3 in 75 mm by 3 3 4 in 95 mm to enable them to be fixed to the sleepers The rails were 3 3 4 in 95 mm wide and 1 1 4 in 30 mm thick Later descriptions also refer to rails 3 ft 914 mm long and only 2 in 50 mm wide 15 Plateways flangeways edit Main article Plateway nbsp A replica of a Little Eaton Tramway wagon the tracks are plateways A later system involved L shaped iron rails or plates each 3 ft 914 mm long and 4 in 102 mm wide having on the inner side an upright ledge or flange 3 in 76 mm high at the centre and tapering to 2 in 51 mm at the ends for the purpose of keeping the flat wheels on the track Subsequently to increase strength a similar flange might be added below the rail 13 Wooden sleepers continued to be used the rails were secured by spikes passing through the extremities but circa 1793 stone blocks began to be used an innovation associated with Benjamin Outram although he was not the originator This type of rail was known as the plate rail tramway plate or way plate names that are preserved in the modern term platelayer applied to the workers who lay and maintain the permanent way 13 The wheels of flangeway wagons were plain but they could not operate on ordinary roads as the narrow rims would dig into the surface Edgeways edit nbsp Cast iron fishbelly edge rail manufactured by Outram at the Butterley Company ironworks for the Cromford and High Peak Railway 1831 These are smooth edgerails for wheels with flanges Another form of rail the edge rail was first used by William Jessop on a line that was opened as part of the Charnwood Forest Canal between Loughborough and Nanpantan in Leicestershire in 1789 13 This line was originally designed as a plateway on the Outram system but objections were raised to laying rails with upstanding ledges or flanges on the turnpike This difficulty was overcome by paving or causewaying the road up to the level of the top of the flanges 13 In 1790 Jessop and his partner Outram began to manufacture edge rails Another example of the edge rail application was the Lake Lock Rail Road in the West Riding of Yorkshire now West Yorkshire used primarily for coal transport The railway charged a toll and opened for traffic in 1798 making it the world s oldest public railway The route started at Lake Lock Stanley on the Aire amp Calder Navigation running from Wakefield to Outwood a distance of approximately 3 miles 4 8 km Edge rails with a side rack were used on the nearby Middleton Leeds rack railway a length of this rail is on display in Leeds City Museum The wheels of an edgeway have flanges like modern railways and tramways Causewaying is also done on modern level crossings and tramways These two systems of constructing iron railways continued to exist until the early 19th century 13 In most parts of England the plate rail was preferred 13 Plate rails were used on the Surrey Iron Railway SIR from Wandsworth to West Croydon 13 The SIR was sanctioned by Parliament in 1801 and finished in 1803 13 Like the Lake Lock Rail Road the SIR was available to the public on payment of tolls previous lines had all been private and reserved exclusively for the use of their owners 13 Since it was used by individual operators vehicles would vary greatly in wheel spacing gauge and the plate rail coped better In South Wales again where in 1811 the railways were connected with canals collieries ironworks and copper works and had a total length of nearly 150 miles 241 km 14 the plateway was almost universal 13 But in the North of England and in Scotland the edge rail was held in greater favor and soon its superiority was generally established 13 Wheels tended to bind against the flange of the plate rail and mud and stones would build up nbsp Lengths of fishbelly rail on stone support blocks These are edgerails for wheels with flanges The manufacture of the rails themselves was gradually improved 13 By making them in longer lengths the number of joints per mile was reduced 13 Joints were always the weakest part of the line 13 Another advance was the substitution of wrought iron for cast iron though that material did not gain wide adoption until after the patent for an improved method of rolling rails was granted in 1820 to John Birkinshaw of the Bedlington Ironworks 13 His rails were wedge shaped in section much wider at the top than at the bottom with the intermediate portion or web thinner still He recommended that they be made 18 ft 5 49 m long suggesting that several might be welded together end to end to form considerable lengths They were supported on sleepers by chairs at intervals of 3 ft 914 mm and were fish bellied between the support points As used by George Stephenson on the Stockton amp Darlington and Canterbury amp Whitstable lines they weighed 28 lb yd 13 9 kg m 13 On the Liverpool and Manchester Railway they were usually 12 or 15 ft 3 66 or 4 57 m long and weighed 35 lb yd 17 4 kg m and were fastened by iron wedges to chairs weighing 15 or 17 lb 6 8 or 7 7 kg each The chairs were in turn fixed to the sleepers by two iron spikes half round wooden cross sleepers employed on embankments and stone blocks 20 in 508 mm square by 10 in 254 mm deep in cuttings The fish bellied rails were found to break near the chairs and starting in 1834 they were gradually replaced with parallel rails weighing 50 lb yd 24 8 kg m 13 Steam power edit nbsp A replica of Trevithick s engine at the National Waterfront Museum Swansea In 1804 Richard Trevithick in the first recorded use of steam power on a railway ran a high pressure steam locomotive with smooth wheels on an L section plateway near Merthyr Tydfil but it was more expensive than horses 13 He made three trips from the iron mines at Penydarren to the Merthyr Cardiff Canal and each time broke the rails that were designed for horse wagon loads There was general doubt at the time that smooth wheels could obtain traction on smooth rails This resulted in proposals using rack or other drive mechanisms nbsp The Salamanca locomotive Mr Blenkinsop of Middleton Colliery patented the use of cogged wheels in 1811 and in 1812 the Middleton Railway edgeway rack rail successfully used twin cylinder steam locomotives made by Matthew Murray of Holbeck Leeds George Stephenson made his first steam locomotive in 1813 patented 1815 for the Killingworth colliery 14 and found smooth wheels on smooth rails provided adequate grip Although he later recounted that they called this locomotive My Lord as it was financed by Lord Ravensworth it seems that it was known at the time as Blucher In 1814 William Stewart was engaged by Parkend Coal Co in the Forest of Dean for the construction of a steam locomotive which when trialled was reported to be successful 14 Stewart did not receive his expected reward and the two parties parted on bad terms Stewart was obliged to abandon the engine to that Company 16 In 1821 a wagonway was proposed to connect the mines at West Durham Darlington and the River Tees at Stockton George Stephenson successfully argued that horse drawn wagonways were obsolete and a steam powered railway could carry 50 times as much coal citation needed In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in England s northeast which became the world s first public steam railway in 1825 via both horse power and steam power on different runs Stationary steam engines for mining were generally available around the middle of the 18th century citation needed Wagonways and steam powered railways had steep uphill sections and would employ a cable powered by a stationary steam engine to work the inclined sections British troops in Lewiston New York used a cable wagonway to move supplies to bases before the American Revolutionary War The Stockton and Darlington had two inclined sections powered by cable The transition from a wagonway to a fully steam powered railway was gradual Railways up to the 1830s that were steam powered often made runs with horses when the steam locomotives were unavailable Even in the steam age it was convenient to use horses in station yards to shunt wagons from one place to another Horses do not need lengthy times to raise steam in the boiler and can take shortcuts from one siding to another At Hamley Bridge tenders were called for the supply of horses in part because normal railway staff lacked horse handling skills Pole road edit nbsp Perdido a steam pole road locomotive Wooden rails continued to be used for temporary railroads into the twentieth century Some timber harvesting companies in the southeastern United States created pole roads using unmarketable logs which were effectively free to create tracks at a cost of between 100 and 500 per mile Permanence was not an issue as the lumberjacks moved on to other stands of timber as each area was cleared 17 At least one such pole road system reportedly extended some 20 miles 32 km 18 Typically the pole rails were logs of 8 to 12 inches 20 to 30 cm diameter laid parallel directly on the ground without cross ties and joined end to end with lap joints and wooden pegs Rolling stock typically had wheels either with concave rims that hugged the top of the pole rails or un flanged wheels with separate guide wheels running against the side of each rail Steam traction engines and some purpose built locomotives were successfully used for hauling trains of logs For example Perdido was built by Adams amp Price Locomotive and Machinery Works of Nashville Tennessee in 1885 for the Wallace Sanford and Company sawmill at Williams Station Alabama where it hauled up to seven cars of 3 or 4 logs each This was a geared engine 4 5 to 1 gear ratio driving four individually rotating concave rim wheels on stationary axles via chain drives powerful but running less than 5 miles per hour 8 0 km h 17 Still later modified semitrailer tractors have been used 19 Decline editAs steam power gradually replaced horse power throughout the 19th century the term wagonway became obsolete and was superseded by the term railway As of 2024 update very few horse or cable freight railways are operating notable examples being the cable hauled St Michael s Mount Tramway and the Reisszug which has been in continuous operation since around 1500 A few passenger lines continue to operate including the horse hauled Douglas Bay Horse Tramway and the cable hauled San Francisco cable cars See also edit nbsp Trains portal Barlow rail Granite Railway Guide rail Hay Railway Holy Island Waggonway Horsecar Mine railway Rail profileReferences edit Verdelis Nikolaos 1957 Le diolkos de L Isthme Bulletin de Correspondance Hellenique 81 526 529 Cook R M 1979 Archaic Greek Trade Three Conjectures 1 The Diolkos The Journal of Hellenic Studies 99 152 155 doi 10 2307 630641 JSTOR 630641 S2CID 161378605 Drijvers J W 1992 Strabo VIII 2 1 C335 Porthmeia and the Diolkos Mnemosyne 45 75 76 Raepsaet G Tolley M 1993 Le Diolkos de l Isthme a Corinthe son trace son fonctionnement PDF Bulletin de Correspondance Hellenique 117 233 261 doi 10 3406 bch 1993 1679 a b Lewis M J T 2001 Railways in the Greek and Roman world PDF In Guy A Rees J eds Early Railways A Selection of Papers from the First International Early Railways Conference pp 8 19 Archived from the original PDF on 21 July 2011 Fraser P M 1961 The DIOLKOS of Alexandria The Journal of Egyptian Archaeology 47 134 138 doi 10 2307 3855873 JSTOR 3855873 Agricola Georgius 1913 De re metallica Hoover translation ed p 156 Lee Charles E 1943 The Evolution of Railways 2 ed London Railway Gazette p 16 OCLC 1591369 Allison Warren Murphy Samuel Smith Richard 2010 An Early Railway in the German Mines of Caldbeck In Boyes G ed Early Railways 4 Papers from the 4th International Early Railways Conference 2008 Sudbury Six Martlets pp 52 69 a b Time line for early railway developments amp Wollaton Waggonway associated dates Stephenson Locomotive Society amp Waggonway Research Circle 15 October 2007 Retrieved 1 September 2009 King Peter 2010 The First Shropshire Railways In Boyes G ed Early Railways 4 Papers from the 4th International Early Railways Conference 2008 Sudbury Six Martlets pp 70 84 Porter Peter 1914 Landmarks of the Niagara Frontier The Author ISBN 0 665 78347 7 a b c d e f g h i j k l m n o p q r s t Ross Hugh Munro 1911 Railways In Chisholm Hugh ed Encyclopaedia Britannica Vol 21 11th ed Cambridge University Press pp 819 820 a b c d Historical Notes on Railways The Practical Mechanic and Engineers Magazine November 1844 pp 57 60 Lewis Michael Jonathan Taunton 1970 Early Wooden Railways London Routledge amp K Paul pp 160 65 ISBN 0 7100 6674 0 OCLC 138270 Stewart William October 1844 Inventors and Capitalists The Practical Mechanic and Engineer s Magazine p 24 a b Pole Road Locomotives of the Early Days Trains February 1948 untitled dead link A Pole Road in use A logging engine moves on tracks made from logs of wood in A HD Stock Footage YouTube CriticalPast June 21 2014 Archived from the original on 2021 12 11 Bibliography editSmiles Samuel Stephenson George 1857 The life of George Stephenson Railway Engineer PDF London OCLC 162233825 Archived PDF from the original on 2015 07 03 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Westwood John Norton 1988 The Pictorial History of Railways London Bison Books ISBN 0 86124 446 X OCLC 34774624 External links editDescription and photographs of the archaeological excavation of a wooden waggonway on the site of Lambton Coke Works in North East England The two and a half mile long Dafen Llanelli railway opened in 1833 Retrieved from https en wikipedia org w index php title Wagonway amp oldid 1195153079, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.