fbpx
Wikipedia

Homotopy category of chain complexes

In homological algebra in mathematics, the homotopy category K(A) of chain complexes in an additive category A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the derived category D(A) of A when A is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, K(A) is more understandable than D(A).

Definitions edit

Let A be an additive category. The homotopy category K(A) is based on the following definition: if we have complexes A, B and maps f, g from A to B, a chain homotopy from f to g is a collection of maps   (not a map of complexes) such that

  or simply  

This can be depicted as:

 

We also say that f and g are chain homotopic, or that   is null-homotopic or homotopic to 0. It is clear from the definition that the maps of complexes which are null-homotopic form a group under addition.

The homotopy category of chain complexes K(A) is then defined as follows: its objects are the same as the objects of Kom(A), namely chain complexes. Its morphisms are "maps of complexes modulo homotopy": that is, we define an equivalence relation

  if f is homotopic to g

and define

 

to be the quotient by this relation. It is clear that this results in an additive category if one notes that this is the same as taking the quotient by the subgroup of null-homotopic maps.

The following variants of the definition are also widely used: if one takes only bounded-below (An=0 for n<<0), bounded-above (An=0 for n>>0), or bounded (An=0 for |n|>>0) complexes instead of unbounded ones, one speaks of the bounded-below homotopy category etc. They are denoted by K+(A), K(A) and Kb(A), respectively.

A morphism   which is an isomorphism in K(A) is called a homotopy equivalence. In detail, this means there is another map  , such that the two compositions are homotopic to the identities:   and  .

The name "homotopy" comes from the fact that homotopic maps of topological spaces induce homotopic (in the above sense) maps of singular chains.

Remarks edit

Two chain homotopic maps f and g induce the same maps on homology because (f − g) sends cycles to boundaries, which are zero in homology. In particular a homotopy equivalence is a quasi-isomorphism. (The converse is false in general.) This shows that there is a canonical functor   to the derived category (if A is abelian).

The triangulated structure edit

The shift A[1] of a complex A is the following complex

  (note that  ),

where the differential is  .

For the cone of a morphism f we take the mapping cone. There are natural maps

 

This diagram is called a triangle. The homotopy category K(A) is a triangulated category, if one defines distinguished triangles to be isomorphic (in K(A), i.e. homotopy equivalent) to the triangles above, for arbitrary A, B and f. The same is true for the bounded variants K+(A), K(A) and Kb(A). Although triangles make sense in Kom(A) as well, that category is not triangulated with respect to these distinguished triangles; for example,

 

is not distinguished since the cone of the identity map is not isomorphic to the complex 0 (however, the zero map   is a homotopy equivalence, so that this triangle is distinguished in K(A)). Furthermore, the rotation of a distinguished triangle is obviously not distinguished in Kom(A), but (less obviously) is distinguished in K(A). See the references for details.

Generalization edit

More generally, the homotopy category Ho(C) of a differential graded category C is defined to have the same objects as C, but morphisms are defined by  . (This boils down to the homotopy of chain complexes if C is the category of complexes whose morphisms do not have to respect the differentials). If C has cones and shifts in a suitable sense, then Ho(C) is a triangulated category, too.

References edit

  • Manin, Yuri Ivanovich; Gelfand, Sergei I. (2003), Methods of Homological Algebra, Berlin, New York: Springer-Verlag, ISBN 978-3-540-43583-9
  • Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.

homotopy, category, chain, complexes, homological, algebra, mathematics, homotopy, category, chain, complexes, additive, category, framework, working, with, chain, homotopies, homotopy, equivalences, lies, intermediate, between, category, chain, complexes, der. In homological algebra in mathematics the homotopy category K A of chain complexes in an additive category A is a framework for working with chain homotopies and homotopy equivalences It lies intermediate between the category of chain complexes Kom A of A and the derived category D A of A when A is abelian unlike the former it is a triangulated category and unlike the latter its formation does not require that A is abelian Philosophically while D A turns into isomorphisms any maps of complexes that are quasi isomorphisms in Kom A K A does so only for those that are quasi isomorphisms for a good reason namely actually having an inverse up to homotopy equivalence Thus K A is more understandable than D A Contents 1 Definitions 2 Remarks 3 The triangulated structure 4 Generalization 5 ReferencesDefinitions editLet A be an additive category The homotopy category K A is based on the following definition if we have complexes A B and maps f g from A to B a chain homotopy from f to g is a collection of maps h n A n B n 1 displaystyle h n colon A n to B n 1 nbsp not a map of complexes such that f n g n d B n 1 h n h n 1 d A n displaystyle f n g n d B n 1 h n h n 1 d A n nbsp or simply f g d B h h d A displaystyle f g d B h hd A nbsp This can be depicted as nbsp We also say that f and g are chain homotopic or that f g displaystyle f g nbsp is null homotopic or homotopic to 0 It is clear from the definition that the maps of complexes which are null homotopic form a group under addition The homotopy category of chain complexes K A is then defined as follows its objects are the same as the objects of Kom A namely chain complexes Its morphisms are maps of complexes modulo homotopy that is we define an equivalence relation f g displaystyle f sim g nbsp if f is homotopic to gand define Hom K A A B Hom K o m A A B displaystyle operatorname Hom K A A B operatorname Hom Kom A A B sim nbsp to be the quotient by this relation It is clear that this results in an additive category if one notes that this is the same as taking the quotient by the subgroup of null homotopic maps The following variants of the definition are also widely used if one takes only bounded below An 0 for n lt lt 0 bounded above An 0 for n gt gt 0 or bounded An 0 for n gt gt 0 complexes instead of unbounded ones one speaks of the bounded below homotopy category etc They are denoted by K A K A and Kb A respectively A morphism f A B displaystyle f A rightarrow B nbsp which is an isomorphism in K A is called a homotopy equivalence In detail this means there is another map g B A displaystyle g B rightarrow A nbsp such that the two compositions are homotopic to the identities f g I d B displaystyle f circ g sim Id B nbsp and g f I d A displaystyle g circ f sim Id A nbsp The name homotopy comes from the fact that homotopic maps of topological spaces induce homotopic in the above sense maps of singular chains Remarks editTwo chain homotopic maps f and g induce the same maps on homology because f g sends cycles to boundaries which are zero in homology In particular a homotopy equivalence is a quasi isomorphism The converse is false in general This shows that there is a canonical functor K A D A displaystyle K A rightarrow D A nbsp to the derived category if A is abelian The triangulated structure editThe shift A 1 of a complex A is the following complex A 1 A n 1 d A 1 n A n 2 displaystyle A 1 to A n 1 xrightarrow d A 1 n A n 2 to nbsp note that A 1 n A n 1 displaystyle A 1 n A n 1 nbsp where the differential is d A 1 n d A n 1 displaystyle d A 1 n d A n 1 nbsp For the cone of a morphism f we take the mapping cone There are natural maps A f B C f A 1 displaystyle A xrightarrow f B to C f to A 1 nbsp This diagram is called a triangle The homotopy category K A is a triangulated category if one defines distinguished triangles to be isomorphic in K A i e homotopy equivalent to the triangles above for arbitrary A B and f The same is true for the bounded variants K A K A and Kb A Although triangles make sense in Kom A as well that category is not triangulated with respect to these distinguished triangles for example X i d X 0 displaystyle X xrightarrow id X to 0 to nbsp is not distinguished since the cone of the identity map is not isomorphic to the complex 0 however the zero map C i d 0 displaystyle C id to 0 nbsp is a homotopy equivalence so that this triangle is distinguished in K A Furthermore the rotation of a distinguished triangle is obviously not distinguished in Kom A but less obviously is distinguished in K A See the references for details Generalization editMore generally the homotopy category Ho C of a differential graded category C is defined to have the same objects as C but morphisms are defined by Hom H o C X Y H 0 Hom C X Y displaystyle operatorname Hom Ho C X Y H 0 operatorname Hom C X Y nbsp This boils down to the homotopy of chain complexes if C is the category of complexes whose morphisms do not have to respect the differentials If C has cones and shifts in a suitable sense then Ho C is a triangulated category too References editManin Yuri Ivanovich Gelfand Sergei I 2003 Methods of Homological Algebra Berlin New York Springer Verlag ISBN 978 3 540 43583 9 Weibel Charles A 1994 An introduction to homological algebra Cambridge Studies in Advanced Mathematics Vol 38 Cambridge University Press ISBN 978 0 521 55987 4 MR 1269324 OCLC 36131259 Retrieved from https en wikipedia org w index php title Homotopy category of chain complexes amp oldid 1131301547, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.