fbpx
Wikipedia

Hirzebruch–Riemann–Roch theorem

In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemann–Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later.

Statement of Hirzebruch–Riemann–Roch theorem edit

The Hirzebruch–Riemann–Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X, to calculate the holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum

 

of the dimensions as complex vector spaces, where n is the complex dimension of X.

Hirzebruch's theorem states that χ(X, E) is computable in terms of the Chern classes ck(E) of E, and the Todd classes   of the holomorphic tangent bundle of X. These all lie in the cohomology ring of X; by use of the fundamental class (or, in other words, integration over X) we can obtain numbers from classes in   The Hirzebruch formula asserts that

 

where the sum is taken over all relevant j (so 0 ≤ jn), using the Chern character ch(E) in cohomology. In other words, the products are formed in the cohomology ring of all the 'matching' degrees that add up to 2n. Formulated differently, it gives the equality

 

where   is the Todd class of the tangent bundle of X.

Significant special cases are when E is a complex line bundle, and when X is an algebraic surface (Noether's formula). Weil's Riemann–Roch theorem for vector bundles on curves, and the Riemann–Roch theorem for algebraic surfaces (see below), are included in its scope. The formula also expresses in a precise way the vague notion that the Todd classes are in some sense reciprocals of the Chern Character.

Riemann Roch theorem for curves edit

For curves, the Hirzebruch–Riemann–Roch theorem is essentially the classical Riemann–Roch theorem. To see this, recall that for each divisor D on a curve there is an invertible sheaf O(D) (which corresponds to a line bundle) such that the linear system of D is more or less the space of sections of O(D). For curves the Todd class is   and the Chern character of a sheaf O(D) is just 1+c1(O(D)), so the Hirzebruch–Riemann–Roch theorem states that

  (integrated over X).

But h0(O(D)) is just l(D), the dimension of the linear system of D, and by Serre duality h1(O(D)) = h0(O(K − D)) = l(K − D) where K is the canonical divisor. Moreover, c1(O(D)) integrated over X is the degree of D, and c1(T(X)) integrated over X is the Euler class 2 − 2g of the curve X, where g is the genus. So we get the classical Riemann Roch theorem

 

For vector bundles V, the Chern character is rank(V) + c1(V), so we get Weil's Riemann Roch theorem for vector bundles over curves:

 

Riemann Roch theorem for surfaces edit

For surfaces, the Hirzebruch–Riemann–Roch theorem is essentially the Riemann–Roch theorem for surfaces

 

combined with the Noether formula.

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K − D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Asymptotic Riemann–Roch edit

Let D be an ample Cartier divisor on an irreducible projective variety X of dimension n. Then

 

More generally, if   is any coherent sheaf on X then

 

See also edit

References edit

  • Friedrich Hirzebruch,Topological Methods in Algebraic Geometry ISBN 3-540-58663-6

External links edit

  • The Hirzebruch-Riemann-Roch Theorem

hirzebruch, riemann, roch, theorem, mathematics, named, after, friedrich, hirzebruch, bernhard, riemann, gustav, roch, hirzebruch, 1954, result, generalizing, classical, riemann, roch, theorem, riemann, surfaces, complex, algebraic, varieties, higher, dimensio. In mathematics the Hirzebruch Riemann Roch theorem named after Friedrich Hirzebruch Bernhard Riemann and Gustav Roch is Hirzebruch s 1954 result generalizing the classical Riemann Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions The result paved the way for the Grothendieck Hirzebruch Riemann Roch theorem proved about three years later Hirzebruch Riemann Roch theoremFieldAlgebraic geometryFirst proof byFriedrich HirzebruchFirst proof in1954GeneralizationsAtiyah Singer index theoremGrothendieck Riemann Roch theoremConsequencesRiemann Roch theoremRiemann Roch theorem for surfaces Contents 1 Statement of Hirzebruch Riemann Roch theorem 2 Riemann Roch theorem for curves 3 Riemann Roch theorem for surfaces 4 Asymptotic Riemann Roch 5 See also 6 References 7 External linksStatement of Hirzebruch Riemann Roch theorem editThe Hirzebruch Riemann Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X to calculate the holomorphic Euler characteristic of E in sheaf cohomology namely the alternating sum x X E i 0 n 1 i dim C H i X E displaystyle chi X E sum i 0 n 1 i dim mathbb C H i X E nbsp of the dimensions as complex vector spaces where n is the complex dimension of X Hirzebruch s theorem states that x X E is computable in terms of the Chern classes ck E of E and the Todd classes td j X displaystyle operatorname td j X nbsp of the holomorphic tangent bundle of X These all lie in the cohomology ring of X by use of the fundamental class or in other words integration over X we can obtain numbers from classes in H 2 n X displaystyle H 2n X nbsp The Hirzebruch formula asserts that x X E ch n j E td j X displaystyle chi X E sum operatorname ch n j E operatorname td j X nbsp where the sum is taken over all relevant j so 0 j n using the Chern character ch E in cohomology In other words the products are formed in the cohomology ring of all the matching degrees that add up to 2n Formulated differently it gives the equality x X E X ch E td X displaystyle chi X E int X operatorname ch E operatorname td X nbsp where td X displaystyle operatorname td X nbsp is the Todd class of the tangent bundle of X Significant special cases are when E is a complex line bundle and when X is an algebraic surface Noether s formula Weil s Riemann Roch theorem for vector bundles on curves and the Riemann Roch theorem for algebraic surfaces see below are included in its scope The formula also expresses in a precise way the vague notion that the Todd classes are in some sense reciprocals of the Chern Character Riemann Roch theorem for curves editFor curves the Hirzebruch Riemann Roch theorem is essentially the classical Riemann Roch theorem To see this recall that for each divisor D on a curve there is an invertible sheaf O D which corresponds to a line bundle such that the linear system of D is more or less the space of sections of O D For curves the Todd class is 1 c 1 T X 2 displaystyle 1 c 1 T X 2 nbsp and the Chern character of a sheaf O D is just 1 c1 O D so the Hirzebruch Riemann Roch theorem states that h 0 O D h 1 O D c 1 O D c 1 T X 2 displaystyle h 0 mathcal O D h 1 mathcal O D c 1 mathcal O D c 1 T X 2 nbsp integrated over X But h0 O D is just l D the dimension of the linear system of D and by Serre duality h1 O D h0 O K D l K D where K is the canonical divisor Moreover c1 O D integrated over X is the degree of D and c1 T X integrated over X is the Euler class 2 2g of the curve X where g is the genus So we get the classical Riemann Roch theorem ℓ D ℓ K D deg D 1 g displaystyle ell D ell K D text deg D 1 g nbsp For vector bundles V the Chern character is rank V c1 V so we get Weil s Riemann Roch theorem for vector bundles over curves h 0 V h 1 V c 1 V rank V 1 g displaystyle h 0 V h 1 V c 1 V operatorname rank V 1 g nbsp Riemann Roch theorem for surfaces editMain article Riemann Roch theorem for surfaces For surfaces the Hirzebruch Riemann Roch theorem is essentially the Riemann Roch theorem for surfaces x D x O D D D K 2 displaystyle chi D chi mathcal O D D D K 2 nbsp combined with the Noether formula If we want we can use Serre duality to express h2 O D as h0 O K D but unlike the case of curves there is in general no easy way to write the h1 O D term in a form not involving sheaf cohomology although in practice it often vanishes Asymptotic Riemann Roch editLet D be an ample Cartier divisor on an irreducible projective variety X of dimension n Then h 0 X O X m D D n n m n O m n 1 displaystyle h 0 left X mathcal O X mD right frac D n n m n O m n 1 nbsp More generally if F displaystyle mathcal F nbsp is any coherent sheaf on X then h 0 X F O X m D rank F D n n m n O m n 1 displaystyle h 0 left X mathcal F otimes mathcal O X mD right operatorname rank mathcal F frac D n n m n O m n 1 nbsp See also editGrothendieck Riemann Roch theorem contains many computations and examples Hilbert polynomial HRR can be used to compute Hilbert polynomialsReferences editFriedrich Hirzebruch Topological Methods in Algebraic Geometry ISBN 3 540 58663 6External links editThe Hirzebruch Riemann Roch Theorem Retrieved from https en wikipedia org w index php title Hirzebruch Riemann Roch theorem amp oldid 1185020009, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.