fbpx
Wikipedia

Geodesics as Hamiltonian flows

In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.

Overview edit

It is frequently said that geodesics are "straight lines in curved space". By using the Hamilton–Jacobi approach to the geodesic equation, this statement can be given a very intuitive meaning: geodesics describe the motions of particles that are not experiencing any forces. In flat space, it is well known that a particle moving in a straight line will continue to move in a straight line if it experiences no external forces; this is Newton's first law. The Hamiltonian describing such motion is well known to be   with p being the momentum. It is the conservation of momentum that leads to the straight motion of a particle. On a curved surface, exactly the same ideas are at play, except that, in order to measure distances correctly, one must use the Riemannian metric. To measure momenta correctly, one must use the inverse of the metric. The motion of a free particle on a curved surface still has exactly the same form as above, i.e. consisting entirely of a kinetic term. The resulting motion is still, in a sense, a "straight line", which is why it is sometimes said that geodesics are "straight lines in curved space". This idea is developed in greater detail below.

Geodesics as an application of the principle of least action edit

Given a (pseudo-)Riemannian manifold M, a geodesic may be defined as the curve that results from the application of the principle of least action. A differential equation describing their shape may be derived, using variational principles, by minimizing (or finding the extremum) of the energy of a curve. Given a smooth curve

 

that maps an interval I of the real number line to the manifold M, one writes the energy

 

where   is the tangent vector to the curve   at point  . Here,   is the metric tensor on the manifold M.

Using the energy given above as the action, one may choose to solve either the Euler–Lagrange equations or the Hamilton–Jacobi equations. Both methods give the geodesic equation as the solution; however, the Hamilton–Jacobi equations provide greater insight into the structure of the manifold, as shown below. In terms of the local coordinates on M, the (Euler–Lagrange) geodesic equation is

 

where the xa(t) are the coordinates of the curve γ(t),   are the Christoffel symbols, and repeated indices imply the use of the summation convention.

Hamiltonian approach to the geodesic equations edit

Geodesics can be understood to be the Hamiltonian flows of a special Hamiltonian vector field defined on the cotangent space of the manifold. The Hamiltonian is constructed from the metric on the manifold, and is thus a quadratic form consisting entirely of the kinetic term.

The geodesic equations are second-order differential equations; they can be re-expressed as first-order equations by introducing additional independent variables, as shown below. Note that a coordinate neighborhood U with coordinates xa induces a local trivialization of

 

by the map which sends a point

 

of the form   to the point  . Then introduce the Hamiltonian as

 

Here, gab(x) is the inverse of the metric tensor: gab(x)gbc(x) =  . The behavior of the metric tensor under coordinate transformations implies that H is invariant under a change of variable. The geodesic equations can then be written as

 

and

 

The flow determined by these equations is called the cogeodesic flow; a simple substitution of one into the other obtains the Euler–Lagrange equations, which give the geodesic flow on the tangent bundle TM. The geodesic lines are the projections of integral curves of the geodesic flow onto the manifold M. This is a Hamiltonian flow, and the Hamiltonian is constant along the geodesics:

 

Thus, the geodesic flow splits the cotangent bundle into level sets of constant energy

 

for each energy E ≥ 0, so that

 .

References edit

  • Terence Tao, The Euler-Arnold Equation, 2010: http://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/ See the discussion at the beginning
  • Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X See section 2.7.
  • B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov, Modern Geometry: Methods and Applications, Part I, (1984) Springer-Verlag, Berlin ISBN 0-387-90872-2 See chapter 5, in particular section 33.

geodesics, hamiltonian, flows, mathematics, geodesic, equations, second, order, linear, differential, equations, commonly, presented, form, euler, lagrange, equations, motion, however, they, also, presented, coupled, first, order, equations, form, hamilton, eq. In mathematics the geodesic equations are second order non linear differential equations and are commonly presented in the form of Euler Lagrange equations of motion However they can also be presented as a set of coupled first order equations in the form of Hamilton s equations This latter formulation is developed in this article Contents 1 Overview 2 Geodesics as an application of the principle of least action 3 Hamiltonian approach to the geodesic equations 4 ReferencesOverview editIt is frequently said that geodesics are straight lines in curved space By using the Hamilton Jacobi approach to the geodesic equation this statement can be given a very intuitive meaning geodesics describe the motions of particles that are not experiencing any forces In flat space it is well known that a particle moving in a straight line will continue to move in a straight line if it experiences no external forces this is Newton s first law The Hamiltonian describing such motion is well known to be H p2 2m displaystyle H p 2 2m nbsp with p being the momentum It is the conservation of momentum that leads to the straight motion of a particle On a curved surface exactly the same ideas are at play except that in order to measure distances correctly one must use the Riemannian metric To measure momenta correctly one must use the inverse of the metric The motion of a free particle on a curved surface still has exactly the same form as above i e consisting entirely of a kinetic term The resulting motion is still in a sense a straight line which is why it is sometimes said that geodesics are straight lines in curved space This idea is developed in greater detail below Geodesics as an application of the principle of least action editGiven a pseudo Riemannian manifold M a geodesic may be defined as the curve that results from the application of the principle of least action A differential equation describing their shape may be derived using variational principles by minimizing or finding the extremum of the energy of a curve Given a smooth curve g I M displaystyle gamma I to M nbsp that maps an interval I of the real number line to the manifold M one writes the energy E g 12 Ig g t g t dt displaystyle E gamma frac 1 2 int I g dot gamma t dot gamma t dt nbsp where g t displaystyle dot gamma t nbsp is the tangent vector to the curve g displaystyle gamma nbsp at point t I displaystyle t in I nbsp Here g displaystyle g cdot cdot nbsp is the metric tensor on the manifold M Using the energy given above as the action one may choose to solve either the Euler Lagrange equations or the Hamilton Jacobi equations Both methods give the geodesic equation as the solution however the Hamilton Jacobi equations provide greater insight into the structure of the manifold as shown below In terms of the local coordinates on M the Euler Lagrange geodesic equation is d2xadt2 Gbcadxbdtdxcdt 0 displaystyle frac d 2 x a dt 2 Gamma bc a frac dx b dt frac dx c dt 0 nbsp where the xa t are the coordinates of the curve g t Gbca displaystyle Gamma bc a nbsp are the Christoffel symbols and repeated indices imply the use of the summation convention Hamiltonian approach to the geodesic equations editGeodesics can be understood to be the Hamiltonian flows of a special Hamiltonian vector field defined on the cotangent space of the manifold The Hamiltonian is constructed from the metric on the manifold and is thus a quadratic form consisting entirely of the kinetic term The geodesic equations are second order differential equations they can be re expressed as first order equations by introducing additional independent variables as shown below Note that a coordinate neighborhood U with coordinates xa induces a local trivialization of T M U U Rn displaystyle T M U simeq U times mathbb R n nbsp by the map which sends a point h Tx M U displaystyle eta in T x M U nbsp of the form h padxa displaystyle eta p a dx a nbsp to the point x pa U Rn displaystyle x p a in U times mathbb R n nbsp Then introduce the Hamiltonian as H x p 12gab x papb displaystyle H x p frac 1 2 g ab x p a p b nbsp Here gab x is the inverse of the metric tensor gab x gbc x dca displaystyle delta c a nbsp The behavior of the metric tensor under coordinate transformations implies that H is invariant under a change of variable The geodesic equations can then be written as x a H pa gab x pb displaystyle dot x a frac partial H partial p a g ab x p b nbsp and p a H xa 12 gbc x xapbpc displaystyle dot p a frac partial H partial x a frac 1 2 frac partial g bc x partial x a p b p c nbsp The flow determined by these equations is called the cogeodesic flow a simple substitution of one into the other obtains the Euler Lagrange equations which give the geodesic flow on the tangent bundle TM The geodesic lines are the projections of integral curves of the geodesic flow onto the manifold M This is a Hamiltonian flow and the Hamiltonian is constant along the geodesics dHdt H xax a H pap a p ax a x ap a 0 displaystyle frac dH dt frac partial H partial x a dot x a frac partial H partial p a dot p a dot p a dot x a dot x a dot p a 0 nbsp Thus the geodesic flow splits the cotangent bundle into level sets of constant energy ME x p T M H x p E displaystyle M E x p in T M H x p E nbsp for each energy E 0 so that T M E 0ME displaystyle T M bigcup E geq 0 M E nbsp References editTerence Tao The Euler Arnold Equation 2010 http terrytao wordpress com 2010 06 07 the euler arnold equation See the discussion at the beginning Ralph Abraham and Jerrold E Marsden Foundations of Mechanics 1978 Benjamin Cummings London ISBN 0 8053 0102 X See section 2 7 B A Dubrovin A T Fomenko and S P Novikov Modern Geometry Methods and Applications Part I 1984 Springer Verlag Berlin ISBN 0 387 90872 2 See chapter 5 in particular section 33 Retrieved from https en wikipedia org w index php title Geodesics as Hamiltonian flows amp oldid 1109982021, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.