fbpx
Wikipedia

Isotopes of gadolinium

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.[5]

Isotopes of gadolinium (64Gd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
148Gd synth 86.9 y[2] α 144Sm
150Gd synth 1.79×106 y α 146Sm
152Gd 0.2% 1.08×1014 y α 148Sm
153Gd synth 240.6 d ε 153Eu
154Gd 2.18% stable
155Gd 14.8% stable
156Gd 20.5% stable
157Gd 15.7% stable
158Gd 24.8% stable
160Gd 21.9% stable
Standard atomic weight Ar°(Gd)

Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).

The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion Range of variation
135Gd 64 71 134.95250(43)# 1.1(2) s β+ (98%) 135Eu (5/2+)
β+, p (98%) 134Sm
136Gd 64 72 135.94730(32)# 1# s [>200 ns] β+? 136Eu 0+
β+, p? 135Sm
137Gd 64 73 136.94502(32)# 2.2(2) s β+ 137Eu (7/2)+#
β+, p? 136Sm
138Gd 64 74 137.94025(22)# 4.7(9) s β+ 138Eu 0+
138mGd 2232.6(11) keV 6.2(0.2) μs IT 138Gd (8−)
139Gd 64 75 138.93813(21)# 5.7(3) s β+ 139Eu 9/2−#
β+, p? 138Sm
139mGd 250(150)# keV 4.8(9) s β+ 139Eu 1/2+#
β+, p? 138Sm
140Gd 64 76 139.933674(30) 15.8(4) s β+ (67(8)%) 140Eu 0+
EC (33(8)%)
141Gd 64 77 140.932126(21) 14(4) s β+ (99.97%) 141Eu (1/2+)
β+, p (0.03%) 140Sm
141mGd 377.76(9) keV 24.5(5) s β+ (89%) 141Eu (11/2−)
IT (11%) 141Gd
142Gd 64 78 141.928116(30) 70.2(6) s EC (52(5)%) 142Eu 0+
β+ (48(5)%)
143Gd 64 79 142.92675(22) 39(2) s β+ 143Eu 1/2+
β+, p? 142Sm
β+, α? 139Pm
143mGd 152.6(5) keV 110.0(14) s β+ 143Eu 11/2−
β+, p? 142Sm
β+, α? 139Pm
144Gd 64 80 143.922963(30) 4.47(6) min β+ 144Eu 0+
144mGd 3433.1(5) keV 145(30) ns IT 144Gd (10+)
145Gd 64 81 144.921710(21) 23.0(4) min β+ 145Eu 1/2+
145mGd 749.1(2) keV 85(3) s IT (94.3%) 145Gd 11/2−
β+ (5.7%) 145Eu
146Gd 64 82 145.9183185(44) 48.27(10) d EC 146Eu 0+
147Gd 64 83 146.9191010(20) 38.06(12) h β+ 147Eu 7/2−
147mGd 8587.8(5) keV 510(20) ns IT 147Gd 49/2+
148Gd 64 84 147.9181214(16) 86.9(39) y[2] α[n 10] 144Sm 0+
149Gd 64 85 148.919341(4) 9.28(10) d β+ 149Eu 7/2−
α (4.34×10−4%) 145Sm
150Gd 64 86 149.918659(7) 1.79(8)×106 y α[n 11] 146Sm 0+
151Gd 64 87 150.920348(4) 124(1) d EC 151Eu 7/2−
α (1.1(6)×10−6%) 147Sm
152Gd[n 12] 64 88 151.9197910(27) 1.08(8)×1014 y α[n 13] 148Sm 0+ 0.0020(1)
153Gd 64 89 152.9217495(27) 240.4(10) d EC 153Eu 3/2−
153m1Gd 95.1737(12) keV 3.5(4) μs (9/2+)
153m2Gd 171.189(5) keV 76.0(14) μs (11/2−)
154Gd 64 90 153.9208656(27) Observationally Stable[n 14] 0+ 0.0218(3)
155Gd[n 15] 64 91 154.9226220(27) Observationally Stable[n 16] 3/2− 0.1480(12)
155mGd 121.05(19) keV 31.97(27) ms IT 155Gd 11/2−
156Gd[n 15] 64 92 155.9221227(27) Stable 0+ 0.2047(9)
156mGd 2137.60(5) keV 1.3(1) μs 7-
157Gd[n 15] 64 93 156.9239601(27) Stable 3/2− 0.1565(2)
158Gd[n 15] 64 94 157.9241039(27) Stable 0+ 0.2484(7)
159Gd[n 15] 64 95 158.9263887(27) 18.479(4) h β 159Tb 3/2−
160Gd[n 15] 64 96 159.9270541(27) Observationally Stable[n 17] 0+ 0.2186(19)
161Gd 64 97 160.9296692(29) 3.646(3) min β 161Tb 5/2−
162Gd 64 98 161.930985(5) 8.4(2) min β 162Tb 0+
163Gd 64 99 162.93399(32)# 68(3) s β 163Tb 7/2+#
164Gd 64 100 163.93586(43)# 45(3) s β 164Tb 0+
165Gd 64 101 164.93938(54)# 10.3(16) s β 165Tb 1/2−#
166Gd 64 102 165.94160(64)# 4.8(10) s β 166Tb 0+
167Gd 64 103 166.94557(64)# 4.2(3) s β 167Tb 5/2−#
168Gd 64 104 167.94836(75)# 3.03(16) s β 168Tb 0+
169Gd 64 105 168.95287(86)# 750(210) ms β 169Tb 7/2−#
170Gd 64 106 675+94
−75
 ms
[6]
β 170Tb 0+
171Gd 64 107 392+145
−136
 ms
[6]
β 171Tb
172Gd 64 108 163+113
−99
 ms
[6]
β 172Tb 0+
This table header & footer:
  1. ^ mGd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^ Bold symbol as daughter – Daughter product is stable.
  9. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  10. ^ Theorized to also undergo β+β+ decay to 148Sm
  11. ^ Theorized to also undergo β+β+ decay to 150Sm
  12. ^ primordial radionuclide
  13. ^ Theorized to also undergo β+β+ decay to 152Sm
  14. ^ Believed to undergo α decay to 150Sm
  15. ^ a b c d e f Fission product
  16. ^ Believed to undergo α decay to 151Sm
  17. ^ Believed to undergo ββ decay to 160Dy with a half-life over 1.3×1021 years

Gadolinium-148 edit

With a half-life of 86.9±3.9 year via alpha decay alone,[2] gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[7]

Gadolinium-153 edit

Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium.[8] It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[9]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b c Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
  3. ^ "Standard Atomic Weights: Gadolinium". CIAAW. 1969.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ F. A. Danevich; et al. (2001). "Quest for double beta decay of 160Gd and Ce isotopes". Nuclear Physics A. 694 (1–2): 375–391. arXiv:nucl-ex/0011020. Bibcode:2001NuPhA.694..375D. doi:10.1016/S0375-9474(01)00983-6. S2CID 11874988.
  6. ^ a b c Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.
  7. ^ Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009). Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. CiteSeerX 10.1.1.367.4042. doi:10.17226/12653. ISBN 978-0-309-13857-4.
  8. ^ . pnl.gov. Archived from the original on 2009-05-27.
  9. ^ . BCIT Chemistry Resource Center. British Columbia Institute of Technology. Archived from the original on 23 August 2011. Retrieved 30 March 2011.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, gadolinium, naturally, occurring, gadolinium, 64gd, composed, stable, isotopes, 154gd, 155gd, 156gd, 157gd, 158gd, 160gd, radioisotope, 152gd, with, 158gd, being, most, abundant, natural, abundance, predicted, double, beta, decay, 160gd, never, been,. Naturally occurring gadolinium 64Gd is composed of 6 stable isotopes 154Gd 155Gd 156Gd 157Gd 158Gd and 160Gd and 1 radioisotope 152Gd with 158Gd being the most abundant 24 84 natural abundance The predicted double beta decay of 160Gd has never been observed only a lower limit on its half life of more than 1 3 1021 years has been set experimentally 5 Isotopes of gadolinium 64Gd Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 148Gd synth 86 9 y 2 a 144Sm 150Gd synth 1 79 106 y a 146Sm 152Gd 0 2 1 08 1014 y a 148Sm 153Gd synth 240 6 d e 153Eu 154Gd 2 18 stable 155Gd 14 8 stable 156Gd 20 5 stable 157Gd 15 7 stable 158Gd 24 8 stable 160Gd 21 9 stableStandard atomic weight Ar Gd 157 25 0 03 3 157 25 0 03 abridged 4 viewtalkedit Thirty three radioisotopes have been characterized with the most stable being alpha decaying 152Gd naturally occurring with a half life of 1 08 1014 years and 150Gd with a half life of 1 79 106 years All of the remaining radioactive isotopes have half lives less than 100 years the majority of these having half lives less than 24 6 seconds Gadolinium isotopes have 10 metastable isomers with the most stable being 143mGd t1 2 110 seconds 145mGd t1 2 85 seconds and 141mGd t1 2 24 5 seconds The primary decay mode at atomic weights lower than the most abundant stable isotope 158Gd is electron capture and the primary mode at higher atomic weights is beta decay The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium Contents 1 List of isotopes 2 Gadolinium 148 3 Gadolinium 153 4 ReferencesList of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode n 6 Daughterisotope n 7 n 8 Spin andparity n 9 n 5 Natural abundance mole fraction Excitation energy n 5 Normal proportion Range of variation 135Gd 64 71 134 95250 43 1 1 2 s b 98 135Eu 5 2 b p 98 134Sm 136Gd 64 72 135 94730 32 1 s gt 200 ns b 136Eu 0 b p 135Sm 137Gd 64 73 136 94502 32 2 2 2 s b 137Eu 7 2 b p 136Sm 138Gd 64 74 137 94025 22 4 7 9 s b 138Eu 0 138mGd 2232 6 11 keV 6 2 0 2 ms IT 138Gd 8 139Gd 64 75 138 93813 21 5 7 3 s b 139Eu 9 2 b p 138Sm 139mGd 250 150 keV 4 8 9 s b 139Eu 1 2 b p 138Sm 140Gd 64 76 139 933674 30 15 8 4 s b 67 8 140Eu 0 EC 33 8 141Gd 64 77 140 932126 21 14 4 s b 99 97 141Eu 1 2 b p 0 03 140Sm 141mGd 377 76 9 keV 24 5 5 s b 89 141Eu 11 2 IT 11 141Gd 142Gd 64 78 141 928116 30 70 2 6 s EC 52 5 142Eu 0 b 48 5 143Gd 64 79 142 92675 22 39 2 s b 143Eu 1 2 b p 142Sm b a 139Pm 143mGd 152 6 5 keV 110 0 14 s b 143Eu 11 2 b p 142Sm b a 139Pm 144Gd 64 80 143 922963 30 4 47 6 min b 144Eu 0 144mGd 3433 1 5 keV 145 30 ns IT 144Gd 10 145Gd 64 81 144 921710 21 23 0 4 min b 145Eu 1 2 145mGd 749 1 2 keV 85 3 s IT 94 3 145Gd 11 2 b 5 7 145Eu 146Gd 64 82 145 9183185 44 48 27 10 d EC 146Eu 0 147Gd 64 83 146 9191010 20 38 06 12 h b 147Eu 7 2 147mGd 8587 8 5 keV 510 20 ns IT 147Gd 49 2 148Gd 64 84 147 9181214 16 86 9 39 y 2 a n 10 144Sm 0 149Gd 64 85 148 919341 4 9 28 10 d b 149Eu 7 2 a 4 34 10 4 145Sm 150Gd 64 86 149 918659 7 1 79 8 106 y a n 11 146Sm 0 151Gd 64 87 150 920348 4 124 1 d EC 151Eu 7 2 a 1 1 6 10 6 147Sm 152Gd n 12 64 88 151 9197910 27 1 08 8 1014 y a n 13 148Sm 0 0 0020 1 153Gd 64 89 152 9217495 27 240 4 10 d EC 153Eu 3 2 153m1Gd 95 1737 12 keV 3 5 4 ms 9 2 153m2Gd 171 189 5 keV 76 0 14 ms 11 2 154Gd 64 90 153 9208656 27 Observationally Stable n 14 0 0 0218 3 155Gd n 15 64 91 154 9226220 27 Observationally Stable n 16 3 2 0 1480 12 155mGd 121 05 19 keV 31 97 27 ms IT 155Gd 11 2 156Gd n 15 64 92 155 9221227 27 Stable 0 0 2047 9 156mGd 2137 60 5 keV 1 3 1 ms 7 157Gd n 15 64 93 156 9239601 27 Stable 3 2 0 1565 2 158Gd n 15 64 94 157 9241039 27 Stable 0 0 2484 7 159Gd n 15 64 95 158 9263887 27 18 479 4 h b 159Tb 3 2 160Gd n 15 64 96 159 9270541 27 Observationally Stable n 17 0 0 2186 19 161Gd 64 97 160 9296692 29 3 646 3 min b 161Tb 5 2 162Gd 64 98 161 930985 5 8 4 2 min b 162Tb 0 163Gd 64 99 162 93399 32 68 3 s b 163Tb 7 2 164Gd 64 100 163 93586 43 45 3 s b 164Tb 0 165Gd 64 101 164 93938 54 10 3 16 s b 165Tb 1 2 166Gd 64 102 165 94160 64 4 8 10 s b 166Tb 0 167Gd 64 103 166 94557 64 4 2 3 s b 167Tb 5 2 168Gd 64 104 167 94836 75 3 03 16 s b 168Tb 0 169Gd 64 105 168 95287 86 750 210 ms b 169Tb 7 2 170Gd 64 106 675 94 75 ms 6 b 170Tb 0 171Gd 64 107 392 145 136 ms 6 b 171Tb 172Gd 64 108 163 113 99 ms 6 b 172Tb 0 This table header amp footer view mGd Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Theorized to also undergo b b decay to 148Sm Theorized to also undergo b b decay to 150Sm primordial radionuclide Theorized to also undergo b b decay to 152Sm Believed to undergo a decay to 150Sm a b c d e f Fission product Believed to undergo a decay to 151Sm Believed to undergo b b decay to 160Dy with a half life over 1 3 1021 yearsGadolinium 148 editWith a half life of 86 9 3 9 year via alpha decay alone 2 gadolinium 148 would be ideal for radioisotope thermoelectric generators However gadolinium 148 cannot be economically synthesized in sufficient quantities to power a RTG 7 Gadolinium 153 editGadolinium 153 has a half life of 240 4 10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV It is used as a gamma ray source for X ray absorptiometry and fluorescence for bone density gauges for osteoporosis screening and for radiometric profiling in the Lixiscope portable x ray imaging system also known as the Lixi Profiler In nuclear medicine it serves to calibrate the equipment needed like single photon emission computed tomography systems SPECT to make x rays It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient This isotope is produced in a nuclear reactor from europium or enriched gadolinium 8 It can also detect the loss of calcium in the hip and back bones allowing the ability to diagnose osteoporosis 9 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae a b c Chiera Nadine M Dressler Rugard Sprung Peter Talip Zeynep Schumann Dorothea 2023 Determination of the half life of gadolinium 148 Applied Radiation and Isotopes 194 Elsevier BV 110708 doi 10 1016 j apradiso 2023 110708 ISSN 0969 8043 Standard Atomic Weights Gadolinium CIAAW 1969 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 F A Danevich et al 2001 Quest for double beta decay of 160Gd and Ce isotopes Nuclear Physics A 694 1 2 375 391 arXiv nucl ex 0011020 Bibcode 2001NuPhA 694 375D doi 10 1016 S0375 9474 01 00983 6 S2CID 11874988 a b c Kiss G G Vitez Sveiczer A Saito Y et al 2022 Measuring the b decay properties of neutron rich exotic Pm Sm Eu and Gd isotopes to constrain the nucleosynthesis yields in the rare earth region The Astrophysical Journal 936 107 107 Bibcode 2022ApJ 936 107K doi 10 3847 1538 4357 ac80fc hdl 2117 375253 Council National Research Sciences Division on Engineering Physical Board Aeronautics Space Engineering Board Space Studies Committee Radioisotope Power Systems 2009 Radioisotope Power Systems An Imperative for Maintaining U S Leadership in Space Exploration CiteSeerX 10 1 1 367 4042 doi 10 17226 12653 ISBN 978 0 309 13857 4 PNNL Isotope Sciences Program Gadolinium 153 pnl gov Archived from the original on 2009 05 27 Gadolinium BCIT Chemistry Resource Center British Columbia Institute of Technology Archived from the original on 23 August 2011 Retrieved 30 March 2011 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of gadolinium amp oldid 1223898625 Gadolinium 153, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.