fbpx
Wikipedia

Foam glass

Foam glass is a porous glass foam material. Its advantages as a building material include its light weight, high strength, and thermal and acoustic insulating properties. It is made by heating a mixture of crushed or granulated glass and a blowing agent (chemical foaming agent) such as carbon or limestone. Near the melting point of the glass, the blowing agent releases a gas, producing a foaming effect in the glass. After cooling the mixture hardens into a rigid material with gas-filled closed-cell pores comprising a large portion of its volume.

Block of foam glass

As to chemical foaming agents, there are several additives that facilitate the release of the gaseous phase upon heat treatment.[1][2][3][4] In general, these additives are categorized into two categories: a) redox and neutralization agents, and b) decomposing agents. Redox and neutralization agents include nonoxide materials, e.g. carbides or nitrides. Decomposing agents include sulfates, e.g. CaSO4•nH2O,[citation needed] organic compounds, and carbonates, e.g. CaCO3. These materials release gas following decomposition and/or burning.

History edit

In the 1930s, Saint-Gobain of France first developed foam glass with calcium carbonate as a foaming agent. In 1932, it applied for a patent.[5]

An early report of foam glass as a construction material was made by the Soviet scientist, Professor Isaak Ilych Kitaygorodskiy (ru) at the All-Union Conference on Standardization and Manufacture of New Construction Materials in Moscow in 1932.[6] Subsequently, in 1939, the Soviet Union reports experimentally produced foam glass at the intermediate pilot plant of the Mendeleev Institute of Chemical Technology. A glass powder screened through a 0.09 mm mesh was mixed with limestone and later on with anthracite and coal as gasifier.[7]

The product that is known today as Foamglas cellular glass insulation, was developed by Pittsburgh Corning and was later acquired by Owens Corning. It is made of cullet, foaming agent, modified additive and foaming accelerator. After fine pulverization and uniform mixing, it is melted at high temperature, foamed and annealed. An inorganic non-metallic glass material, it consists of a large number of uniform bubble structures with a diameter of 1 to 2 mm. Sound-absorbing Foamglas insulation is more than 50% open cell bubbles, and heat-insulating Foamglas is more than 75% closed-cell air bubbles, which can be adjusted according to the requirements of use through changes in production technical parameters.[8] Similar products by other manufacturers are sold as 'cellular glass' or 'foam glass'.

Properties edit

Because this material is moisture-proof, fireproof, and anti-corrosive, and the glass material has the advantages of long-term use performance, it is favored for uses in harsh environments such as in heat insulation, deep cooling, underground, open-air, flammable, damp, and under chemical attack. It is widely used in wall insulation, petroleum, chemical industry, machine room noise reduction, highway sound absorption barrier, electric power, military products, etc. and is called green environmental protection insulation material by users.

Depending on the properties of the foam glass, it can be used as insulation material in various sectors of construction engineering, as well as in shipbuilding, chemical, cryogenic, and high-temperature technologies. White and stained glass are also used as sound absorbing and decorative materials. Waste in production – foamed glass powder and scrap can also be used as fillers for decorative light concrete and other applications. Depending on the application, foam glass products produced by the corresponding processes can be divided into four categories, namely insulating foam glass, sound-absorbing decorative foam glass, facing foam glass, and granular foam glass.

Foam glass is a kind of lightweight, high-strength building material and decorative material with excellent performance (insulation) and sound absorption that is both moisture-proof and fireproof. The temperature range is from -196 degrees to 450 degrees Celsius. Although other new insulation materials emerge in an endless stream, foam glass occupies an increasingly important position in the fields of low thermal insulation, moisture-proof engineering, and sound absorption due to its permanence, safety, and high reliability. Its production is the recycling of waste solid materials, which is an example of protecting the environment and obtaining substantial economic benefits. Recently, it is available in monolitic dimensions of 2.8 x 1.2m.

Lava foam glass: natural lava such as obsidian and industrial waste slag is used as the base material, and a certain amount of glass powder can also be added to reduce the foaming temperature and foam glass made of or the like as a foaming agent. Generally used as insulation materials and wall materials for construction and industrial equipment.[9]

Application edit

Foam glass is fireproof, waterproof, non-toxic, corrosion-resistant, anti-mite, non-aging, non-radioactive, and insulating. Anti-magnetic wave, anti-static, high mechanical strength, with good adhesion to various types of mud. It is a stable building exterior wall and roof insulation, sound insulation, and waterproof material.

According to reports, foam glass can be used in places that require sound insulation and heat insulation, leak prevention and flood control. It has functions for home cleaning and health care. The use of foam glass to protect the heating duct reduces heat loss by approximately 25% compared to conventional protective materials.[10]

Foam glass, also known as porous glass, is filled with numerous open or closed small pores. The area of the pores is 80%~90% of the total volume, and the pore size is 0.5~5mm, and some are as small as a few microns.

1. The matrix of the foam glass is glass, so it does not absorb water. The internal bubbles are also closed, so there is no capillary phenomenon and no penetration, so foam glass is currently the most ideal thermal insulation material. [citation needed]

2. The mechanical strength is high, and the intensity change is proportional to the apparent density. It has excellent pressure resistance and can withstand the erosion and load of the external environment more than other materials. The combination of excellent compression resistance and moisture barrier properties makes foam glass an ideal thermal insulation material for underground pipelines and tank foundations. [citation needed]

3. Foam glass has good thermal and moisture permeability, so thermal conductivity is stable for a long time, and it does not change due to environmental influences, and the thermal insulation performance is good.

4. Foam glass is a matrix wet glass, so it will not burn spontaneously and will not be burned. It is an excellent fireproof material. Foam glass has an operating temperature range of -200 to 430 °C, a small expansion coefficient (8 × 10 °C) and is reversible, so the material properties are unchanged for a long time, are not easy to embrittle, and have good stability.

5. Foam glass has good sound insulation performance and strong absorption of sound waves. The average penetration loss is 28.3 dB in 60~400 Hz.

6. The dyeing property of foam glass is good, so it can be used as insulation decoration materials.

Foam glass insulation aggregate is used in the same way as coated clay aggregate but is capable of being used as a load-bearing hardcore. It also offers better insulation (lambda/k value = 0.08 – approximately 20% lower thermal conductivity than lightweight expanded clay aggregate). It therefore needs less depth for similar thermal performance.[11]

See also edit

References edit

  1. ^ Llaudis, Alejandro Saburit; Tari, María José Orts; Ten, Francisco Javier García; Bernardo, Enrico; Colombo, Paolo (July 2009). "Foaming of flat glass cullet using Si3N4 and MnO2 powders". Ceramics International. 35 (5): 1953–1959. doi:10.1016/j.ceramint.2008.10.022.
  2. ^ Bernardo, E.; Cedro, R.; Florean, M.; Hreglich, S. (August 2007). "Reutilization and stabilization of wastes by the production of glass foams". Ceramics International. 33 (6): 963–968. doi:10.1016/j.ceramint.2006.02.010.
  3. ^ Lv, Dong Sheng; Li, Xiu Hua; Wang, Lei; Du, Juan Juan; Zhang, Jie (April 2010). "Effect of Carbon as Foaming Agent on Pore Structure of Foam Glass". Advanced Materials Research. 105–106: 765–768. doi:10.4028/www.scientific.net/AMR.105-106.765. ISSN 1662-8985. S2CID 135917745.
  4. ^ Abdollahi, Sorosh; Yekta, Bijan Eftekhari (November 2020). "Prediction of foaming temperature of glass in the presence of various oxidizers via thermodynamics route". Ceramics International. 46 (16): 25626–25632. doi:10.1016/j.ceramint.2020.07.037. S2CID 225624462.
  5. ^ FR 752636 
  6. ^ Kitaygorodskiy, I.I. (1932). Transactions of the All-Union Conference on Standardization and Production of New Construction Materials. Moscow.{{cite book}}: CS1 maint: location missing publisher (link)
  7. ^ Kitaygorodskiy, I.I (1940). Proizvodstvo Stroitel'nikh Materialov. No 3. {{cite journal}}: |volume= has extra text (help); Missing or empty |title= (help)
  8. ^ "TRADE OF Industrial Insulation" (PDF). local.ecollege.ie. Retrieved 2018-12-12.
  9. ^ Swan, Robert H.; Yeom, Seungcheol; Sjoblom, Kurt J.; Stark, Timothy D.; Filshill, Archie (2016-08-08). Engineering Properties of Foamed Recycled Glass as a Lightweight Fill. Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784480151.002. ISBN 9780784480151. {{cite book}}: |journal= ignored (help)
  10. ^ Jakob., Koenig. Fabrication of highly insulating foam glass made from CRT panel glass. OCLC 922865725.
  11. ^ "Foam Glass Insulation Aggregate: GEOCELL®". Mike Wye. Retrieved 2016-11-01.

External links edit

  • Yin, Hairong; Ma, Mingxin; Bai, Jianguang; Li, Yanxiao; Zhang, Sen; Wang, Fei (December 2016). "Fabrication of foam glass from iron tailings". Materials Letters. 185: 511–513. doi:10.1016/j.matlet.2016.09.034.
  • Wang, Hao; Chen, Ziwei; Ji, Ru; Liu, Lili; Wang, Xidong (August 2018). "Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic". Ceramics International. 44 (12): 13681–13688. doi:10.1016/j.ceramint.2018.04.207. S2CID 139498288.
  • Foam glass -Britannica online
  • GE Wei-qing; YANG Jing (2008). "The Study of the Present Situation of Foam Glass and Development Trend in China". Journal of Tangshan College. 21 (2): 66–67, 86. ISSN 1672-349X.

foam, glass, been, suggested, that, gravel, merged, into, this, article, discuss, proposed, since, november, 2023, this, article, unclear, citation, style, references, used, made, clearer, with, different, consistent, style, citation, footnoting, 2017, learn, . It has been suggested that Foam glass gravel be merged into this article Discuss Proposed since November 2023 This article has an unclear citation style The references used may be made clearer with a different or consistent style of citation and footnoting May 2017 Learn how and when to remove this template message Foam glass is a porous glass foam material Its advantages as a building material include its light weight high strength and thermal and acoustic insulating properties It is made by heating a mixture of crushed or granulated glass and a blowing agent chemical foaming agent such as carbon or limestone Near the melting point of the glass the blowing agent releases a gas producing a foaming effect in the glass After cooling the mixture hardens into a rigid material with gas filled closed cell pores comprising a large portion of its volume Block of foam glassAs to chemical foaming agents there are several additives that facilitate the release of the gaseous phase upon heat treatment 1 2 3 4 In general these additives are categorized into two categories a redox and neutralization agents and b decomposing agents Redox and neutralization agents include nonoxide materials e g carbides or nitrides Decomposing agents include sulfates e g CaSO4 nH2O citation needed organic compounds and carbonates e g CaCO3 These materials release gas following decomposition and or burning Contents 1 History 2 Properties 3 Application 4 See also 5 References 6 External linksHistory editIn the 1930s Saint Gobain of France first developed foam glass with calcium carbonate as a foaming agent In 1932 it applied for a patent 5 An early report of foam glass as a construction material was made by the Soviet scientist Professor Isaak Ilych Kitaygorodskiy ru at the All Union Conference on Standardization and Manufacture of New Construction Materials in Moscow in 1932 6 Subsequently in 1939 the Soviet Union reports experimentally produced foam glass at the intermediate pilot plant of the Mendeleev Institute of Chemical Technology A glass powder screened through a 0 09 mm mesh was mixed with limestone and later on with anthracite and coal as gasifier 7 The product that is known today as Foamglas cellular glass insulation was developed by Pittsburgh Corning and was later acquired by Owens Corning It is made of cullet foaming agent modified additive and foaming accelerator After fine pulverization and uniform mixing it is melted at high temperature foamed and annealed An inorganic non metallic glass material it consists of a large number of uniform bubble structures with a diameter of 1 to 2 mm Sound absorbing Foamglas insulation is more than 50 open cell bubbles and heat insulating Foamglas is more than 75 closed cell air bubbles which can be adjusted according to the requirements of use through changes in production technical parameters 8 Similar products by other manufacturers are sold as cellular glass or foam glass Properties editBecause this material is moisture proof fireproof and anti corrosive and the glass material has the advantages of long term use performance it is favored for uses in harsh environments such as in heat insulation deep cooling underground open air flammable damp and under chemical attack It is widely used in wall insulation petroleum chemical industry machine room noise reduction highway sound absorption barrier electric power military products etc and is called green environmental protection insulation material by users Depending on the properties of the foam glass it can be used as insulation material in various sectors of construction engineering as well as in shipbuilding chemical cryogenic and high temperature technologies White and stained glass are also used as sound absorbing and decorative materials Waste in production foamed glass powder and scrap can also be used as fillers for decorative light concrete and other applications Depending on the application foam glass products produced by the corresponding processes can be divided into four categories namely insulating foam glass sound absorbing decorative foam glass facing foam glass and granular foam glass Foam glass is a kind of lightweight high strength building material and decorative material with excellent performance insulation and sound absorption that is both moisture proof and fireproof The temperature range is from 196 degrees to 450 degrees Celsius Although other new insulation materials emerge in an endless stream foam glass occupies an increasingly important position in the fields of low thermal insulation moisture proof engineering and sound absorption due to its permanence safety and high reliability Its production is the recycling of waste solid materials which is an example of protecting the environment and obtaining substantial economic benefits Recently it is available in monolitic dimensions of 2 8 x 1 2m Lava foam glass natural lava such as obsidian and industrial waste slag is used as the base material and a certain amount of glass powder can also be added to reduce the foaming temperature and foam glass made of or the like as a foaming agent Generally used as insulation materials and wall materials for construction and industrial equipment 9 Application editFoam glass is fireproof waterproof non toxic corrosion resistant anti mite non aging non radioactive and insulating Anti magnetic wave anti static high mechanical strength with good adhesion to various types of mud It is a stable building exterior wall and roof insulation sound insulation and waterproof material According to reports foam glass can be used in places that require sound insulation and heat insulation leak prevention and flood control It has functions for home cleaning and health care The use of foam glass to protect the heating duct reduces heat loss by approximately 25 compared to conventional protective materials 10 Foam glass also known as porous glass is filled with numerous open or closed small pores The area of the pores is 80 90 of the total volume and the pore size is 0 5 5mm and some are as small as a few microns 1 The matrix of the foam glass is glass so it does not absorb water The internal bubbles are also closed so there is no capillary phenomenon and no penetration so foam glass is currently the most ideal thermal insulation material citation needed 2 The mechanical strength is high and the intensity change is proportional to the apparent density It has excellent pressure resistance and can withstand the erosion and load of the external environment more than other materials The combination of excellent compression resistance and moisture barrier properties makes foam glass an ideal thermal insulation material for underground pipelines and tank foundations citation needed 3 Foam glass has good thermal and moisture permeability so thermal conductivity is stable for a long time and it does not change due to environmental influences and the thermal insulation performance is good 4 Foam glass is a matrix wet glass so it will not burn spontaneously and will not be burned It is an excellent fireproof material Foam glass has an operating temperature range of 200 to 430 C a small expansion coefficient 8 10 C and is reversible so the material properties are unchanged for a long time are not easy to embrittle and have good stability 5 Foam glass has good sound insulation performance and strong absorption of sound waves The average penetration loss is 28 3 dB in 60 400 Hz 6 The dyeing property of foam glass is good so it can be used as insulation decoration materials Foam glass insulation aggregate is used in the same way as coated clay aggregate but is capable of being used as a load bearing hardcore It also offers better insulation lambda k value 0 08 approximately 20 lower thermal conductivity than lightweight expanded clay aggregate It therefore needs less depth for similar thermal performance 11 See also editNanofoam Metal foam Ceramic foam Porous medium Reticulated foam Foam glass gravelReferences edit Llaudis Alejandro Saburit Tari Maria Jose Orts Ten Francisco Javier Garcia Bernardo Enrico Colombo Paolo July 2009 Foaming of flat glass cullet using Si3N4 and MnO2 powders Ceramics International 35 5 1953 1959 doi 10 1016 j ceramint 2008 10 022 Bernardo E Cedro R Florean M Hreglich S August 2007 Reutilization and stabilization of wastes by the production of glass foams Ceramics International 33 6 963 968 doi 10 1016 j ceramint 2006 02 010 Lv Dong Sheng Li Xiu Hua Wang Lei Du Juan Juan Zhang Jie April 2010 Effect of Carbon as Foaming Agent on Pore Structure of Foam Glass Advanced Materials Research 105 106 765 768 doi 10 4028 www scientific net AMR 105 106 765 ISSN 1662 8985 S2CID 135917745 Abdollahi Sorosh Yekta Bijan Eftekhari November 2020 Prediction of foaming temperature of glass in the presence of various oxidizers via thermodynamics route Ceramics International 46 16 25626 25632 doi 10 1016 j ceramint 2020 07 037 S2CID 225624462 FR 752636 Kitaygorodskiy I I 1932 Transactions of the All Union Conference on Standardization and Production of New Construction Materials Moscow a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Kitaygorodskiy I I 1940 Proizvodstvo Stroitel nikh Materialov No 3 a href Template Cite journal html title Template Cite journal cite journal a volume has extra text help Missing or empty title help TRADE OF Industrial Insulation PDF local ecollege ie Retrieved 2018 12 12 Swan Robert H Yeom Seungcheol Sjoblom Kurt J Stark Timothy D Filshill Archie 2016 08 08 Engineering Properties of Foamed Recycled Glass as a Lightweight Fill Reston VA American Society of Civil Engineers doi 10 1061 9780784480151 002 ISBN 9780784480151 a href Template Cite book html title Template Cite book cite book a journal ignored help Jakob Koenig Fabrication of highly insulating foam glass made from CRT panel glass OCLC 922865725 Foam Glass Insulation Aggregate GEOCELL Mike Wye Retrieved 2016 11 01 nbsp Wikimedia Commons has media related to Foam glass External links editYin Hairong Ma Mingxin Bai Jianguang Li Yanxiao Zhang Sen Wang Fei December 2016 Fabrication of foam glass from iron tailings Materials Letters 185 511 513 doi 10 1016 j matlet 2016 09 034 Wang Hao Chen Ziwei Ji Ru Liu Lili Wang Xidong August 2018 Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic Ceramics International 44 12 13681 13688 doi 10 1016 j ceramint 2018 04 207 S2CID 139498288 Foam glass Britannica online GE Wei qing YANG Jing 2008 The Study of the Present Situation of Foam Glass and Development Trend in China Journal of Tangshan College 21 2 66 67 86 ISSN 1672 349X Retrieved from https en wikipedia org w index php title Foam glass amp oldid 1200618017, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.