fbpx
Wikipedia

Quotient ring

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring[1] or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra.[2][3] It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.)

Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization.

Formal quotient ring construction Edit

Given a ring   and a two-sided ideal   in  , we may define an equivalence relation   on   as follows:

  if and only if   is in  .

Using the ideal properties, it is not difficult to check that   is a congruence relation. In case  , we say that   and   are congruent modulo  . The equivalence class of the element   in   is given by

 .

This equivalence class is also sometimes written as   and called the "residue class of   modulo  ".

The set of all such equivalence classes is denoted by  ; it becomes a ring, the factor ring or quotient ring of   modulo  , if one defines

  •  ;
  •  .

(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of   is  , and the multiplicative identity is  .

The map   from   to   defined by   is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.

Examples Edit

  • The quotient ring R / {0} is naturally isomorphic to R, and R / R is the zero ring {0}, since, by our definition, for any r in R, we have that [r] = r + "R" := {r + b : b ∈ "R"}}, which equals R itself. This fits with the rule of thumb that the larger the ideal I, the smaller the quotient ring R / I. If I is a proper ideal of R, i.e., IR, then R / I is not the zero ring.
  • Consider the ring of integers Z and the ideal of even numbers, denoted by 2Z. Then the quotient ring Z / 2Z has only two elements, the coset 0+2Z consisting of the even numbers and the coset 1+2Z consisting of the odd numbers; applying the definition, [z] = z + 2Z := {z + 2y: 2y ∈ 2Z}, where 2Z is the ideal of even numbers. It is naturally isomorphic to the finite field with two elements, F2. Intuitively: if you think of all the even numbers as 0, then every integer is either 0 (if it is even) or 1 (if it is odd and therefore differs from an even number by 1). Modular arithmetic is essentially arithmetic in the quotient ring Z / nZ (which has n elements).
  • Now consider the ring of polynomials in the variable X with real coefficients, R[X], and the ideal I = (X2 + 1) consisting of all multiples of the polynomial X2 + 1. The quotient ring R[X] / (X2 + 1) is naturally isomorphic to the field of complex numbers C, with the class [X] playing the role of the imaginary unit i. The reason is that we "forced" X2 + 1 = 0, i.e. X2 = −1, which is the defining property of i. Since any integer exponent of i must be either ±i or ±1, that means all possible polynomials essentially simplify to the form a + bi. (To clarify, the quotient ring R[X] / (X2 + 1) is actually naturally isomorphic to the field of all linear polynomials aX+b, a,b ∈ R,where the operations are performed mod X2+1. In return, we have X2 = -1, and this is matching X to the imaginary unit in the isomorphic field of complex numbers.)
  • Generalizing the previous example, quotient rings are often used to construct field extensions. Suppose K is some field and f is an irreducible polynomial in K[X]. Then L = K[X] / (f) is a field whose minimal polynomial over K is f, which contains K as well as an element x = X + (f).
  • One important instance of the previous example is the construction of the finite fields. Consider for instance the field F3 = Z / 3Z with three elements. The polynomial f(X) = X2 + 1 is irreducible over F3 (since it has no root), and we can construct the quotient ring F3[X] / (f). This is a field with 32 = 9 elements, denoted by F9. The other finite fields can be constructed in a similar fashion.
  • The coordinate rings of algebraic varieties are important examples of quotient rings in algebraic geometry. As a simple case, consider the real variety V = {(x, y) | x2 = y3 } as a subset of the real plane R2. The ring of real-valued polynomial functions defined on V can be identified with the quotient ring R[X,Y] / (X2Y3), and this is the coordinate ring of V. The variety V is now investigated by studying its coordinate ring.
  • Suppose M is a C-manifold, and p is a point of M. Consider the ring R = C(M) of all C-functions defined on M and let I be the ideal in R consisting of those functions f which are identically zero in some neighborhood U of p (where U may depend on f). Then the quotient ring R / I is the ring of germs of C-functions on M at p.
  • Consider the ring F of finite elements of a hyperreal field *R. It consists of all hyperreal numbers differing from a standard real by an infinitesimal amount, or equivalently: of all hyperreal numbers x for which a standard integer n with n < x < n exists. The set I of all infinitesimal numbers in *R, together with 0, is an ideal in F, and the quotient ring F / I is isomorphic to the real numbers R. The isomorphism is induced by associating to every element x of F the standard part of x, i.e. the unique real number that differs from x by an infinitesimal. In fact, one obtains the same result, namely R, if one starts with the ring F of finite hyperrationals (i.e. ratio of a pair of hyperintegers), see construction of the real numbers.

Variations of complex planes Edit

The quotients R[X] / (X), R[X] / (X + 1), and R[X] / (X − 1) are all isomorphic to R and gain little interest at first. But note that R[X] / (X2) is called the dual number plane in geometric algebra. It consists only of linear binomials as "remainders" after reducing an element of R[X] by X2. This variation of a complex plane arises as a subalgebra whenever the algebra contains a real line and a nilpotent.

Furthermore, the ring quotient R[X] / (X2 − 1) does split into R[X] / (X + 1) and R[X] / (X − 1), so this ring is often viewed as the direct sum RR. Nevertheless, a variation on complex numbers z = x + y j is suggested by j as a root of X2 − 1, compared to i as root of X2 + 1 = 0. This plane of split-complex numbers normalizes the direct sum RR by providing a basis {1, j} for 2-space where the identity of the algebra is at unit distance from the zero. With this basis a unit hyperbola may be compared to the unit circle of the ordinary complex plane.

Quaternions and variations Edit

Suppose X and Y are two, non-commuting, indeterminates and form the free algebra RX, Y. Then Hamilton’s quaternions of 1843 can be cast as

 

If Y2 − 1 is substituted for Y2 + 1, then one obtains the ring of split-quaternions. The anti-commutative property YX = −XY implies that XY has as its square

(XY)(XY) = X(YX)Y = −X(XY)Y = −(XX)(YY) = −(−1)(+1) = +1.

Substituting minus for plus in both the quadratic binomials also results in split-quaternions.

The three types of biquaternions can also be written as quotients by use of the free algebra with three indeterminates RX, Y, Z and constructing appropriate ideals.

Properties Edit

Clearly, if R is a commutative ring, then so is R / I; the converse, however, is not true in general.

The natural quotient map p has I as its kernel; since the kernel of every ring homomorphism is a two-sided ideal, we can state that two-sided ideals are precisely the kernels of ring homomorphisms.

The intimate relationship between ring homomorphisms, kernels and quotient rings can be summarized as follows: the ring homomorphisms defined on R / I are essentially the same as the ring homomorphisms defined on R that vanish (i.e. are zero) on I. More precisely, given a two-sided ideal I in R and a ring homomorphism f : RS whose kernel contains I, there exists precisely one ring homomorphism g : R / IS with gp = f (where p is the natural quotient map). The map g here is given by the well-defined rule g([a]) = f(a) for all a in R. Indeed, this universal property can be used to define quotient rings and their natural quotient maps.

As a consequence of the above, one obtains the fundamental statement: every ring homomorphism f : RS induces a ring isomorphism between the quotient ring R / ker(f) and the image im(f). (See also: fundamental theorem on homomorphisms.)

The ideals of R and R / I are closely related: the natural quotient map provides a bijection between the two-sided ideals of R that contain I and the two-sided ideals of R / I (the same is true for left and for right ideals). This relationship between two-sided ideal extends to a relationship between the corresponding quotient rings: if M is a two-sided ideal in R that contains I, and we write M / I for the corresponding ideal in R / I (i.e. M / I = p(M)), the quotient rings R / M and (R / I) / (M / I) are naturally isomorphic via the (well-defined!) mapping a + M ↦ (a + I) + M / I.

The following facts prove useful in commutative algebra and algebraic geometry: for R ≠ {0} commutative, R / I is a field if and only if I is a maximal ideal, while R / I is an integral domain if and only if I is a prime ideal. A number of similar statements relate properties of the ideal I to properties of the quotient ring R / I.

The Chinese remainder theorem states that, if the ideal I is the intersection (or equivalently, the product) of pairwise coprime ideals I1, ..., Ik, then the quotient ring R / I is isomorphic to the product of the quotient rings R / In, n = 1, ..., k.

For algebras over a ring Edit

An associative algebra A over a commutative ring R is a ring itself. If I is an ideal in A (closed under R-multiplication), then A / I inherits the structure of an algebra over R and is the quotient algebra.

See also Edit

Notes Edit

  1. ^ Jacobson, Nathan (1984). Structure of Rings (revised ed.). American Mathematical Soc. ISBN 0-821-87470-5.
  2. ^ Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
  3. ^ Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.

Further references Edit

  • F. Kasch (1978) Moduln und Ringe, translated by DAR Wallace (1982) Modules and Rings, Academic Press, page 33.
  • Neal H. McCoy (1948) Rings and Ideals, §13 Residue class rings, page 61, Carus Mathematical Monographs #8, Mathematical Association of America.
  • Joseph Rotman (1998). Galois Theory (2nd ed.). Springer. pp. 21–3. ISBN 0-387-98541-7.
  • B.L. van der Waerden (1970) Algebra, translated by Fred Blum and John R Schulenberger, Frederick Ungar Publishing, New York. See Chapter 3.5, "Ideals. Residue Class Rings", pages 47 to 51.

External links Edit

quotient, ring, ring, theory, branch, abstract, algebra, quotient, ring, also, known, factor, ring, difference, ring, residue, class, ring, construction, quite, similar, quotient, group, group, theory, quotient, space, linear, algebra, specific, example, quoti. In ring theory a branch of abstract algebra a quotient ring also known as factor ring difference ring 1 or residue class ring is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra 2 3 It is a specific example of a quotient as viewed from the general setting of universal algebra Starting with a ring R and a two sided ideal I in R a new ring the quotient ring R I is constructed whose elements are the cosets of I in R subject to special and operations Only the fraction slash is used in quotient ring notation not a horizontal fraction bar Quotient rings are distinct from the so called quotient field or field of fractions of an integral domain as well as from the more general rings of quotients obtained by localization Contents 1 Formal quotient ring construction 2 Examples 2 1 Variations of complex planes 2 2 Quaternions and variations 3 Properties 4 For algebras over a ring 5 See also 6 Notes 7 Further references 8 External linksFormal quotient ring construction EditGiven a ring R displaystyle R nbsp and a two sided ideal I displaystyle I nbsp in R displaystyle R nbsp we may define an equivalence relation displaystyle sim nbsp on R displaystyle R nbsp as follows a b displaystyle a sim b nbsp if and only if a b displaystyle a b nbsp is in I displaystyle I nbsp Using the ideal properties it is not difficult to check that displaystyle sim nbsp is a congruence relation In case a b displaystyle a sim b nbsp we say that a displaystyle a nbsp and b displaystyle b nbsp are congruent modulo I displaystyle I nbsp The equivalence class of the element a displaystyle a nbsp in R displaystyle R nbsp is given by a a I a r r I displaystyle a a I a r r in I nbsp This equivalence class is also sometimes written as a mod I displaystyle a bmod I nbsp and called the residue class of a displaystyle a nbsp modulo I displaystyle I nbsp The set of all such equivalence classes is denoted by R I displaystyle R I nbsp it becomes a ring the factor ring or quotient ring of R displaystyle R nbsp modulo I displaystyle I nbsp if one defines a I b I a b I displaystyle a I b I a b I nbsp a I b I a b I displaystyle a I b I ab I nbsp Here one has to check that these definitions are well defined Compare coset and quotient group The zero element of R I displaystyle R I nbsp is 0 0 I I displaystyle bar 0 0 I I nbsp and the multiplicative identity is 1 1 I displaystyle bar 1 1 I nbsp The map p displaystyle p nbsp from R displaystyle R nbsp to R I displaystyle R I nbsp defined by p a a I displaystyle p a a I nbsp is a surjective ring homomorphism sometimes called the natural quotient map or the canonical homomorphism Examples EditThe quotient ring R 0 is naturally isomorphic to R and R R is the zero ring 0 since by our definition for any r in R we have that r r R r b b R which equals R itself This fits with the rule of thumb that the larger the ideal I the smaller the quotient ring R I If I is a proper ideal of R i e I R then R I is not the zero ring Consider the ring of integers Z and the ideal of even numbers denoted by 2Z Then the quotient ring Z 2Z has only two elements the coset 0 2Z consisting of the even numbers and the coset 1 2Z consisting of the odd numbers applying the definition z z 2Z z 2y 2y 2Z where 2Z is the ideal of even numbers It is naturally isomorphic to the finite field with two elements F2 Intuitively if you think of all the even numbers as 0 then every integer is either 0 if it is even or 1 if it is odd and therefore differs from an even number by 1 Modular arithmetic is essentially arithmetic in the quotient ring Z nZ which has n elements Now consider the ring of polynomials in the variable X with real coefficients R X and the ideal I X2 1 consisting of all multiples of the polynomial X2 1 The quotient ring R X X2 1 is naturally isomorphic to the field of complex numbers C with the class X playing the role of the imaginary unit i The reason is that we forced X2 1 0 i e X2 1 which is the defining property of i Since any integer exponent of i must be either i or 1 that means all possible polynomials essentially simplify to the form a bi To clarify the quotient ring R X X2 1 is actually naturally isomorphic to the field of all linear polynomials aX b a b R where the operations are performed mod X2 1 In return we have X2 1 and this is matching X to the imaginary unit in the isomorphic field of complex numbers Generalizing the previous example quotient rings are often used to construct field extensions Suppose K is some field and f is an irreducible polynomial in K X Then L K X f is a field whose minimal polynomial over K is f which contains K as well as an element x X f One important instance of the previous example is the construction of the finite fields Consider for instance the field F3 Z 3Z with three elements The polynomial f X X2 1 is irreducible over F3 since it has no root and we can construct the quotient ring F3 X f This is a field with 32 9 elements denoted by F9 The other finite fields can be constructed in a similar fashion The coordinate rings of algebraic varieties are important examples of quotient rings in algebraic geometry As a simple case consider the real variety V x y x2 y3 as a subset of the real plane R2 The ring of real valued polynomial functions defined on V can be identified with the quotient ring R X Y X2 Y3 and this is the coordinate ring of V The variety V is now investigated by studying its coordinate ring Suppose M is a C manifold and p is a point of M Consider the ring R C M of all C functions defined on M and let I be the ideal in R consisting of those functions f which are identically zero in some neighborhood U of p where U may depend on f Then the quotient ring R I is the ring of germs of C functions on M at p Consider the ring F of finite elements of a hyperreal field R It consists of all hyperreal numbers differing from a standard real by an infinitesimal amount or equivalently of all hyperreal numbers x for which a standard integer n with n lt x lt n exists The set I of all infinitesimal numbers in R together with 0 is an ideal in F and the quotient ring F I is isomorphic to the real numbers R The isomorphism is induced by associating to every element x of F the standard part of x i e the unique real number that differs from x by an infinitesimal In fact one obtains the same result namely R if one starts with the ring F of finite hyperrationals i e ratio of a pair of hyperintegers see construction of the real numbers Variations of complex planes Edit The quotients R X X R X X 1 and R X X 1 are all isomorphic to R and gain little interest at first But note that R X X2 is called the dual number plane in geometric algebra It consists only of linear binomials as remainders after reducing an element of R X by X2 This variation of a complex plane arises as a subalgebra whenever the algebra contains a real line and a nilpotent Furthermore the ring quotient R X X2 1 does split into R X X 1 and R X X 1 so this ring is often viewed as the direct sum R R Nevertheless a variation on complex numbers z x y j is suggested by j as a root of X2 1 compared to i as root of X2 1 0 This plane of split complex numbers normalizes the direct sum R R by providing a basis 1 j for 2 space where the identity of the algebra is at unit distance from the zero With this basis a unit hyperbola may be compared to the unit circle of the ordinary complex plane Quaternions and variations Edit Suppose X and Y are two non commuting indeterminates and form the free algebra R X Y Then Hamilton s quaternions of 1843 can be cast as R X Y X 2 1 Y 2 1 X Y Y X displaystyle mathbf R langle X Y rangle X 2 1 Y 2 1 XY YX nbsp If Y2 1 is substituted for Y2 1 then one obtains the ring of split quaternions The anti commutative property YX XY implies that XY has as its square XY XY X YX Y X XY Y XX YY 1 1 1 Substituting minus for plus in both the quadratic binomials also results in split quaternions The three types of biquaternions can also be written as quotients by use of the free algebra with three indeterminates R X Y Z and constructing appropriate ideals Properties EditClearly if R is a commutative ring then so is R I the converse however is not true in general The natural quotient map p has I as its kernel since the kernel of every ring homomorphism is a two sided ideal we can state that two sided ideals are precisely the kernels of ring homomorphisms The intimate relationship between ring homomorphisms kernels and quotient rings can be summarized as follows the ring homomorphisms defined on R I are essentially the same as the ring homomorphisms defined on R that vanish i e are zero on I More precisely given a two sided ideal I in R and a ring homomorphism f R S whose kernel contains I there exists precisely one ring homomorphism g R I S with gp f where p is the natural quotient map The map g here is given by the well defined rule g a f a for all a in R Indeed this universal property can be used to define quotient rings and their natural quotient maps As a consequence of the above one obtains the fundamental statement every ring homomorphism f R S induces a ring isomorphism between the quotient ring R ker f and the image im f See also fundamental theorem on homomorphisms The ideals of R and R I are closely related the natural quotient map provides a bijection between the two sided ideals of R that contain I and the two sided ideals of R I the same is true for left and for right ideals This relationship between two sided ideal extends to a relationship between the corresponding quotient rings if M is a two sided ideal in R that contains I and we write M I for the corresponding ideal in R I i e M I p M the quotient rings R M and R I M I are naturally isomorphic via the well defined mapping a M a I M I The following facts prove useful in commutative algebra and algebraic geometry for R 0 commutative R I is a field if and only if I is a maximal ideal while R I is an integral domain if and only if I is a prime ideal A number of similar statements relate properties of the ideal I to properties of the quotient ring R I The Chinese remainder theorem states that if the ideal I is the intersection or equivalently the product of pairwise coprime ideals I1 Ik then the quotient ring R I is isomorphic to the product of the quotient rings R In n 1 k For algebras over a ring EditAn associative algebra A over a commutative ring R is a ring itself If I is an ideal in A closed under R multiplication then A I inherits the structure of an algebra over R and is the quotient algebra See also EditAssociated graded ring Residue field Goldie s theorem Quotient moduleNotes Edit Jacobson Nathan 1984 Structure of Rings revised ed American Mathematical Soc ISBN 0 821 87470 5 Dummit David S Foote Richard M 2004 Abstract Algebra 3rd ed John Wiley amp Sons ISBN 0 471 43334 9 Lang Serge 2002 Algebra Graduate Texts in Mathematics Springer ISBN 0 387 95385 X Further references EditF Kasch 1978 Moduln und Ringe translated by DAR Wallace 1982 Modules and Rings Academic Press page 33 Neal H McCoy 1948 Rings and Ideals 13 Residue class rings page 61 Carus Mathematical Monographs 8 Mathematical Association of America Joseph Rotman 1998 Galois Theory 2nd ed Springer pp 21 3 ISBN 0 387 98541 7 B L van der Waerden 1970 Algebra translated by Fred Blum and John R Schulenberger Frederick Ungar Publishing New York See Chapter 3 5 Ideals Residue Class Rings pages 47 to 51 External links Edit Quotient ring Encyclopedia of Mathematics EMS Press 2001 1994 Ideals and factor rings from John Beachy s Abstract Algebra Online Retrieved from https en wikipedia org w index php title Quotient ring amp oldid 1172064595, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.