fbpx
Wikipedia

Existential quantification

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("x" or "∃(x)" or "(∃x)"[1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.[2][3] Some sources use the term existentialization to refer to existential quantification.[4]

Existential quantification
TypeQuantifier
FieldMathematical logic
Statement is true when is true for at least one value of .
Symbolic statement

Basics

Consider a formula that states that some natural number multiplied by itself is 25.

0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, ...

This would seem to be a logical disjunction because of the repeated use of "or". However, the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic. Instead, the statement could be rephrased more formally as

For some natural number n, n·n = 25.

This is a single statement using existential quantification.

This statement is more precise than the original one, since the phrase "and so on" does not necessarily include all natural numbers and exclude everything else. And since the domain was not stated explicitly, the phrase could not be interpreted formally. In the quantified statement, however, the natural numbers are mentioned explicitly.

This particular example is true, because 5 is a natural number, and when we substitute 5 for n, we produce "5·5 = 25", which is true. It does not matter that "n·n = 25" is only true for a single natural number, 5; even the existence of a single solution is enough to prove this existential quantification as being true. In contrast, "For some even number n, n·n = 25" is false, because there are no even solutions.

The domain of discourse, which specifies the values the variable n is allowed to take, is therefore critical to a statement's trueness or falseness. Logical conjunctions are used to restrict the domain of discourse to fulfill a given predicate. For example:

For some positive odd number n, n·n = 25

is logically equivalent to

For some natural number n, n is odd and n·n = 25.

Here, "and" is the logical conjunction.

In symbolic logic, "∃" (a rotated letter "E", in a sans-serif font) is used to indicate existential quantification.[5] Thus, if P(a, b, c) is the predicate "a·b = c", and   is the set of natural numbers, then

 

is the (true) statement

For some natural number n, n·n = 25.

Similarly, if Q(n) is the predicate "n is even", then

 

is the (false) statement

For some natural number n, n is even and n·n = 25.

In mathematics, the proof of a "some" statement may be achieved either by a constructive proof, which exhibits an object satisfying the "some" statement, or by a nonconstructive proof, which shows that there must be such an object but without exhibiting one.

Properties

Negation

A quantified propositional function is a statement; thus, like statements, quantified functions can be negated. The   symbol is used to denote negation.

For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as:

 

This can be demonstrated to be false. Truthfully, it must be said, "It is not the case that there is a natural number x that is greater than 0 and less than 1", or, symbolically:

 .

If there is no element of the domain of discourse for which the statement is true, then it must be false for all of those elements. That is, the negation of

 

is logically equivalent to "For any natural number x, x is not greater than 0 and less than 1", or:

 

Generally, then, the negation of a propositional function's existential quantification is a universal quantification of that propositional function's negation; symbolically,

 

(This is a generalization of De Morgan's laws to predicate logic.)

A common error is stating "all persons are not married" (i.e., "there exists no person who is married"), when "not all persons are married" (i.e., "there exists a person who is not married") is intended:

 

Negation is also expressible through a statement of "for no", as opposed to "for some":

 

Unlike the universal quantifier, the existential quantifier distributes over logical disjunctions:

 

Rules of Inference

A rule of inference is a rule justifying a logical step from hypothesis to conclusion. There are several rules of inference which utilize the existential quantifier.

Existential introduction (∃I) concludes that, if the propositional function is known to be true for a particular element of the domain of discourse, then it must be true that there exists an element for which the proposition function is true. Symbolically,

 

Existential instantiation, when conducted in a Fitch style deduction, proceeds by entering a new sub-derivation while substituting an existentially quantified variable for a subject—which does not appear within any active sub-derivation. If a conclusion can be reached within this sub-derivation in which the substituted subject does not appear, then one can exit that sub-derivation with that conclusion. The reasoning behind existential elimination (∃E) is as follows: If it is given that there exists an element for which the proposition function is true, and if a conclusion can be reached by giving that element an arbitrary name, that conclusion is necessarily true, as long as it does not contain the name. Symbolically, for an arbitrary c and for a proposition Q in which c does not appear:

 

  must be true for all values of c over the same domain X; else, the logic does not follow: If c is not arbitrary, and is instead a specific element of the domain of discourse, then stating P(c) might unjustifiably give more information about that object.

The empty set

The formula   is always false, regardless of P(x). This is because   denotes the empty set, and no x of any description – let alone an x fulfilling a given predicate P(x) – exist in the empty set. See also Vacuous truth for more information.

As adjoint

In category theory and the theory of elementary topoi, the existential quantifier can be understood as the left adjoint of a functor between power sets, the inverse image functor of a function between sets; likewise, the universal quantifier is the right adjoint.[6]

Encoding

In Unicode and HTML, symbols are encoded U+2203 THERE EXISTS (∃, ∃ · as a mathematical symbol) and U+2204 THERE DOES NOT EXIST (∄, ∄, ∄).

In TeX, the symbol is produced with "\exists".

See also

Notes

  1. ^ Bergmann, Merrie (2014). The Logic Book. McGraw Hill. ISBN 978-0-07-803841-9.
  2. ^ "Predicates and Quantifiers". www.csm.ornl.gov. Retrieved 2020-09-04.
  3. ^ "1.2 Quantifiers". www.whitman.edu. Retrieved 2020-09-04.
  4. ^ Allen, Colin; Hand, Michael (2001). Logic Primer. MIT Press. ISBN 0262303965.
  5. ^ This symbol is also known as the existential operator. It is sometimes represented with V.
  6. ^ Saunders Mac Lane, Ieke Moerdijk, (1992): Sheaves in Geometry and Logic Springer-Verlag ISBN 0-387-97710-4. See p. 58.

References

  • Hinman, P. (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-56881-262-0.

existential, quantification, redirects, here, letter, turned, japanese, kana, kana, redirects, here, ukrainian, nightclub, that, name, nightclub, predicate, logic, existential, quantification, type, quantifier, logical, constant, which, interpreted, there, exi. redirects here For the letter turned E see Ǝ For the Japanese kana ヨ see Yo kana redirects here For the Ukrainian nightclub of that name see K41 nightclub In predicate logic an existential quantification is a type of quantifier a logical constant which is interpreted as there exists there is at least one or for some It is usually denoted by the logical operator symbol which when used together with a predicate variable is called an existential quantifier x or x or x 1 Existential quantification is distinct from universal quantification for all which asserts that the property or relation holds for all members of the domain 2 3 Some sources use the term existentialization to refer to existential quantification 4 Existential quantificationTypeQuantifierFieldMathematical logicStatement x P x displaystyle exists xP x is true when P x displaystyle P x is true for at least one value of x displaystyle x Symbolic statement x P x displaystyle exists xP x Contents 1 Basics 2 Properties 2 1 Negation 2 2 Rules of Inference 2 3 The empty set 3 As adjoint 4 Encoding 5 See also 6 Notes 7 ReferencesBasics EditConsider a formula that states that some natural number multiplied by itself is 25 0 0 25 or 1 1 25 or 2 2 25 or 3 3 25 This would seem to be a logical disjunction because of the repeated use of or However the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic Instead the statement could be rephrased more formally as For some natural number n n n 25 This is a single statement using existential quantification This statement is more precise than the original one since the phrase and so on does not necessarily include all natural numbers and exclude everything else And since the domain was not stated explicitly the phrase could not be interpreted formally In the quantified statement however the natural numbers are mentioned explicitly This particular example is true because 5 is a natural number and when we substitute 5 for n we produce 5 5 25 which is true It does not matter that n n 25 is only true for a single natural number 5 even the existence of a single solution is enough to prove this existential quantification as being true In contrast For some even number n n n 25 is false because there are no even solutions The domain of discourse which specifies the values the variable n is allowed to take is therefore critical to a statement s trueness or falseness Logical conjunctions are used to restrict the domain of discourse to fulfill a given predicate For example For some positive odd number n n n 25is logically equivalent to For some natural number n n is odd and n n 25 Here and is the logical conjunction In symbolic logic a rotated letter E in a sans serif font is used to indicate existential quantification 5 Thus if P a b c is the predicate a b c and N displaystyle mathbb N is the set of natural numbers then n N P n n 25 displaystyle exists n in mathbb N P n n 25 is the true statement For some natural number n n n 25 Similarly if Q n is the predicate n is even then n N Q n P n n 25 displaystyle exists n in mathbb N big Q n wedge P n n 25 big is the false statement For some natural number n n is even and n n 25 In mathematics the proof of a some statement may be achieved either by a constructive proof which exhibits an object satisfying the some statement or by a nonconstructive proof which shows that there must be such an object but without exhibiting one Properties EditNegation Edit A quantified propositional function is a statement thus like statements quantified functions can be negated The displaystyle lnot symbol is used to denote negation For example if P x is the predicate x is greater than 0 and less than 1 then for a domain of discourse X of all natural numbers the existential quantification There exists a natural number x which is greater than 0 and less than 1 can be symbolically stated as x X P x displaystyle exists x in mathbf X P x This can be demonstrated to be false Truthfully it must be said It is not the case that there is a natural number x that is greater than 0 and less than 1 or symbolically x X P x displaystyle lnot exists x in mathbf X P x If there is no element of the domain of discourse for which the statement is true then it must be false for all of those elements That is the negation of x X P x displaystyle exists x in mathbf X P x is logically equivalent to For any natural number x x is not greater than 0 and less than 1 or x X P x displaystyle forall x in mathbf X lnot P x Generally then the negation of a propositional function s existential quantification is a universal quantification of that propositional function s negation symbolically x X P x x X P x displaystyle lnot exists x in mathbf X P x equiv forall x in mathbf X lnot P x This is a generalization of De Morgan s laws to predicate logic A common error is stating all persons are not married i e there exists no person who is married when not all persons are married i e there exists a person who is not married is intended x X P x x X P x x X P x x X P x displaystyle lnot exists x in mathbf X P x equiv forall x in mathbf X lnot P x not equiv lnot forall x in mathbf X P x equiv exists x in mathbf X lnot P x Negation is also expressible through a statement of for no as opposed to for some x X P x x X P x displaystyle nexists x in mathbf X P x equiv lnot exists x in mathbf X P x Unlike the universal quantifier the existential quantifier distributes over logical disjunctions x X P x Q x x X P x x X Q x displaystyle exists x in mathbf X P x lor Q x to exists x in mathbf X P x lor exists x in mathbf X Q x Rules of Inference Edit A rule of inference is a rule justifying a logical step from hypothesis to conclusion There are several rules of inference which utilize the existential quantifier Existential introduction I concludes that if the propositional function is known to be true for a particular element of the domain of discourse then it must be true that there exists an element for which the proposition function is true Symbolically P a x X P x displaystyle P a to exists x in mathbf X P x Existential instantiation when conducted in a Fitch style deduction proceeds by entering a new sub derivation while substituting an existentially quantified variable for a subject which does not appear within any active sub derivation If a conclusion can be reached within this sub derivation in which the substituted subject does not appear then one can exit that sub derivation with that conclusion The reasoning behind existential elimination E is as follows If it is given that there exists an element for which the proposition function is true and if a conclusion can be reached by giving that element an arbitrary name that conclusion is necessarily true as long as it does not contain the name Symbolically for an arbitrary c and for a proposition Q in which c does not appear x X P x P c Q Q displaystyle exists x in mathbf X P x to P c to Q to Q P c Q displaystyle P c to Q must be true for all values of c over the same domain X else the logic does not follow If c is not arbitrary and is instead a specific element of the domain of discourse then stating P c might unjustifiably give more information about that object The empty set Edit The formula x P x displaystyle exists x in varnothing P x is always false regardless of P x This is because displaystyle varnothing denotes the empty set and no x of any description let alone an x fulfilling a given predicate P x exist in the empty set See also Vacuous truth for more information As adjoint EditMain article Universal quantification As adjoint In category theory and the theory of elementary topoi the existential quantifier can be understood as the left adjoint of a functor between power sets the inverse image functor of a function between sets likewise the universal quantifier is the right adjoint 6 Encoding EditIn Unicode and HTML symbols are encoded U 2203 THERE EXISTS amp exist amp Exists as a mathematical symbol and U 2204 THERE DOES NOT EXIST amp nexist amp nexists amp NotExists In TeX the symbol is produced with exists See also EditExistential clause Existence theorem First order logic Lindstrom quantifier List of logic symbols for the unicode symbol Quantifier variance Uniqueness quantificationNotes Edit Bergmann Merrie 2014 The Logic Book McGraw Hill ISBN 978 0 07 803841 9 Predicates and Quantifiers www csm ornl gov Retrieved 2020 09 04 1 2 Quantifiers www whitman edu Retrieved 2020 09 04 Allen Colin Hand Michael 2001 Logic Primer MIT Press ISBN 0262303965 This symbol is also known as the existential operator It is sometimes represented with V Saunders Mac Lane Ieke Moerdijk 1992 Sheaves in Geometry and Logic Springer Verlag ISBN 0 387 97710 4 See p 58 References EditHinman P 2005 Fundamentals of Mathematical Logic A K Peters ISBN 1 56881 262 0 Retrieved from https en wikipedia org w index php title Existential quantification amp oldid 1124223240, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.