fbpx
Wikipedia

Exact trigonometric values

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.

Common angles

The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 90°.[1] For angles outside of this range, trigonometric values can be found by applying the reflection and shift identities. In the table below,   stands for the ratio 1:0. These values can also be considered to be undefined (see division by zero).

Radians Degrees sin cos tan cot sec csc
               
               
               
               
               
               
               
               
               
               
               
               
               

Expressibility with square roots

Some exact trigonometric values, such as  , can be expressed in terms of a combination of arithmetic operations and square roots. Such numbers are called constructible, because one length can be constructed by compass and straightedge from another if and only if the ratio between the two lengths is such a number.[2] However, some trigonometric values, such as  , have been proven to not be constructible.

The sine and cosine of an angle are constructible if and only if the angle is constructible. If an angle is a rational multiple of π radians, whether or not it is constructible can be determined as follows. Let the angle be   radians, where a and b are relatively prime integers. Then it is constructible if and only if the prime factorization of the denominator, b, consists of any number of Fermat primes, each with an exponent of 1, times any power of two.[3] For example,   and   are constructible because they are equivalent to   and   radians, respectively, and 12 is the product of 3 and 4, which are a Fermat prime and a power of two, and 15 is the product of Fermat primes 3 and 5. On the other hand,   is not constructible because it corresponds to a denominator of 9 = 32, and the Fermat prime cannot be raised to a power greater than one. As another example,   is not constructible, because the denominator of 7 is not a Fermat prime.[2]

Derivations of constructible values

The values of trigonometric numbers can be derived through a combination of methods. The values of sine and cosine of 30, 45, and 60 degrees are derived by analysis of the 30-60-90 and 90-45-45 triangles. If the angle is expressed in radians as  , this takes care of the case where a is 1 and b is 2, 3, 4, or 6.

Half-angle formula

If the denominator, b, is multiplied by additional factors of 2, the sine and cosine can be derived with the half-angle formulas. For example, 22.5° (π/8 rad) is half of 45°, so its sine and cosine are:

 
 

Repeated application of the cosine half-angle formula leads to nested square roots that continue in a pattern where each application adds a   to the numerator and the denominator is 2. For example:

 
 

Sine of 18°

Cases where the denominator, b, is 5 times a power of 2 can start from the following derivation of  ,[4] since   radians. The derivation uses the multiple angle formulas for sine and cosine. By the double angle formula for sine:

 

By the triple angle formula for cosine:

 

Since sin(36°) = cos(54°), we equate these two expressions and cancel a factor of cos(18°):

 

This quadratic equation has only one positive root:

 

Using other identities

The sines and cosines of many other angles can be derived using the results described above and a combination of the multiple angle formulas and the sum and difference formulas. For example, for the case where b is 15 times a power of 2, since  , its cosine can be derived by the cosine difference formula:

 

Denominator of 17

Since 17 is a Fermat prime, a regular 17-gon is constructible, which means that the sines and cosines of angles such as   radians can be expressed in terms of square roots. In particular, in 1796, Carl Friedrich Gauss showed that:[5][6]

 

The sines and cosines of other constructible angles with a denominator divisible by 17 can be derived from this one.

Roots of unity

An irrational number that can be expressed as the sine or cosine of a rational multiple of π radians is called a trigonometric number.[7]: ch. 5  Since   the case of a sine can be omitted from this definition. Therefore any trigonometric number can be written as  , where k and n are integers. This number can be thought of as the real part of the complex number  . De Moivre's formula shows that numbers of this form are roots of unity:

 

Since the root of unity is a root of the polynomial xn − 1, it is algebraic. Since the trigonometric number is the average of the root of unity and its complex conjugate, and algebraic numbers are closed under arithmetic operations, every trigonometric number is algebraic.

The real part of any root of unity is trigonometric, unless it is rational. By Niven's theorem, the only rational numbers that can be expressed as the real part of a root of unity are 0, 1, −1, 1/2, and −1/2.[8]

Extended table of exact values: Until 360 degrees

Exact values of common angles[9][10]
Radian Degree sin cos tan cot sec csc
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               

See also

References

  1. ^ Abramowitz & Stegun 1972, p. 74, 4.3.46
  2. ^ a b Fraleigh, John B. (1994), A First Course in Abstract Algebra (5th ed.), Addison Wesley, ISBN 978-0-201-53467-2, MR 0225619
  3. ^ Martin, George E. (1998), Geometric Constructions, Undergraduate Texts in Mathematics, Springer-Verlag, New York, p. 46, doi:10.1007/978-1-4612-0629-3, ISBN 0-387-98276-0, MR 1483895
  4. ^ "Exact Value of sin 18°". math-only-math.
  5. ^ Arthur Jones, Sidney A. Morris, Kenneth R. Pearson, Abstract Algebra and Famous Impossibilities, Springer, 1991, ISBN 0387976612, p. 178.
  6. ^ Callagy, James J. "The central angle of the regular 17-gon", Mathematical Gazette 67, December 1983, 290–292.
  7. ^ Niven, Ivan. Numbers: Rational and Irrational, 1961. Random House. New Mathematical Library, Vol. 1. ISSN 0548-5932.
  8. ^ Schaumberger, Norman (1974). "A Classroom Theorem on Trigonometric Irrationalities". Two-Year College Mathematics Journal. 5 (1): 73–76. doi:10.2307/3026991. JSTOR 3026991.
  9. ^ Abramowitz & Stegun 1972, p. 74, 4.3.46
  10. ^ Surgent, Scott (November 2018). (PDF). Scott Surgent's ASU Website. Wayback Machine.

Bibliography

  • Abramowitz, Milton; Stegun, Irene A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications. ISBN 978-0-486-61272-0.
  • Girstmair, Kurt (1997). "Some linear relations between values of trigonometric functions at k*pi/n" (PDF). Acta Arith. 81 (4): 387–498. doi:10.4064/aa-81-4-387-398. MR 1472818.
  • Conway, John H.; Radin, Charles; Sadun, Lorenzo (1999). "On angles whose squared trigonometric functions are rational". Disc. Comput. Geom. 22 (3): 321–332. arXiv:math-ph/9812019. doi:10.1007/PL00009463. MR 1706614. S2CID 563915.
  • Bracken, Paul; Cizek, Jiri (2002). "evaluation of quanum mechanical perturbative sums in terms of quadratic surds and their use in the approximation of zeta(3)/pi^3". Int. J. Quantum Chem.: 42–53. doi:10.1002/qua.1803.
  • Servi, L. D. (2003). "Nested square roots of 2". Amer. Math. Monthly. 110 (4): 326–330. doi:10.2307/3647881. JSTOR 3647881.
  • Tangsupphathawat, Pinthira; Laohakosol, Vichian (2016). "Minimal polynomials of algebraic cosine values at rational multiples of pi". J. Inst. Seq. 19: 16.2.8.

exact, trigonometric, values, mathematics, values, trigonometric, functions, expressed, approximately, displaystyle, approx, exactly, displaystyle, sqrt, while, trigonometric, tables, contain, many, approximate, values, exact, values, certain, angles, expresse. In mathematics the values of the trigonometric functions can be expressed approximately as in cos p 4 0 707 displaystyle cos pi 4 approx 0 707 or exactly as in cos p 4 2 2 displaystyle cos pi 4 sqrt 2 2 While trigonometric tables contain many approximate values the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots Contents 1 Common angles 2 Expressibility with square roots 3 Derivations of constructible values 3 1 Half angle formula 3 2 Sine of 18 3 3 Using other identities 3 4 Denominator of 17 4 Roots of unity 5 Extended table of exact values Until 360 degrees 6 See also 7 References 8 BibliographyCommon angles EditThe trigonometric functions of angles that are multiples of 15 18 or 22 5 have simple algebraic values These values are listed in the following table for angles from 0 to 90 1 For angles outside of this range trigonometric values can be found by applying the reflection and shift identities In the table below displaystyle infty stands for the ratio 1 0 These values can also be considered to be undefined see division by zero Radians Degrees sin cos tan cot sec csc0 displaystyle 0 0 displaystyle 0 circ 0 displaystyle 0 1 displaystyle 1 0 displaystyle 0 displaystyle infty 1 displaystyle 1 displaystyle infty p 12 displaystyle frac pi 12 15 displaystyle 15 circ 6 2 4 displaystyle frac sqrt 6 sqrt 2 4 6 2 4 displaystyle frac sqrt 6 sqrt 2 4 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 6 2 displaystyle sqrt 6 sqrt 2 6 2 displaystyle sqrt 6 sqrt 2 p 10 displaystyle frac pi 10 18 displaystyle 18 circ 5 1 4 displaystyle frac sqrt 5 1 4 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 2 5 displaystyle sqrt 5 2 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 1 5 displaystyle 1 sqrt 5 p 8 displaystyle frac pi 8 22 5 displaystyle 22 5 circ 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 1 displaystyle sqrt 2 1 2 1 displaystyle sqrt 2 1 4 2 2 displaystyle sqrt 4 2 sqrt 2 4 2 2 displaystyle sqrt 4 2 sqrt 2 p 6 displaystyle frac pi 6 30 displaystyle 30 circ 1 2 displaystyle frac 1 2 3 2 displaystyle frac sqrt 3 2 3 3 displaystyle frac sqrt 3 3 3 displaystyle sqrt 3 2 3 3 displaystyle frac 2 sqrt 3 3 2 displaystyle 2 p 5 displaystyle frac pi 5 36 displaystyle 36 circ 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 1 5 4 displaystyle frac 1 sqrt 5 4 5 2 5 displaystyle sqrt 5 2 sqrt 5 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 1 displaystyle sqrt 5 1 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 p 4 displaystyle frac pi 4 45 displaystyle 45 circ 2 2 displaystyle frac sqrt 2 2 2 2 displaystyle frac sqrt 2 2 1 displaystyle 1 1 displaystyle 1 2 displaystyle sqrt 2 2 displaystyle sqrt 2 3 p 10 displaystyle frac 3 pi 10 54 displaystyle 54 circ 1 5 4 displaystyle frac 1 sqrt 5 4 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 2 5 displaystyle sqrt 5 2 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 5 1 displaystyle sqrt 5 1 p 3 displaystyle frac pi 3 60 displaystyle 60 circ 3 2 displaystyle frac sqrt 3 2 1 2 displaystyle frac 1 2 3 displaystyle sqrt 3 3 3 displaystyle frac sqrt 3 3 2 displaystyle 2 2 3 3 displaystyle frac 2 sqrt 3 3 3 p 8 displaystyle frac 3 pi 8 67 5 displaystyle 67 5 circ 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 1 displaystyle sqrt 2 1 2 1 displaystyle sqrt 2 1 4 2 2 displaystyle sqrt 4 2 sqrt 2 4 2 2 displaystyle sqrt 4 2 sqrt 2 2 p 5 displaystyle frac 2 pi 5 72 displaystyle 72 circ 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 5 1 4 displaystyle frac sqrt 5 1 4 5 2 5 displaystyle sqrt 5 2 sqrt 5 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 1 5 displaystyle 1 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 5 p 12 displaystyle frac 5 pi 12 75 displaystyle 75 circ 6 2 4 displaystyle frac sqrt 6 sqrt 2 4 6 2 4 displaystyle frac sqrt 6 sqrt 2 4 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 6 2 displaystyle sqrt 6 sqrt 2 6 2 displaystyle sqrt 6 sqrt 2 p 2 displaystyle frac pi 2 90 displaystyle 90 circ 1 displaystyle 1 0 displaystyle 0 displaystyle infty 0 displaystyle 0 displaystyle infty 1 displaystyle 1 Expressibility with square roots EditSome exact trigonometric values such as sin 60 3 2 displaystyle sin 60 circ sqrt 3 2 can be expressed in terms of a combination of arithmetic operations and square roots Such numbers are called constructible because one length can be constructed by compass and straightedge from another if and only if the ratio between the two lengths is such a number 2 However some trigonometric values such as cos 20 displaystyle cos 20 circ have been proven to not be constructible The sine and cosine of an angle are constructible if and only if the angle is constructible If an angle is a rational multiple of p radians whether or not it is constructible can be determined as follows Let the angle be a p b displaystyle a pi b radians where a and b are relatively prime integers Then it is constructible if and only if the prime factorization of the denominator b consists of any number of Fermat primes each with an exponent of 1 times any power of two 3 For example 15 displaystyle 15 circ and 24 displaystyle 24 circ are constructible because they are equivalent to p 12 displaystyle pi 12 and 2 p 15 displaystyle 2 pi 15 radians respectively and 12 is the product of 3 and 4 which are a Fermat prime and a power of two and 15 is the product of Fermat primes 3 and 5 On the other hand 20 displaystyle 20 circ is not constructible because it corresponds to a denominator of 9 32 and the Fermat prime cannot be raised to a power greater than one As another example 360 7 displaystyle 360 7 circ is not constructible because the denominator of 7 is not a Fermat prime 2 Derivations of constructible values EditThe values of trigonometric numbers can be derived through a combination of methods The values of sine and cosine of 30 45 and 60 degrees are derived by analysis of the 30 60 90 and 90 45 45 triangles If the angle is expressed in radians as a p b displaystyle a pi b this takes care of the case where a is 1 and b is 2 3 4 or 6 Half angle formula Edit See also Square root of 2 Properties If the denominator b is multiplied by additional factors of 2 the sine and cosine can be derived with the half angle formulas For example 22 5 p 8 rad is half of 45 so its sine and cosine are sin 22 5 1 cos 45 2 1 2 2 2 2 2 2 displaystyle sin 22 5 circ sqrt frac 1 cos 45 circ 2 sqrt frac 1 frac sqrt 2 2 2 frac sqrt 2 sqrt 2 2 cos 22 5 1 cos 45 2 1 2 2 2 2 2 2 displaystyle cos 22 5 circ sqrt frac 1 cos 45 circ 2 sqrt frac 1 frac sqrt 2 2 2 frac sqrt 2 sqrt 2 2 Repeated application of the cosine half angle formula leads to nested square roots that continue in a pattern where each application adds a 2 displaystyle sqrt 2 cdots to the numerator and the denominator is 2 For example cos p 16 2 2 2 2 cos p 32 2 2 2 2 2 displaystyle cos left frac pi 16 right frac sqrt 2 sqrt 2 sqrt 2 2 qquad cos left frac pi 32 right frac sqrt 2 sqrt 2 sqrt 2 sqrt 2 2 cos p 12 6 2 4 2 3 2 cos p 24 2 2 3 2 displaystyle cos left frac pi 12 right frac sqrt 6 sqrt 2 4 frac sqrt 2 sqrt 3 2 qquad cos left frac pi 24 right frac sqrt 2 sqrt 2 sqrt 3 2 Sine of 18 Edit Cases where the denominator b is 5 times a power of 2 can start from the following derivation of sin 18 displaystyle sin 18 circ 4 since 18 p 10 displaystyle 18 circ pi 10 radians The derivation uses the multiple angle formulas for sine and cosine By the double angle formula for sine sin 36 2 sin 18 cos 18 displaystyle sin 36 circ 2 sin 18 circ cos 18 circ By the triple angle formula for cosine cos 54 cos 3 18 3 sin 2 18 cos 18 cos 18 1 4 sin 2 18 displaystyle cos 54 circ cos 3 18 circ 3 sin 2 18 circ cos 18 circ cos 18 circ 1 4 sin 2 18 circ Since sin 36 cos 54 we equate these two expressions and cancel a factor of cos 18 2 sin 18 1 4 sin 2 18 displaystyle 2 sin 18 circ 1 4 sin 2 18 circ This quadratic equation has only one positive root sin 18 5 1 4 displaystyle sin 18 circ frac sqrt 5 1 4 Using other identities Edit The sines and cosines of many other angles can be derived using the results described above and a combination of the multiple angle formulas and the sum and difference formulas For example for the case where b is 15 times a power of 2 since 24 60 36 displaystyle 24 circ 60 circ 36 circ its cosine can be derived by the cosine difference formula cos 24 cos 60 cos 36 sin 60 sin 36 1 2 5 1 4 3 2 10 2 5 4 1 5 30 6 5 8 displaystyle begin aligned cos 24 circ amp cos 60 circ cos 36 circ sin 60 circ sin 36 circ amp frac 1 2 frac sqrt 5 1 4 frac sqrt 3 2 frac sqrt 10 2 sqrt 5 4 amp frac 1 sqrt 5 sqrt 30 6 sqrt 5 8 end aligned Denominator of 17 Edit Main article Heptadecagon Since 17 is a Fermat prime a regular 17 gon is constructible which means that the sines and cosines of angles such as 2 p 17 displaystyle 2 pi 17 radians can be expressed in terms of square roots In particular in 1796 Carl Friedrich Gauss showed that 5 6 cos 2 p 17 1 17 34 2 17 2 17 3 17 170 38 17 16 displaystyle cos left frac 2 pi 17 right frac 1 sqrt 17 sqrt 34 2 sqrt 17 2 sqrt 17 3 sqrt 17 sqrt 170 38 sqrt 17 16 The sines and cosines of other constructible angles with a denominator divisible by 17 can be derived from this one Roots of unity EditMain article Root of unity An irrational number that can be expressed as the sine or cosine of a rational multiple of p radians is called a trigonometric number 7 ch 5 Since sin x cos x p 2 displaystyle sin x cos x pi 2 the case of a sine can be omitted from this definition Therefore any trigonometric number can be written as cos 2 p k n displaystyle cos 2 pi k n where k and n are integers This number can be thought of as the real part of the complex number cos 2 p k n i sin 2 p k n displaystyle cos 2 pi k n i sin 2 pi k n De Moivre s formula shows that numbers of this form are roots of unity cos 2 p k n i sin 2 p k n n cos 2 p k i sin 2 p k 1 displaystyle left cos left frac 2 pi k n right i sin left frac 2 pi k n right right n cos 2 pi k i sin 2 pi k 1 Since the root of unity is a root of the polynomial xn 1 it is algebraic Since the trigonometric number is the average of the root of unity and its complex conjugate and algebraic numbers are closed under arithmetic operations every trigonometric number is algebraic The real part of any root of unity is trigonometric unless it is rational By Niven s theorem the only rational numbers that can be expressed as the real part of a root of unity are 0 1 1 1 2 and 1 2 8 Extended table of exact values Until 360 degrees EditExact values of common angles 9 10 Radian Degree sin cos tan cot sec csc0 displaystyle 0 0 displaystyle 0 circ 0 displaystyle 0 1 displaystyle 1 0 displaystyle 0 displaystyle infty 1 displaystyle 1 displaystyle infty p 24 displaystyle frac pi 24 7 5 displaystyle 7 5 circ 1 2 2 2 3 displaystyle frac 1 2 sqrt 2 sqrt 2 sqrt 3 1 2 2 2 3 displaystyle frac 1 2 sqrt 2 sqrt 2 sqrt 3 6 2 5 2 6 displaystyle sqrt 6 2 sqrt 5 2 sqrt 6 6 2 5 2 6 displaystyle sqrt 6 2 sqrt 5 2 sqrt 6 2 8 3 6 2 49 20 6 displaystyle sqrt 2 sqrt 8 3 sqrt 6 sqrt 2 49 20 sqrt 6 2 8 3 6 2 49 20 6 displaystyle sqrt 2 sqrt 8 3 sqrt 6 sqrt 2 49 20 sqrt 6 p 12 displaystyle frac pi 12 15 displaystyle 15 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 p 10 displaystyle frac pi 10 18 displaystyle 18 circ 5 1 4 displaystyle frac sqrt 5 1 4 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 2 5 displaystyle sqrt 5 2 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 1 5 displaystyle 1 sqrt 5 p 8 displaystyle frac pi 8 22 5 displaystyle 22 5 circ 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 1 displaystyle sqrt 2 1 2 1 displaystyle sqrt 2 1 4 2 2 displaystyle sqrt 4 2 sqrt 2 4 2 2 displaystyle sqrt 4 2 sqrt 2 p 6 displaystyle frac pi 6 30 displaystyle 30 circ 1 2 displaystyle frac 1 2 3 2 displaystyle frac sqrt 3 2 3 3 displaystyle frac sqrt 3 3 3 displaystyle sqrt 3 2 3 3 displaystyle frac 2 sqrt 3 3 2 displaystyle 2 p 5 displaystyle frac pi 5 36 displaystyle 36 circ 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 1 5 4 displaystyle frac 1 sqrt 5 4 5 2 5 displaystyle sqrt 5 2 sqrt 5 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 1 displaystyle sqrt 5 1 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 p 4 displaystyle frac pi 4 45 displaystyle 45 circ 2 2 displaystyle frac sqrt 2 2 2 2 displaystyle frac sqrt 2 2 1 displaystyle 1 1 displaystyle 1 2 displaystyle sqrt 2 2 displaystyle sqrt 2 3 p 10 displaystyle frac 3 pi 10 54 displaystyle 54 circ 1 5 4 displaystyle frac 1 sqrt 5 4 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 5 2 5 displaystyle sqrt 5 2 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 5 1 displaystyle sqrt 5 1 p 3 displaystyle frac pi 3 60 displaystyle 60 circ 3 2 displaystyle frac sqrt 3 2 1 2 displaystyle frac 1 2 3 displaystyle sqrt 3 3 3 displaystyle frac sqrt 3 3 2 displaystyle 2 2 3 3 displaystyle frac 2 sqrt 3 3 3 p 8 displaystyle frac 3 pi 8 67 5 displaystyle 67 5 circ 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 2 2 displaystyle frac sqrt 2 sqrt 2 2 2 1 displaystyle sqrt 2 1 2 1 displaystyle sqrt 2 1 4 2 2 displaystyle sqrt 4 2 sqrt 2 4 2 2 displaystyle sqrt 4 2 sqrt 2 2 p 5 displaystyle frac 2 pi 5 72 displaystyle 72 circ 10 2 5 4 displaystyle frac sqrt 10 2 sqrt 5 4 5 1 4 displaystyle frac sqrt 5 1 4 5 2 5 displaystyle sqrt 5 2 sqrt 5 25 10 5 5 displaystyle frac sqrt 25 10 sqrt 5 5 1 5 displaystyle 1 sqrt 5 50 10 5 5 displaystyle frac sqrt 50 10 sqrt 5 5 5 p 12 displaystyle frac 5 pi 12 75 displaystyle 75 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 p 2 displaystyle frac pi 2 90 displaystyle 90 circ 1 displaystyle 1 0 displaystyle 0 displaystyle infty 0 displaystyle 0 displaystyle infty 1 displaystyle 1 7 p 12 displaystyle frac 7 pi 12 105 displaystyle 105 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 1 3 displaystyle sqrt 2 1 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 p 3 displaystyle frac 2 pi 3 120 displaystyle 120 circ 3 2 displaystyle frac sqrt 3 2 1 2 displaystyle frac 1 2 3 displaystyle sqrt 3 3 3 displaystyle frac sqrt 3 3 2 displaystyle 2 2 3 3 displaystyle frac 2 sqrt 3 3 3 p 4 displaystyle frac 3 pi 4 135 displaystyle 135 circ 2 2 displaystyle frac sqrt 2 2 2 2 displaystyle frac sqrt 2 2 1 displaystyle 1 1 displaystyle 1 2 displaystyle sqrt 2 2 displaystyle sqrt 2 5 p 6 displaystyle frac 5 pi 6 150 displaystyle 150 circ 1 2 displaystyle frac 1 2 3 2 displaystyle frac sqrt 3 2 3 3 displaystyle frac sqrt 3 3 3 displaystyle sqrt 3 2 3 3 displaystyle frac 2 sqrt 3 3 2 displaystyle 2 11 p 12 displaystyle frac 11 pi 12 165 displaystyle 165 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 p displaystyle pi 180 displaystyle 180 circ 0 displaystyle 0 1 displaystyle 1 0 displaystyle 0 displaystyle infty 1 displaystyle 1 displaystyle infty 13 p 12 displaystyle frac 13 pi 12 195 displaystyle 195 circ 3 1 2 2 displaystyle frac sqrt 3 1 2 sqrt 2 3 1 2 2 displaystyle frac sqrt 3 1 2 sqrt 2 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 1 3 displaystyle sqrt 2 1 sqrt 3 7 p 6 displaystyle frac 7 pi 6 210 displaystyle 210 circ 1 2 displaystyle frac 1 2 3 2 displaystyle frac sqrt 3 2 3 3 displaystyle frac sqrt 3 3 3 displaystyle sqrt 3 2 3 3 displaystyle frac 2 sqrt 3 3 2 displaystyle 2 5 p 4 displaystyle frac 5 pi 4 225 displaystyle 225 circ 2 2 displaystyle dfrac sqrt 2 2 2 2 displaystyle dfrac sqrt 2 2 1 displaystyle 1 1 displaystyle 1 2 displaystyle sqrt 2 2 displaystyle sqrt 2 4 p 3 displaystyle frac 4 pi 3 240 displaystyle 240 circ 3 2 displaystyle frac sqrt 3 2 1 2 displaystyle frac 1 2 3 displaystyle sqrt 3 3 3 displaystyle frac sqrt 3 3 2 displaystyle 2 2 3 3 displaystyle frac 2 sqrt 3 3 17 p 12 displaystyle frac 17 pi 12 255 displaystyle 255 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 3 p 2 displaystyle frac 3 pi 2 270 displaystyle 270 circ 1 displaystyle 1 0 displaystyle 0 displaystyle infty 0 displaystyle 0 displaystyle infty 1 displaystyle 1 19 p 12 displaystyle frac 19 pi 12 285 displaystyle 285 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 5 p 3 displaystyle frac 5 pi 3 300 displaystyle 300 circ 3 2 displaystyle frac sqrt 3 2 1 2 displaystyle frac 1 2 3 displaystyle sqrt 3 3 3 displaystyle frac sqrt 3 3 2 displaystyle 2 2 3 3 displaystyle frac 2 sqrt 3 3 7 p 4 displaystyle frac 7 pi 4 315 displaystyle 315 circ 2 2 displaystyle frac sqrt 2 2 2 2 displaystyle frac sqrt 2 2 1 displaystyle 1 1 displaystyle 1 2 displaystyle sqrt 2 2 displaystyle sqrt 2 11 p 6 displaystyle frac 11 pi 6 330 displaystyle 330 circ 1 2 displaystyle frac 1 2 3 2 displaystyle frac sqrt 3 2 3 3 displaystyle frac sqrt 3 3 3 displaystyle sqrt 3 2 3 3 displaystyle frac 2 sqrt 3 3 2 displaystyle 2 23 p 12 displaystyle frac 23 pi 12 345 displaystyle 345 circ 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 4 3 1 displaystyle frac sqrt 2 4 sqrt 3 1 2 3 displaystyle 2 sqrt 3 2 3 displaystyle 2 sqrt 3 2 3 1 displaystyle sqrt 2 sqrt 3 1 2 3 1 displaystyle sqrt 2 sqrt 3 1 See also EditList of trigonometric identitiesReferences Edit Abramowitz amp Stegun 1972 p 74 4 3 46 a b Fraleigh John B 1994 A First Course in Abstract Algebra 5th ed Addison Wesley ISBN 978 0 201 53467 2 MR 0225619 Martin George E 1998 Geometric Constructions Undergraduate Texts in Mathematics Springer Verlag New York p 46 doi 10 1007 978 1 4612 0629 3 ISBN 0 387 98276 0 MR 1483895 Exact Value of sin 18 math only math Arthur Jones Sidney A Morris Kenneth R Pearson Abstract Algebra and Famous Impossibilities Springer 1991 ISBN 0387976612 p 178 Callagy James J The central angle of the regular 17 gon Mathematical Gazette 67 December 1983 290 292 Niven Ivan Numbers Rational and Irrational 1961 Random House New Mathematical Library Vol 1 ISSN 0548 5932 Schaumberger Norman 1974 A Classroom Theorem on Trigonometric Irrationalities Two Year College Mathematics Journal 5 1 73 76 doi 10 2307 3026991 JSTOR 3026991 Abramowitz amp Stegun 1972 p 74 4 3 46 Surgent Scott November 2018 Exact Values of Sine and Cosine of Angles in Increments of 3 Degrees PDF Scott Surgent s ASU Website Wayback Machine Bibliography EditAbramowitz Milton Stegun Irene A eds 1972 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables New York Dover Publications ISBN 978 0 486 61272 0 Girstmair Kurt 1997 Some linear relations between values of trigonometric functions at k pi n PDF Acta Arith 81 4 387 498 doi 10 4064 aa 81 4 387 398 MR 1472818 Conway John H Radin Charles Sadun Lorenzo 1999 On angles whose squared trigonometric functions are rational Disc Comput Geom 22 3 321 332 arXiv math ph 9812019 doi 10 1007 PL00009463 MR 1706614 S2CID 563915 Bracken Paul Cizek Jiri 2002 evaluation of quanum mechanical perturbative sums in terms of quadratic surds and their use in the approximation of zeta 3 pi 3 Int J Quantum Chem 42 53 doi 10 1002 qua 1803 Servi L D 2003 Nested square roots of 2 Amer Math Monthly 110 4 326 330 doi 10 2307 3647881 JSTOR 3647881 Tangsupphathawat Pinthira Laohakosol Vichian 2016 Minimal polynomials of algebraic cosine values at rational multiples of pi J Inst Seq 19 16 2 8 Retrieved from https en wikipedia org w index php title Exact trigonometric values amp oldid 1146618742, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.