fbpx
Wikipedia

Eukaryotic initiation factor 3

Eukaryotic initiation factor 3 (eIF3) is a multiprotein complex that functions during the initiation phase of eukaryotic translation.[2] It is essential for most forms of cap-dependent and cap-independent translation initiation. In humans, eIF3 consists of 13 nonidentical subunits (eIF3a-m) with a combined molecular weight of ~800 kDa, making it the largest translation initiation factor.[3] The eIF3 complex is broadly conserved across eukaryotes, but the conservation of individual subunits varies across organisms. For instance, while most mammalian eIF3 complexes are composed of 13 subunits, budding yeast's eIF3 has only six subunits (eIF3a, b, c, g, i, j).[4]

Structure of rabbit eIF3 in the context of the 43S PIC, showing subunits a, c, e, f, h, k, l, and m.[1]

Function edit

eIF3 stimulates nearly all steps of translation initiation.[4] eIF3 also appears to participate in other phases of translation, such as recycling, where it promotes the splitting of post-termination ribosomes.[5] In specialized cases of reinitiation following uORFs, eIF3 may remain bound to the ribosome through elongation and termination to promote subsequent initiation events.[6] Research has also indicated that eIF3 plays a role in programmed stop codon readthrough in yeast, by interacting with pre-termination complexes and interfering with decoding.[7]

Interactions edit

eIF3 binds the small ribosomal subunit (40S) at and near its solvent side and serves as a scaffold for several other initiation factors, the auxiliary factor DHX29, and mRNA. eIF3 is a component of the multifactor complex (MFC) and 43S and 48S preinitiation complexes (PICs).[4] The interactions of eIF3 with other initiation factors can vary amongst species; for example, mammalian eIF3 directly interacts with the eIF4F complex (via eIF4G), while budding yeast lacks this connection.[4] However, both mammalian and yeast eIF3 independently bind eIF1, eIF4B, and eIF5.[2][8]

Several subunits of eIF3 contain RNA recognition motifs (RRMs) and other RNA binding domains to form a multisubunit RNA binding interface through which eIF3 interacts with cellular and viral IRES mRNA, including the HCV IRES.[4] eIF3 has also been shown to specifically bind m6A modified RNA within 5'UTRs to promote cap-independent translation.[9]

All five core subunits of budding yeast's eIF3 are present in heat-induced stress granules, along with several other translation factors.[10]

Structure edit

A functional eIF3 complex can be purified from native sources, or reconstituted from recombinantly expressed subunits.[11][12] Individual subunits have been structurally characterized by X-ray crystallography and NMR, while complexes have been characterized by Cryo-EM.[13][14][15] No structure of complete human eIF3 is available, but the nearly-full complex has been determined at medium resolution in the context of the 43S PIC.[1] The structural core of mammalian eIF3 is often described as a five-lobed particle with anthropomorphic features, composed largely of the PCI/MPN octamer.[12] The PCI domains are named for structural similarities between the proteasome cap (P), the COP9 signalosome (C), and eIF3 (I), while the MPN domains are named for structural similarity to the Mpr1-PadI N-terminal domains.[12]

Signaling edit

eIF3 serves as a hub for cellular signaling through S6K1 and mTOR/Raptor.[16] In particular, eIF3 is bound by S6K1 in its inactive state, and activated mTOR/Raptor binds to eIF3 and phosphorylates S6K1 to promote its release from eIF3. Phosphorylated S6K1 is then free to phosphorylate a number of its own targets, including eIF4B, thus serving as a mechanism of translational control.

Disease edit

Individual subunits of eIF3 are overexpressed (a, b, c, h, i, and m) and underexpressed (e, f) in multiple human cancers.[3] In breast cancer and malignant prostate cancer, eIF3h is overexpressed.[17] eIF3 has also been shown to bind a specific set of cell proliferation mRNAs and regulate their translation.[18] eIF3 also functions in the life cycles of a number of important human pathogens, including HIV and HCV. In particular, the d-subunit of eIF3 is a substrate of HIV protease, and genetic knockdown of eIF3 subunits d, e, or f results in increased viral infectivity for unknown reasons.[19]

Subunits edit

The eIF3 subunits exist at equal stoichiometry within the complex, with the exception of eIF3J, which is loosely bound and non-essential for viability in several species.[11][20][21] The subunits were originally organized alphabetically by molecular weight in mammals (A as the highest), but the arrangement of molecular weight can vary between species.[22]

Subunit MW (kDa)[A] Key Features
A 167 Upregulated in several human cancers.[3] Crosslinks directly to cellular mRNA.[18] Contains PCI domain.[12]
B 92 Upregulated in several cancers.[3] Crosslinks directly to cellular mRNA.[18] Contains RRM.[11]
C 105 Upregulated in several cancers.[3] Contains PCI domain.[12] Has a human paralog eIF3CL.
D 64 Dispensable for growth in fission yeast.[4] Crosslinks directly to cellular mRNA[18] and binds the 5'cap of select mRNAs.[23] Substrate of HIV protease.[19]
E 52 Downregulated in breast and lung cancers.[3] Nonessential for growth in fission yeast[24] and Neurospora crassa.[21] Contains PCI domain.[12]
F 38 Downregulated in several cancers.[3] Contains MPN domain.[12]
G 36 Contains RRM.[11] Crosslinks directly to cellular mRNA.[18]
H 40 Upregulated in several cancers.[3] Nonessential for growth in fission yeast,[25] Neurospora crassa,[21] and human cell lines.[26][27] Contains MPN domain.[12]
I 36 Upregulated in several cancers.[3]
J 29 Loosely bound, non-stoichiometric subunit.[4] Binds the 40S ribosomal subunit within the decoding center.[28] Nonessential for growth in budding yeast.[4]
K 25 Nonessential for growth in Neurospora crassa.[21] Contains PCI domain.[12]
L 67 Nonessential for growth in Neurospora crassa.[21] Contains PCI domain.[12]
M 43 Upregulated in human colon cancer.[3]

A Molecular weight of human subunits from Uniprot.

See also edit

References edit

  1. ^ a b des Georges, Amedee; Dhote, Vidya; Kuhn, Lauriane; Hellen, Christopher U.T.; Pestova, Tatyana V.; Frank, Joachim; Hashem, Yaser (2015). "Structure of mammalian eIF3 in the context of the 43S preinitiation complex". Nature. 525 (1770): 491–5. Bibcode:2015Natur.525..491D. doi:10.1038/nature14891. ISSN 0028-0836. PMC 4719162. PMID 26344199.
  2. ^ a b Aitken, Colin E.; Lorsch, Jon R. (2012). "A mechanistic overview of translation initiation in eukaryotes". Nat. Struct. Mol. Biol. 19 (6): 568–576. doi:10.1038/nsmb.2303. PMID 22664984. S2CID 9201095.
  3. ^ a b c d e f g h i j Hershey, John W.B. (2015). "The role of eIF3 and its individual subunits in cancer". Biochim. Biophys. Acta. 1849 (7): 792–800. doi:10.1016/j.bbagrm.2014.10.005. ISSN 1874-9399. PMID 25450521.
  4. ^ a b c d e f g h Hinnebusch, Alan G. (2006). "eIF3: a versatile scaffold for translation initiation complexes". Trends Biochem. Sci. 31 (10): 553–562. doi:10.1016/j.tibs.2006.08.005. ISSN 0968-0004. PMID 16920360.
  5. ^ Pisarev, Andrey V.; Hellen, Christopher U. T.; Pestova, Tatyana V. (2007). "Recycling of eukaryotic post-termination ribosomal complexes". Cell. 131 (2): 286–99. doi:10.1016/j.cell.2007.08.041. PMC 2651563. PMID 17956730.
  6. ^ Sonenberg, Nahum; Hinnebusch, Alan G. (2009). "Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets". Cell. 136 (4): 731–745. doi:10.1016/j.cell.2009.01.042. PMC 3610329. PMID 19239892.
  7. ^ Beznoskova, Petra; Wagner, Susan; Jansen, Myrte Esmeralda; von der Haar, Tobias; Valasek, Leos Shivaya (2015). "Translation initiation factor eIF3 promotes programmed stop codon readthrough". Nucleic Acids Res. 43 (10): 5099–5111. doi:10.1093/nar/gkv421. PMC 4446449. PMID 25925566.
  8. ^ Jackson, Richard J.; Hellen, Christopher U. T.; Pestova, Tatyana V. (2010). "The mechanism of eukaryotic translation initiation and principles of its regulation". Nat. Rev. Mol. Cell Biol. 11 (2): 113–127. doi:10.1038/nrm2838. PMC 4461372. PMID 20094052.
  9. ^ Meyer, Kate D.; Patil, Deepak P.; Zhou, Jun; Zinoviev, Alexandra; Skabkin, Maxim A.; Elemento, Olivier; Pestova, Tatyana V.; Qiang, Shu-Bing; Jaffrey, Samie R. (November 2015). "5' UTR m6A Promotes Cap-Independent Translation". Cell. 163 (4): 999–1010. doi:10.1016/j.cell.2015.10.012. PMC 4695625. PMID 26593424.
  10. ^ Wallace, Edward W.J.; Kear-Scott, Jamie L.; Pilipenko, Evgeny V.; Schwartz, Michael H.; Laskowsk, Pawel R.; Rojek, Alexander E.; Katansk, Christopher D.; Riback, Joshua A.; Dion, Michael F.; Franks, Alexander M.; Airoldi, Edoardo M.; Pan, Tao; Budnik, Bogdan A.; Drummond, D. Allan (2015). "Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress". Cell. 162 (6): 1286–1298. doi:10.1016/j.cell.2015.08.041. PMC 4567705. PMID 26359986.
  11. ^ a b c d Zhou, Min; Sandercock, Alan M.; Fraser, Christopher S.; Ridlova, Gabriela; Stephens, Elaine; Schenauer, Matthew R.; Yokoi-Fong, Theresa; Barsky, Daniel; Leary, Julie A.; Hershey, John W.; Doudna, Jennifer A.; Robinson, Carol V. (Nov 2008). "Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3". Proc. Natl. Acad. Sci. 105 (47): 18139–44. doi:10.1073/pnas.0801313105. PMC 2587604. PMID 18599441.
  12. ^ a b c d e f g h i j Sun, Chaomin; Todorovic, Aleksandar; Querol-Audi, Jordi; Bai, Yun; Villa, Nancy; Snyder, Monica; Ashchyan, John; Lewis, Christopher S.; Hartland, Abbey; Gradia, Scott; Fraser, Christopher S.; Doudna, Jennifer A.; Nogales, Eva; Cate, Jamie H. D. (2011). "Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3)". Proc. Natl. Acad. Sci. 108 (51): 20473–20478. Bibcode:2011PNAS..10820473S. doi:10.1073/pnas.1116821108. PMC 3251073. PMID 22135459.
  13. ^ Liu, Yi; Neumann, Piotr; Kuhle, Berhard; Monecke, Thomas; Schell, Stephanie; Chari, Ashwin; Ficner, Ralph (2014). "Translation Initiation Factor eIF3b Contains a Nine-Bladed b-Propeller and Interacts with the 40S Ribosomal Subunit". Structure. 22 (6): 923–930. doi:10.1016/j.str.2014.03.010. PMID 24768115.
  14. ^ ElAntak, Latifa; Wagner, Susan; Herrmannova, Anna; Karaskova, Martina; Rutkai, Edit; Lukavsky, Peter J.; Valasek, Leos (2010). "The Indispensable N-Terminal Half of eIF3j/HCR1 Cooperates with its Structurally Conserved Binding Partner eIF3b/PRT1-RRM and with eIF1A in Stringent AUG Selection". J. Mol. Biol. 396 (4): 1097–1116. doi:10.1016/j.jmb.2009.12.047. PMC 2824034. PMID 20060839.
  15. ^ Siridechadilok, Bunpote; Fraser, Christopher S.; Hall, Richard J.; Doudna, Jennifer A.; Nogales, Eva (2005). "Structural Roles for Human Translation Factor eIF3 in Initiation of Protein Synthesis". Science. 310 (5753): 1513–1515. Bibcode:2005Sci...310.1513S. doi:10.1126/science.1118977. PMID 16322461. S2CID 6341705.
  16. ^ Holz, Marina K.; Ballif, Bryan A.; Gygi, Steven P.; Blenis, John (2005). "mTOR and S6K1 Mediate Assembly of the Translation Preinitiation Complex through Dynamic Protein Interchange and Ordered Phosphorylation Events". Cell. 123 (4): 569–580. doi:10.1016/j.cell.2005.10.024. PMID 16286006.
  17. ^ Xu, Yichen; Ruggero, Davide (2020). "The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications". Annual Review of Cancer Biology. 4: 437–457. doi:10.1146/annurev-cancerbio-030419-033420.
  18. ^ a b c d e Lee, Amy S.Y.; Kranusch, Philip J.; Cate, Jamie H.D. (2015). "eIF3 targets cell-proliferation messenger RNAs for translational activation or repression". Nature. 522 (7554): 111–114. Bibcode:2015Natur.522..111L. doi:10.1038/nature14267. ISSN 0028-0836. PMC 4603833. PMID 25849773.
  19. ^ a b Jäger, Stefanie; Cimermancic, Peter; Gulbahce, Natali; Johnson, Jeffrey R.; McGovern, Kathryn E.; Clarke, Starlynn C.; Shales, Michael; Mercenne, Gaelle; Pache, Lars; Li, Kathy; Hernandez, Hilda; Jang, Gwendolyn M.; Roth, Shoshannah L.; Akiva, Eyal; Marlett, John; Stephens, Melanie; D’Orso, Ivan; Fernandes, Jason; Fahey, Marie; Mahon, Cathal; O’Donoghue, Anthony J.; Todorovic, Aleksandar; Morris, John H.; Maltby, David A.; Alber, Tom; Cagney, Gerard; Bushman, Frederic D.; Young, John A.; Chanda, Sumit K.; Sundquist, Wesley I.; Kortemme, Tanja; Hernandez, Ryan D.; Craik, Charles S.; Burlingame, Alma; Sali, Andrej; Frankel, Alan D.; Krogan, Nevan J. (2011). "Global landscape of HIV–human protein complexes". Nature. 481 (7381): 365–70. doi:10.1038/nature10719. ISSN 0028-0836. PMC 3310911. PMID 22190034.
  20. ^ Valasek, Leos; Hasek, Jiri; Trachsel, Hans; Imre, Esther Maria; Ruis, Helmut (1999). "The Saccharomyces cerevisiae HCR1 Gene Encoding a Homologue of the p35 Subunit of Human Translation Initiation Factor 3 (eIF3) Is a High Copy Suppressor of a Temperature-sensitive Mutation in the Rpg1p Subunit of Yeast eIF3". J. Biol. Chem. 274 (39): 27567–72. doi:10.1074/jbc.274.39.27567. PMID 10488093.
  21. ^ a b c d e Smith, M. Duane; Yu, Gu; Querol-Audí, Jordi; Vogan, Jacob M.; Nitido, Adam; Cate, Jamie H.D. (November 2013). "Human-Like Eukaryotic Translation Initiation Factor 3 from Neurospora crassa". PLOS ONE. 8 (11): e78715. Bibcode:2013PLoSO...878715S. doi:10.1371/journal.pone.0078715. PMC 3826745. PMID 24250809.
  22. ^ Browning, Karen S.; Gallie, Daniel R.; Hershey, John W.B.; Maitra, Umadas; Merrick, William C.; Norbury, Chris (May 2001). "Unified nomenclature for the subunits of eukaryotic initiation factor 3". Trends Biochem. Sci. 26 (5): 284. doi:10.1016/S0968-0004(01)01825-4. PMID 11426420.
  23. ^ Lee, Amy S. Y.; Kranzusch, Philip J.; Doudna, Jennifer A.; Cate, Jamie H. D. (2016-07-27). "eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation". Nature. 536 (7614). Springer Nature: 96–99. Bibcode:2016Natur.536...96L. doi:10.1038/nature18954. ISSN 0028-0836. PMC 5003174. PMID 27462815.
  24. ^ Akiyoshi, Yuji; Clayton, Jason; Phan, Lon; Yamamoto, Masayuki; Hinnebusch, Alan G.; Watanabe, Yoshinori; Asano, Katsura (2000-12-27). "Fission Yeast Homolog of Murine Int-6 Protein, Encoded by Mouse Mammary Tumor Virus Integration Site, Is Associated with the Conserved Core Subunits of Eukaryotic Translation Initiation Factor 3". Journal of Biological Chemistry. 276 (13). American Society for Biochemistry & Molecular Biology (ASBMB): 10056–10062. doi:10.1074/jbc.m010188200. ISSN 0021-9258. PMID 11134033.
  25. ^ Ray, Anirban; Bandyopadhyay, Amitabha; Matsumoto, Tomohiro; Deng, Haiteng; Maitra, Umadas (2008). "Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion ofeif3h+affects spore formation". Yeast. 25 (11). Wiley-Blackwell: 809–823. doi:10.1002/yea.1635. ISSN 0749-503X. PMID 19061185. S2CID 25980313.
  26. ^ Smith, M. Duane; Arake-Tacca, Luisa; Nitido, Adam; Montabana, Elizabeth; Park, Annsea; Cate, Jamie H. (2016). "Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion". Structure. 24 (6). Elsevier BV: 886–896. doi:10.1016/j.str.2016.02.024. ISSN 0969-2126. PMC 4938246. PMID 27210288.
  27. ^ Johnson, Alex G.; Petrov, Alexey N.; Fuchs, Gabriele; Majzoub, Karim; Grosely, Rosslyn; Choi, Junhong; Puglisi, Joseph D. (2017-11-09). "Fluorescently-tagged human eIF3 for single-molecule spectroscopy". Nucleic Acids Research. 46 (2). Oxford University Press (OUP): e8. doi:10.1093/nar/gkx1050. ISSN 0305-1048. PMC 5778468. PMID 29136179.
  28. ^ Fraser, Christopher S.; Berry, Katherine E.; Hershey, John W. B.; Doudna, Jennifer A. (2007). "eIF3j Is Located in the Decoding Center of the Human 40S Ribosomal Subunit". Molecular Cell. 26 (6): 811–819. doi:10.1016/j.molcel.2007.05.019. PMID 17588516.

eukaryotic, initiation, factor, eif3, multiprotein, complex, that, functions, during, initiation, phase, eukaryotic, translation, essential, most, forms, dependent, independent, translation, initiation, humans, eif3, consists, nonidentical, subunits, eif3a, wi. Eukaryotic initiation factor 3 eIF3 is a multiprotein complex that functions during the initiation phase of eukaryotic translation 2 It is essential for most forms of cap dependent and cap independent translation initiation In humans eIF3 consists of 13 nonidentical subunits eIF3a m with a combined molecular weight of 800 kDa making it the largest translation initiation factor 3 The eIF3 complex is broadly conserved across eukaryotes but the conservation of individual subunits varies across organisms For instance while most mammalian eIF3 complexes are composed of 13 subunits budding yeast s eIF3 has only six subunits eIF3a b c g i j 4 Structure of rabbit eIF3 in the context of the 43S PIC showing subunits a c e f h k l and m 1 Contents 1 Function 2 Interactions 3 Structure 4 Signaling 5 Disease 6 Subunits 7 See also 8 ReferencesFunction editeIF3 stimulates nearly all steps of translation initiation 4 eIF3 also appears to participate in other phases of translation such as recycling where it promotes the splitting of post termination ribosomes 5 In specialized cases of reinitiation following uORFs eIF3 may remain bound to the ribosome through elongation and termination to promote subsequent initiation events 6 Research has also indicated that eIF3 plays a role in programmed stop codon readthrough in yeast by interacting with pre termination complexes and interfering with decoding 7 Interactions editeIF3 binds the small ribosomal subunit 40S at and near its solvent side and serves as a scaffold for several other initiation factors the auxiliary factor DHX29 and mRNA eIF3 is a component of the multifactor complex MFC and 43S and 48S preinitiation complexes PICs 4 The interactions of eIF3 with other initiation factors can vary amongst species for example mammalian eIF3 directly interacts with the eIF4F complex via eIF4G while budding yeast lacks this connection 4 However both mammalian and yeast eIF3 independently bind eIF1 eIF4B and eIF5 2 8 Several subunits of eIF3 contain RNA recognition motifs RRMs and other RNA binding domains to form a multisubunit RNA binding interface through which eIF3 interacts with cellular and viral IRES mRNA including the HCV IRES 4 eIF3 has also been shown to specifically bind m6A modified RNA within 5 UTRs to promote cap independent translation 9 All five core subunits of budding yeast s eIF3 are present in heat induced stress granules along with several other translation factors 10 Structure editA functional eIF3 complex can be purified from native sources or reconstituted from recombinantly expressed subunits 11 12 Individual subunits have been structurally characterized by X ray crystallography and NMR while complexes have been characterized by Cryo EM 13 14 15 No structure of complete human eIF3 is available but the nearly full complex has been determined at medium resolution in the context of the 43S PIC 1 The structural core of mammalian eIF3 is often described as a five lobed particle with anthropomorphic features composed largely of the PCI MPN octamer 12 The PCI domains are named for structural similarities between the proteasome cap P the COP9 signalosome C and eIF3 I while the MPN domains are named for structural similarity to the Mpr1 PadI N terminal domains 12 Signaling editeIF3 serves as a hub for cellular signaling through S6K1 and mTOR Raptor 16 In particular eIF3 is bound by S6K1 in its inactive state and activated mTOR Raptor binds to eIF3 and phosphorylates S6K1 to promote its release from eIF3 Phosphorylated S6K1 is then free to phosphorylate a number of its own targets including eIF4B thus serving as a mechanism of translational control Disease editIndividual subunits of eIF3 are overexpressed a b c h i and m and underexpressed e f in multiple human cancers 3 In breast cancer and malignant prostate cancer eIF3h is overexpressed 17 eIF3 has also been shown to bind a specific set of cell proliferation mRNAs and regulate their translation 18 eIF3 also functions in the life cycles of a number of important human pathogens including HIV and HCV In particular the d subunit of eIF3 is a substrate of HIV protease and genetic knockdown of eIF3 subunits d e or f results in increased viral infectivity for unknown reasons 19 Subunits editThe eIF3 subunits exist at equal stoichiometry within the complex with the exception of eIF3J which is loosely bound and non essential for viability in several species 11 20 21 The subunits were originally organized alphabetically by molecular weight in mammals A as the highest but the arrangement of molecular weight can vary between species 22 Subunit MW kDa A Key Features A 167 Upregulated in several human cancers 3 Crosslinks directly to cellular mRNA 18 Contains PCI domain 12 B 92 Upregulated in several cancers 3 Crosslinks directly to cellular mRNA 18 Contains RRM 11 C 105 Upregulated in several cancers 3 Contains PCI domain 12 Has a human paralog eIF3CL D 64 Dispensable for growth in fission yeast 4 Crosslinks directly to cellular mRNA 18 and binds the 5 cap of select mRNAs 23 Substrate of HIV protease 19 E 52 Downregulated in breast and lung cancers 3 Nonessential for growth in fission yeast 24 and Neurospora crassa 21 Contains PCI domain 12 F 38 Downregulated in several cancers 3 Contains MPN domain 12 G 36 Contains RRM 11 Crosslinks directly to cellular mRNA 18 H 40 Upregulated in several cancers 3 Nonessential for growth in fission yeast 25 Neurospora crassa 21 and human cell lines 26 27 Contains MPN domain 12 I 36 Upregulated in several cancers 3 J 29 Loosely bound non stoichiometric subunit 4 Binds the 40S ribosomal subunit within the decoding center 28 Nonessential for growth in budding yeast 4 K 25 Nonessential for growth in Neurospora crassa 21 Contains PCI domain 12 L 67 Nonessential for growth in Neurospora crassa 21 Contains PCI domain 12 M 43 Upregulated in human colon cancer 3 A Molecular weight of human subunits from Uniprot See also editEukaryotic translation 40S ribosomal subunit 43S preinitiation complex DHX29References edit a b des Georges Amedee Dhote Vidya Kuhn Lauriane Hellen Christopher U T Pestova Tatyana V Frank Joachim Hashem Yaser 2015 Structure of mammalian eIF3 in the context of the 43S preinitiation complex Nature 525 1770 491 5 Bibcode 2015Natur 525 491D doi 10 1038 nature14891 ISSN 0028 0836 PMC 4719162 PMID 26344199 a b Aitken Colin E Lorsch Jon R 2012 A mechanistic overview of translation initiation in eukaryotes Nat Struct Mol Biol 19 6 568 576 doi 10 1038 nsmb 2303 PMID 22664984 S2CID 9201095 a b c d e f g h i j Hershey John W B 2015 The role of eIF3 and its individual subunits in cancer Biochim Biophys Acta 1849 7 792 800 doi 10 1016 j bbagrm 2014 10 005 ISSN 1874 9399 PMID 25450521 a b c d e f g h Hinnebusch Alan G 2006 eIF3 a versatile scaffold for translation initiation complexes Trends Biochem Sci 31 10 553 562 doi 10 1016 j tibs 2006 08 005 ISSN 0968 0004 PMID 16920360 Pisarev Andrey V Hellen Christopher U T Pestova Tatyana V 2007 Recycling of eukaryotic post termination ribosomal complexes Cell 131 2 286 99 doi 10 1016 j cell 2007 08 041 PMC 2651563 PMID 17956730 Sonenberg Nahum Hinnebusch Alan G 2009 Regulation of Translation Initiation in Eukaryotes Mechanisms and Biological Targets Cell 136 4 731 745 doi 10 1016 j cell 2009 01 042 PMC 3610329 PMID 19239892 Beznoskova Petra Wagner Susan Jansen Myrte Esmeralda von der Haar Tobias Valasek Leos Shivaya 2015 Translation initiation factor eIF3 promotes programmed stop codon readthrough Nucleic Acids Res 43 10 5099 5111 doi 10 1093 nar gkv421 PMC 4446449 PMID 25925566 Jackson Richard J Hellen Christopher U T Pestova Tatyana V 2010 The mechanism of eukaryotic translation initiation and principles of its regulation Nat Rev Mol Cell Biol 11 2 113 127 doi 10 1038 nrm2838 PMC 4461372 PMID 20094052 Meyer Kate D Patil Deepak P Zhou Jun Zinoviev Alexandra Skabkin Maxim A Elemento Olivier Pestova Tatyana V Qiang Shu Bing Jaffrey Samie R November 2015 5 UTR m6A Promotes Cap Independent Translation Cell 163 4 999 1010 doi 10 1016 j cell 2015 10 012 PMC 4695625 PMID 26593424 Wallace Edward W J Kear Scott Jamie L Pilipenko Evgeny V Schwartz Michael H Laskowsk Pawel R Rojek Alexander E Katansk Christopher D Riback Joshua A Dion Michael F Franks Alexander M Airoldi Edoardo M Pan Tao Budnik Bogdan A Drummond D Allan 2015 Reversible Specific Active Aggregates of Endogenous Proteins Assemble upon Heat Stress Cell 162 6 1286 1298 doi 10 1016 j cell 2015 08 041 PMC 4567705 PMID 26359986 a b c d Zhou Min Sandercock Alan M Fraser Christopher S Ridlova Gabriela Stephens Elaine Schenauer Matthew R Yokoi Fong Theresa Barsky Daniel Leary Julie A Hershey John W Doudna Jennifer A Robinson Carol V Nov 2008 Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3 Proc Natl Acad Sci 105 47 18139 44 doi 10 1073 pnas 0801313105 PMC 2587604 PMID 18599441 a b c d e f g h i j Sun Chaomin Todorovic Aleksandar Querol Audi Jordi Bai Yun Villa Nancy Snyder Monica Ashchyan John Lewis Christopher S Hartland Abbey Gradia Scott Fraser Christopher S Doudna Jennifer A Nogales Eva Cate Jamie H D 2011 Functional reconstitution of human eukaryotic translation initiation factor 3 eIF3 Proc Natl Acad Sci 108 51 20473 20478 Bibcode 2011PNAS 10820473S doi 10 1073 pnas 1116821108 PMC 3251073 PMID 22135459 Liu Yi Neumann Piotr Kuhle Berhard Monecke Thomas Schell Stephanie Chari Ashwin Ficner Ralph 2014 Translation Initiation Factor eIF3b Contains a Nine Bladed b Propeller and Interacts with the 40S Ribosomal Subunit Structure 22 6 923 930 doi 10 1016 j str 2014 03 010 PMID 24768115 ElAntak Latifa Wagner Susan Herrmannova Anna Karaskova Martina Rutkai Edit Lukavsky Peter J Valasek Leos 2010 The Indispensable N Terminal Half of eIF3j HCR1 Cooperates with its Structurally Conserved Binding Partner eIF3b PRT1 RRM and with eIF1A in Stringent AUG Selection J Mol Biol 396 4 1097 1116 doi 10 1016 j jmb 2009 12 047 PMC 2824034 PMID 20060839 Siridechadilok Bunpote Fraser Christopher S Hall Richard J Doudna Jennifer A Nogales Eva 2005 Structural Roles for Human Translation Factor eIF3 in Initiation of Protein Synthesis Science 310 5753 1513 1515 Bibcode 2005Sci 310 1513S doi 10 1126 science 1118977 PMID 16322461 S2CID 6341705 Holz Marina K Ballif Bryan A Gygi Steven P Blenis John 2005 mTOR and S6K1 Mediate Assembly of the Translation Preinitiation Complex through Dynamic Protein Interchange and Ordered Phosphorylation Events Cell 123 4 569 580 doi 10 1016 j cell 2005 10 024 PMID 16286006 Xu Yichen Ruggero Davide 2020 The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications Annual Review of Cancer Biology 4 437 457 doi 10 1146 annurev cancerbio 030419 033420 a b c d e Lee Amy S Y Kranusch Philip J Cate Jamie H D 2015 eIF3 targets cell proliferation messenger RNAs for translational activation or repression Nature 522 7554 111 114 Bibcode 2015Natur 522 111L doi 10 1038 nature14267 ISSN 0028 0836 PMC 4603833 PMID 25849773 a b Jager Stefanie Cimermancic Peter Gulbahce Natali Johnson Jeffrey R McGovern Kathryn E Clarke Starlynn C Shales Michael Mercenne Gaelle Pache Lars Li Kathy Hernandez Hilda Jang Gwendolyn M Roth Shoshannah L Akiva Eyal Marlett John Stephens Melanie D Orso Ivan Fernandes Jason Fahey Marie Mahon Cathal O Donoghue Anthony J Todorovic Aleksandar Morris John H Maltby David A Alber Tom Cagney Gerard Bushman Frederic D Young John A Chanda Sumit K Sundquist Wesley I Kortemme Tanja Hernandez Ryan D Craik Charles S Burlingame Alma Sali Andrej Frankel Alan D Krogan Nevan J 2011 Global landscape of HIV human protein complexes Nature 481 7381 365 70 doi 10 1038 nature10719 ISSN 0028 0836 PMC 3310911 PMID 22190034 Valasek Leos Hasek Jiri Trachsel Hans Imre Esther Maria Ruis Helmut 1999 The Saccharomyces cerevisiae HCR1 Gene Encoding a Homologue of the p35 Subunit of Human Translation Initiation Factor 3 eIF3 Is a High Copy Suppressor of a Temperature sensitive Mutation in the Rpg1p Subunit of Yeast eIF3 J Biol Chem 274 39 27567 72 doi 10 1074 jbc 274 39 27567 PMID 10488093 a b c d e Smith M Duane Yu Gu Querol Audi Jordi Vogan Jacob M Nitido Adam Cate Jamie H D November 2013 Human Like Eukaryotic Translation Initiation Factor 3 from Neurospora crassa PLOS ONE 8 11 e78715 Bibcode 2013PLoSO 878715S doi 10 1371 journal pone 0078715 PMC 3826745 PMID 24250809 Browning Karen S Gallie Daniel R Hershey John W B Maitra Umadas Merrick William C Norbury Chris May 2001 Unified nomenclature for the subunits of eukaryotic initiation factor 3 Trends Biochem Sci 26 5 284 doi 10 1016 S0968 0004 01 01825 4 PMID 11426420 Lee Amy S Y Kranzusch Philip J Doudna Jennifer A Cate Jamie H D 2016 07 27 eIF3d is an mRNA cap binding protein that is required for specialized translation initiation Nature 536 7614 Springer Nature 96 99 Bibcode 2016Natur 536 96L doi 10 1038 nature18954 ISSN 0028 0836 PMC 5003174 PMID 27462815 Akiyoshi Yuji Clayton Jason Phan Lon Yamamoto Masayuki Hinnebusch Alan G Watanabe Yoshinori Asano Katsura 2000 12 27 Fission Yeast Homolog of Murine Int 6 Protein Encoded by Mouse Mammary Tumor Virus Integration Site Is Associated with the Conserved Core Subunits of Eukaryotic Translation Initiation Factor 3 Journal of Biological Chemistry 276 13 American Society for Biochemistry amp Molecular Biology ASBMB 10056 10062 doi 10 1074 jbc m010188200 ISSN 0021 9258 PMID 11134033 Ray Anirban Bandyopadhyay Amitabha Matsumoto Tomohiro Deng Haiteng Maitra Umadas 2008 Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation but deletion ofeif3h affects spore formation Yeast 25 11 Wiley Blackwell 809 823 doi 10 1002 yea 1635 ISSN 0749 503X PMID 19061185 S2CID 25980313 Smith M Duane Arake Tacca Luisa Nitido Adam Montabana Elizabeth Park Annsea Cate Jamie H 2016 Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion Structure 24 6 Elsevier BV 886 896 doi 10 1016 j str 2016 02 024 ISSN 0969 2126 PMC 4938246 PMID 27210288 Johnson Alex G Petrov Alexey N Fuchs Gabriele Majzoub Karim Grosely Rosslyn Choi Junhong Puglisi Joseph D 2017 11 09 Fluorescently tagged human eIF3 for single molecule spectroscopy Nucleic Acids Research 46 2 Oxford University Press OUP e8 doi 10 1093 nar gkx1050 ISSN 0305 1048 PMC 5778468 PMID 29136179 Fraser Christopher S Berry Katherine E Hershey John W B Doudna Jennifer A 2007 eIF3j Is Located in the Decoding Center of the Human 40S Ribosomal Subunit Molecular Cell 26 6 811 819 doi 10 1016 j molcel 2007 05 019 PMID 17588516 Portal nbsp Biology Retrieved from https en wikipedia org w index php title Eukaryotic initiation factor 3 amp oldid 1170011681, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.