fbpx
Wikipedia

List of trigonometric identities

In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle.

These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

Pythagorean identities edit

 
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity  , and the red triangle shows that  .

The basic relationship between the sine and cosine is given by the Pythagorean identity:

 

where   means   and   means  

This can be viewed as a version of the Pythagorean theorem, and follows from the equation   for the unit circle. This equation can be solved for either the sine or the cosine:

 

where the sign depends on the quadrant of  

Dividing this identity by  ,  , or both yields the following identities:

 

Using these identities, it is possible to express any trigonometric function in terms of any other (up to a plus or minus sign):

Each trigonometric function in terms of each of the other five.[1]
in terms of            
             
             
             
             
             
             

Reflections, shifts, and periodicity edit

By examining the unit circle, one can establish the following properties of the trigonometric functions.

Reflections edit

 
Transformation of coordinates (a,b) when shifting the reflection angle   in increments of  .

When the direction of a Euclidean vector is represented by an angle   this is the angle determined by the free vector (starting at the origin) and the positive  -unit vector. The same concept may also be applied to lines in a Euclidean space, where the angle is that determined by a parallel to the given line through the origin and the positive  -axis. If a line (vector) with direction   is reflected about a line with direction   then the direction angle   of this reflected line (vector) has the value

 

The values of the trigonometric functions of these angles   for specific angles   satisfy simple identities: either they are equal, or have opposite signs, or employ the complementary trigonometric function. These are also known as reduction formulae.[2]

  reflected in  [3]
odd/even identities
  reflected in     reflected in     reflected in     reflected in  
compare to  
         
         
         
         
         
         

Shifts and periodicity edit

 
Transformation of coordinates (a,b) when shifting the angle   in increments of  .
Shift by one quarter period Shift by one half period Shift by full periods[4] Period
       
       
       
       
       
       

Signs edit

The sign of trigonometric functions depends on quadrant of the angle. If   and sgn is the sign function,

 

The trigonometric functions are periodic with common period   so for values of θ outside the interval   they take repeating values (see § Shifts and periodicity above).

Angle sum and difference identities edit

 
Illustration of angle addition formulae for the sine and cosine of acute angles. Emphasized segment is of unit length.
 
Diagram showing the angle difference identities for   and  .

These are also known as the angle addition and subtraction theorems (or formulae).

 

The angle difference identities for   and   can be derived from the angle sum versions by substituting   for   and using the facts that   and  . They can also be derived by using a slightly modified version of the figure for the angle sum identities, both of which are shown here.

These identities are summarized in the first two rows of the following table, which also includes sum and difference identities for the other trigonometric functions.

Sine      [5][6]
Cosine      [6][7]
Tangent      [6][8]
Cosecant      [9]
Secant      [9]
Cotangent      [6][10]
Arcsine      [11]
Arccosine      [12]
Arctangent      [13]
Arccotangent      

Sines and cosines of sums of infinitely many angles edit

When the series   converges absolutely then

 

Because the series   converges absolutely, it is necessarily the case that     and   In particular, in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles: in each product, there are only finitely many sine factors but there are cofinitely many cosine factors. Terms with infinitely many sine factors would necessarily be equal to zero.

When only finitely many of the angles   are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish. Furthermore, in each term all but finitely many of the cosine factors are unity.

Tangents and cotangents of sums edit

Let   (for  ) be the kth-degree elementary symmetric polynomial in the variables

 
for   that is,
 

Then

 

using the sine and cosine sum formulae above.

The number of terms on the right side depends on the number of terms on the left side.

For example:

 

and so on. The case of only finitely many terms can be proved by mathematical induction.[14] The case of infinitely many terms can be proved by using some elementary inequalities.[15]

Secants and cosecants of sums edit

 

where   is the kth-degree elementary symmetric polynomial in the n variables     and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left.[16] The case of only finitely many terms can be proved by mathematical induction on the number of such terms.

For example,

 

Ptolemy's theorem edit

 
Diagram illustrating the relation between Ptolemy's theorem and the angle sum trig identity for sine. Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved. It states that in a cyclic quadrilateral  , as shown in the accompanying figure, the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. In the special cases of one of the diagonals or sides being a diameter of the circle, this theorem gives rise directly to the angle sum and difference trigonometric identities.[17] The relationship follows most easily when the circle is constructed to have a diameter of length one, as shown here.

By Thales's theorem,   and   are both right angles. The right-angled triangles   and   both share the hypotenuse   of length 1. Thus, the side  ,  ,   and  .

By the inscribed angle theorem, the central angle subtended by the chord   at the circle's center is twice the angle  , i.e.  . Therefore, the symmetrical pair of red triangles each has the angle   at the center. Each of these triangles has a hypotenuse of length  , so the length of   is  , i.e. simply  . The quadrilateral's other diagonal is the diameter of length 1, so the product of the diagonals' lengths is also  .

When these values are substituted into the statement of Ptolemy's theorem that  , this yields the angle sum trigonometric identity for sine:  . The angle difference formula for   can be similarly derived by letting the side   serve as a diameter instead of  .[17]

Multiple-angle and half-angle formulae edit

Tn is the nth Chebyshev polynomial  [18]
de Moivre's formula, i is the imaginary unit  [19]

Multiple-angle formulae edit

Double-angle formulae edit

 
Visual demonstration of the double-angle formula for sine. For the above isosceles triangle with unit sides and angle  , the area 1/2 × base × height is calculated in two orientations. When upright, the area is  . When on its side, the same area is  . Therefore,  

Formulae for twice an angle.[20]

  •  
  •  
  •  
  •  
  •  
  •  

Triple-angle formulae edit

Formulae for triple angles.[20]

  •  
  •  
  •  
  •  
  •  
  •  

Multiple-angle formulae edit

Formulae for multiple angles.[21]

  •  
  •  
  •  
  •  
  •  

Chebyshev method edit

The Chebyshev method is a recursive algorithm for finding the nth multiple angle formula knowing the  th and  th values.[22]

  can be computed from  ,  , and   with

 

This can be proved by adding together the formulae

 

It follows by induction that   is a polynomial of   the so-called Chebyshev polynomial of the first kind, see Chebyshev polynomials#Trigonometric definition.

Similarly,   can be computed from     and   with

 
This can be proved by adding formulae for   and  

Serving a purpose similar to that of the Chebyshev method, for the tangent we can write:

 

Half-angle formulae edit

 
[23][24]

Also

 

Table edit

These can be shown by using either the sum and difference identities or the multiple-angle formulae.

Sine Cosine Tangent Cotangent
Double-angle formula[25][26]        
Triple-angle formula[18][27]        
Half-angle formula[23][24]        

The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools, by field theory. [citation needed]

A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x3 − 3x + d = 0, where   is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle. However, the discriminant of this equation is positive, so this equation has three real roots (of which only one is the solution for the cosine of the one-third angle). None of these solutions are reducible to a real algebraic expression, as they use intermediate complex numbers under the cube roots.

Power-reduction formulae edit

Obtained by solving the second and third versions of the cosine double-angle formula.

Sine Cosine Other
     
     
     
     
 
Cosine power-reduction formula: an illustrative diagram. The red, orange and blue triangles are all similar, and the red and orange triangles are congruent. The hypotenuse   of the blue triangle has length  . The angle   is  , so the base   of that triangle has length  . That length is also equal to the summed lengths of   and  , i.e.
list, trigonometric, identities, trigonometry, trigonometric, identities, equalities, that, involve, trigonometric, functions, true, every, value, occurring, variables, which, both, sides, equality, defined, geometrically, these, identities, involving, certain. In trigonometry trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined Geometrically these are identities involving certain functions of one or more angles They are distinct from triangle identities which are identities potentially involving angles but also involving side lengths or other lengths of a triangle These identities are useful whenever expressions involving trigonometric functions need to be simplified An important application is the integration of non trigonometric functions a common technique involves first using the substitution rule with a trigonometric function and then simplifying the resulting integral with a trigonometric identity Contents 1 Pythagorean identities 2 Reflections shifts and periodicity 2 1 Reflections 2 2 Shifts and periodicity 2 3 Signs 3 Angle sum and difference identities 3 1 Sines and cosines of sums of infinitely many angles 3 2 Tangents and cotangents of sums 3 3 Secants and cosecants of sums 3 4 Ptolemy s theorem 4 Multiple angle and half angle formulae 4 1 Multiple angle formulae 4 1 1 Double angle formulae 4 1 2 Triple angle formulae 4 1 3 Multiple angle formulae 4 1 4 Chebyshev method 4 2 Half angle formulae 4 3 Table 5 Power reduction formulae 6 Product to sum and sum to product identities 6 1 Product to sum identities 6 2 Sum to product identities 6 3 Hermite s cotangent identity 6 4 Finite products of trigonometric functions 7 Linear combinations 7 1 Sine and cosine 7 2 Arbitrary phase shift 7 3 More than two sinusoids 8 Lagrange s trigonometric identities 9 Certain linear fractional transformations 10 Relation to the complex exponential function 11 Series expansion 12 Infinite product formulae 13 Inverse trigonometric functions 14 Identities without variables 14 1 Computing p 14 2 An identity of Euclid 15 Composition of trigonometric functions 16 Further conditional identities for the case a b g 180 17 Historical shorthands 18 Miscellaneous 18 1 Dirichlet kernel 18 2 Tangent half angle substitution 18 3 Viete s infinite product 19 See also 20 References 21 Bibliography 22 External linksPythagorean identities editMain article Pythagorean trigonometric identity nbsp Trigonometric functions and their reciprocals on the unit circle All of the right angled triangles are similar i e the ratios between their corresponding sides are the same For sin cos and tan the unit length radius forms the hypotenuse of the triangle that defines them The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse The triangle shaded blue illustrates the identity 1 cot2 8 csc2 8 displaystyle 1 cot 2 theta csc 2 theta nbsp and the red triangle shows that tan2 8 1 sec2 8 displaystyle tan 2 theta 1 sec 2 theta nbsp The basic relationship between the sine and cosine is given by the Pythagorean identity sin2 8 cos2 8 1 displaystyle sin 2 theta cos 2 theta 1 nbsp where sin2 8 displaystyle sin 2 theta nbsp means sin 8 2 displaystyle sin theta 2 nbsp and cos2 8 displaystyle cos 2 theta nbsp means cos 8 2 displaystyle cos theta 2 nbsp This can be viewed as a version of the Pythagorean theorem and follows from the equation x2 y2 1 displaystyle x 2 y 2 1 nbsp for the unit circle This equation can be solved for either the sine or the cosine sin 8 1 cos2 8 cos 8 1 sin2 8 displaystyle begin aligned sin theta amp pm sqrt 1 cos 2 theta cos theta amp pm sqrt 1 sin 2 theta end aligned nbsp where the sign depends on the quadrant of 8 displaystyle theta nbsp Dividing this identity by sin2 8 displaystyle sin 2 theta nbsp cos2 8 displaystyle cos 2 theta nbsp or both yields the following identities 1 cot2 8 csc2 81 tan2 8 sec2 8sec2 8 csc2 8 sec2 8csc2 8 displaystyle begin aligned amp 1 cot 2 theta csc 2 theta amp 1 tan 2 theta sec 2 theta amp sec 2 theta csc 2 theta sec 2 theta csc 2 theta end aligned nbsp Using these identities it is possible to express any trigonometric function in terms of any other up to a plus or minus sign Each trigonometric function in terms of each of the other five 1 in terms of sin 8 displaystyle sin theta nbsp csc 8 displaystyle csc theta nbsp cos 8 displaystyle cos theta nbsp sec 8 displaystyle sec theta nbsp tan 8 displaystyle tan theta nbsp cot 8 displaystyle cot theta nbsp sin 8 displaystyle sin theta nbsp sin 8 displaystyle sin theta nbsp 1csc 8 displaystyle frac 1 csc theta nbsp 1 cos2 8 displaystyle pm sqrt 1 cos 2 theta nbsp sec2 8 1sec 8 displaystyle pm frac sqrt sec 2 theta 1 sec theta nbsp tan 81 tan2 8 displaystyle pm frac tan theta sqrt 1 tan 2 theta nbsp 11 cot2 8 displaystyle pm frac 1 sqrt 1 cot 2 theta nbsp csc 8 displaystyle csc theta nbsp 1sin 8 displaystyle frac 1 sin theta nbsp csc 8 displaystyle csc theta nbsp 11 cos2 8 displaystyle pm frac 1 sqrt 1 cos 2 theta nbsp sec 8sec2 8 1 displaystyle pm frac sec theta sqrt sec 2 theta 1 nbsp 1 tan2 8tan 8 displaystyle pm frac sqrt 1 tan 2 theta tan theta nbsp 1 cot2 8 displaystyle pm sqrt 1 cot 2 theta nbsp cos 8 displaystyle cos theta nbsp 1 sin2 8 displaystyle pm sqrt 1 sin 2 theta nbsp csc2 8 1csc 8 displaystyle pm frac sqrt csc 2 theta 1 csc theta nbsp cos 8 displaystyle cos theta nbsp 1sec 8 displaystyle frac 1 sec theta nbsp 11 tan2 8 displaystyle pm frac 1 sqrt 1 tan 2 theta nbsp cot 81 cot2 8 displaystyle pm frac cot theta sqrt 1 cot 2 theta nbsp sec 8 displaystyle sec theta nbsp 11 sin2 8 displaystyle pm frac 1 sqrt 1 sin 2 theta nbsp csc 8csc2 8 1 displaystyle pm frac csc theta sqrt csc 2 theta 1 nbsp 1cos 8 displaystyle frac 1 cos theta nbsp sec 8 displaystyle sec theta nbsp 1 tan2 8 displaystyle pm sqrt 1 tan 2 theta nbsp 1 cot2 8cot 8 displaystyle pm frac sqrt 1 cot 2 theta cot theta nbsp tan 8 displaystyle tan theta nbsp sin 81 sin2 8 displaystyle pm frac sin theta sqrt 1 sin 2 theta nbsp 1csc2 8 1 displaystyle pm frac 1 sqrt csc 2 theta 1 nbsp 1 cos2 8cos 8 displaystyle pm frac sqrt 1 cos 2 theta cos theta nbsp sec2 8 1 displaystyle pm sqrt sec 2 theta 1 nbsp tan 8 displaystyle tan theta nbsp 1cot 8 displaystyle frac 1 cot theta nbsp cot 8 displaystyle cot theta nbsp 1 sin2 8sin 8 displaystyle pm frac sqrt 1 sin 2 theta sin theta nbsp csc2 8 1 displaystyle pm sqrt csc 2 theta 1 nbsp cos 81 cos2 8 displaystyle pm frac cos theta sqrt 1 cos 2 theta nbsp 1sec2 8 1 displaystyle pm frac 1 sqrt sec 2 theta 1 nbsp 1tan 8 displaystyle frac 1 tan theta nbsp cot 8 displaystyle cot theta nbsp Reflections shifts and periodicity editBy examining the unit circle one can establish the following properties of the trigonometric functions Reflections edit nbsp Transformation of coordinates a b when shifting the reflection angle a displaystyle alpha nbsp in increments of p4 displaystyle frac pi 4 nbsp When the direction of a Euclidean vector is represented by an angle 8 displaystyle theta nbsp this is the angle determined by the free vector starting at the origin and the positive x displaystyle x nbsp unit vector The same concept may also be applied to lines in a Euclidean space where the angle is that determined by a parallel to the given line through the origin and the positive x displaystyle x nbsp axis If a line vector with direction 8 displaystyle theta nbsp is reflected about a line with direction a displaystyle alpha nbsp then the direction angle 8 displaystyle theta prime nbsp of this reflected line vector has the value8 2a 8 displaystyle theta prime 2 alpha theta nbsp The values of the trigonometric functions of these angles 8 8 displaystyle theta theta prime nbsp for specific angles a displaystyle alpha nbsp satisfy simple identities either they are equal or have opposite signs or employ the complementary trigonometric function These are also known as reduction formulae 2 8 displaystyle theta nbsp reflected in a 0 displaystyle alpha 0 nbsp 3 odd even identities 8 displaystyle theta nbsp reflected in a p4 displaystyle alpha frac pi 4 nbsp 8 displaystyle theta nbsp reflected in a p2 displaystyle alpha frac pi 2 nbsp 8 displaystyle theta nbsp reflected in a 3p4 displaystyle alpha frac 3 pi 4 nbsp 8 displaystyle theta nbsp reflected in a p displaystyle alpha pi nbsp compare to a 0 displaystyle alpha 0 nbsp sin 8 sin 8 displaystyle sin theta sin theta nbsp sin p2 8 cos 8 displaystyle sin left tfrac pi 2 theta right cos theta nbsp sin p 8 sin 8 displaystyle sin pi theta sin theta nbsp sin 3p2 8 cos 8 displaystyle sin left tfrac 3 pi 2 theta right cos theta nbsp sin 2p 8 sin 8 sin 8 displaystyle sin 2 pi theta sin theta sin theta nbsp cos 8 cos 8 displaystyle cos theta cos theta nbsp cos p2 8 sin 8 displaystyle cos left tfrac pi 2 theta right sin theta nbsp cos p 8 cos 8 displaystyle cos pi theta cos theta nbsp cos 3p2 8 sin 8 displaystyle cos left tfrac 3 pi 2 theta right sin theta nbsp cos 2p 8 cos 8 cos 8 displaystyle cos 2 pi theta cos theta cos theta nbsp tan 8 tan 8 displaystyle tan theta tan theta nbsp tan p2 8 cot 8 displaystyle tan left tfrac pi 2 theta right cot theta nbsp tan p 8 tan 8 displaystyle tan pi theta tan theta nbsp tan 3p2 8 cot 8 displaystyle tan left tfrac 3 pi 2 theta right cot theta nbsp tan 2p 8 tan 8 tan 8 displaystyle tan 2 pi theta tan theta tan theta nbsp csc 8 csc 8 displaystyle csc theta csc theta nbsp csc p2 8 sec 8 displaystyle csc left tfrac pi 2 theta right sec theta nbsp csc p 8 csc 8 displaystyle csc pi theta csc theta nbsp csc 3p2 8 sec 8 displaystyle csc left tfrac 3 pi 2 theta right sec theta nbsp csc 2p 8 csc 8 csc 8 displaystyle csc 2 pi theta csc theta csc theta nbsp sec 8 sec 8 displaystyle sec theta sec theta nbsp sec p2 8 csc 8 displaystyle sec left tfrac pi 2 theta right csc theta nbsp sec p 8 sec 8 displaystyle sec pi theta sec theta nbsp sec 3p2 8 csc 8 displaystyle sec left tfrac 3 pi 2 theta right csc theta nbsp sec 2p 8 sec 8 sec 8 displaystyle sec 2 pi theta sec theta sec theta nbsp cot 8 cot 8 displaystyle cot theta cot theta nbsp cot p2 8 tan 8 displaystyle cot left tfrac pi 2 theta right tan theta nbsp cot p 8 cot 8 displaystyle cot pi theta cot theta nbsp cot 3p2 8 tan 8 displaystyle cot left tfrac 3 pi 2 theta right tan theta nbsp cot 2p 8 cot 8 cot 8 displaystyle cot 2 pi theta cot theta cot theta nbsp Shifts and periodicity edit nbsp Transformation of coordinates a b when shifting the angle 8 displaystyle theta nbsp in increments of p2 displaystyle frac pi 2 nbsp Shift by one quarter period Shift by one half period Shift by full periods 4 Periodsin 8 p2 cos 8 displaystyle sin theta pm tfrac pi 2 pm cos theta nbsp sin 8 p sin 8 displaystyle sin theta pi sin theta nbsp sin 8 k 2p sin 8 displaystyle sin theta k cdot 2 pi sin theta nbsp 2p displaystyle 2 pi nbsp cos 8 p2 sin 8 displaystyle cos theta pm tfrac pi 2 mp sin theta nbsp cos 8 p cos 8 displaystyle cos theta pi cos theta nbsp cos 8 k 2p cos 8 displaystyle cos theta k cdot 2 pi cos theta nbsp 2p displaystyle 2 pi nbsp csc 8 p2 sec 8 displaystyle csc theta pm tfrac pi 2 pm sec theta nbsp csc 8 p csc 8 displaystyle csc theta pi csc theta nbsp csc 8 k 2p csc 8 displaystyle csc theta k cdot 2 pi csc theta nbsp 2p displaystyle 2 pi nbsp sec 8 p2 csc 8 displaystyle sec theta pm tfrac pi 2 mp csc theta nbsp sec 8 p sec 8 displaystyle sec theta pi sec theta nbsp sec 8 k 2p sec 8 displaystyle sec theta k cdot 2 pi sec theta nbsp 2p displaystyle 2 pi nbsp tan 8 p4 tan 8 11 tan 8 displaystyle tan theta pm tfrac pi 4 tfrac tan theta pm 1 1 mp tan theta nbsp tan 8 p2 cot 8 displaystyle tan theta tfrac pi 2 cot theta nbsp tan 8 k p tan 8 displaystyle tan theta k cdot pi tan theta nbsp p displaystyle pi nbsp cot 8 p4 cot 8 11 cot 8 displaystyle cot theta pm tfrac pi 4 tfrac cot theta mp 1 1 pm cot theta nbsp cot 8 p2 tan 8 displaystyle cot theta tfrac pi 2 tan theta nbsp cot 8 k p cot 8 displaystyle cot theta k cdot pi cot theta nbsp p displaystyle pi nbsp Signs edit The sign of trigonometric functions depends on quadrant of the angle If p lt 8 p displaystyle pi lt theta leq pi nbsp and sgn is the sign function sgn sin 8 sgn csc 8 1if 0 lt 8 lt p 1if p lt 8 lt 00if 8 0 p sgn cos 8 sgn sec 8 1if 12p lt 8 lt 12p 1if p lt 8 lt 12p or 12p lt 8 lt p0if 8 12p 12p sgn tan 8 sgn cot 8 1if p lt 8 lt 12p or 0 lt 8 lt 12p 1if 12p lt 8 lt 0 or 12p lt 8 lt p0if 8 12p 0 12p p displaystyle begin aligned operatorname sgn sin theta operatorname sgn csc theta amp begin cases 1 amp text if 0 lt theta lt pi 1 amp text if pi lt theta lt 0 0 amp text if theta in 0 pi end cases 5mu operatorname sgn cos theta operatorname sgn sec theta amp begin cases 1 amp text if tfrac 1 2 pi lt theta lt tfrac 1 2 pi 1 amp text if pi lt theta lt tfrac 1 2 pi text or tfrac 1 2 pi lt theta lt pi 0 amp text if theta in bigl tfrac 1 2 pi tfrac 1 2 pi bigr end cases 5mu operatorname sgn tan theta operatorname sgn cot theta amp begin cases 1 amp text if pi lt theta lt tfrac 1 2 pi text or 0 lt theta lt tfrac 1 2 pi 1 amp text if tfrac 1 2 pi lt theta lt 0 text or tfrac 1 2 pi lt theta lt pi 0 amp text if theta in bigl tfrac 1 2 pi 0 tfrac 1 2 pi pi bigr end cases end aligned nbsp The trigonometric functions are periodic with common period 2p displaystyle 2 pi nbsp so for values of 8 outside the interval p p displaystyle pi pi nbsp they take repeating values see Shifts and periodicity above Angle sum and difference identities editSee also Proofs of trigonometric identities Angle sum identities and Small angle approximation Angle sum and difference nbsp Illustration of angle addition formulae for the sine and cosine of acute angles Emphasized segment is of unit length nbsp Diagram showing the angle difference identities for sin a b displaystyle sin alpha beta nbsp and cos a b displaystyle cos alpha beta nbsp These are also known as the angle addition and subtraction theorems or formulae sin a b sin acos b cos asin bsin a b sin acos b cos asin bcos a b cos acos b sin asin bcos a b cos acos b sin asin b displaystyle begin aligned sin alpha beta amp sin alpha cos beta cos alpha sin beta sin alpha beta amp sin alpha cos beta cos alpha sin beta cos alpha beta amp cos alpha cos beta sin alpha sin beta cos alpha beta amp cos alpha cos beta sin alpha sin beta end aligned nbsp The angle difference identities for sin a b displaystyle sin alpha beta nbsp and cos a b displaystyle cos alpha beta nbsp can be derived from the angle sum versions by substituting b displaystyle beta nbsp for b displaystyle beta nbsp and using the facts that sin b sin b displaystyle sin beta sin beta nbsp and cos b cos b displaystyle cos beta cos beta nbsp They can also be derived by using a slightly modified version of the figure for the angle sum identities both of which are shown here These identities are summarized in the first two rows of the following table which also includes sum and difference identities for the other trigonometric functions Sine sin a b displaystyle sin alpha pm beta nbsp displaystyle nbsp sin acos b cos asin b displaystyle sin alpha cos beta pm cos alpha sin beta nbsp 5 6 Cosine cos a b displaystyle cos alpha pm beta nbsp displaystyle nbsp cos acos b sin asin b displaystyle cos alpha cos beta mp sin alpha sin beta nbsp 6 7 Tangent tan a b displaystyle tan alpha pm beta nbsp displaystyle nbsp tan a tan b1 tan atan b displaystyle frac tan alpha pm tan beta 1 mp tan alpha tan beta nbsp 6 8 Cosecant csc a b displaystyle csc alpha pm beta nbsp displaystyle nbsp sec asec bcsc acsc bsec acsc b csc asec b displaystyle frac sec alpha sec beta csc alpha csc beta sec alpha csc beta pm csc alpha sec beta nbsp 9 Secant sec a b displaystyle sec alpha pm beta nbsp displaystyle nbsp sec asec bcsc acsc bcsc acsc b sec asec b displaystyle frac sec alpha sec beta csc alpha csc beta csc alpha csc beta mp sec alpha sec beta nbsp 9 Cotangent cot a b displaystyle cot alpha pm beta nbsp displaystyle nbsp cot acot b 1cot b cot a displaystyle frac cot alpha cot beta mp 1 cot beta pm cot alpha nbsp 6 10 Arcsine arcsin x arcsin y displaystyle arcsin x pm arcsin y nbsp displaystyle nbsp arcsin x1 y2 y1 x2 displaystyle arcsin left x sqrt 1 y 2 pm y sqrt 1 x 2 right nbsp 11 Arccosine arccos x arccos y displaystyle arccos x pm arccos y nbsp displaystyle nbsp arccos xy 1 x2 1 y2 displaystyle arccos left xy mp sqrt left 1 x 2 right left 1 y 2 right right nbsp 12 Arctangent arctan x arctan y displaystyle arctan x pm arctan y nbsp displaystyle nbsp arctan x y1 xy displaystyle arctan left frac x pm y 1 mp xy right nbsp 13 Arccotangent arccot x arccot y displaystyle operatorname arccot x pm operatorname arccot y nbsp displaystyle nbsp arccot xy 1y x displaystyle operatorname arccot left frac xy mp 1 y pm x right nbsp Sines and cosines of sums of infinitely many angles edit When the series i 1 8i textstyle sum i 1 infty theta i nbsp converges absolutely thensin i 1 8i odd k 1 1 k 12 A 1 2 3 A k i Asin 8i i Acos 8i cos i 1 8i even k 0 1 k2 A 1 2 3 A k i Asin 8i i Acos 8i displaystyle begin aligned sin biggl sum i 1 infty theta i biggl amp sum text odd k geq 1 1 frac k 1 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix biggl prod i in A sin theta i prod i not in A cos theta i biggr cos biggl sum i 1 infty theta i biggr amp sum text even k geq 0 1 frac k 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix biggl prod i in A sin theta i prod i not in A cos theta i biggr end aligned nbsp Because the series i 1 8i textstyle sum i 1 infty theta i nbsp converges absolutely it is necessarily the case that limi 8i 0 textstyle lim i to infty theta i 0 nbsp limi sin 8i 0 textstyle lim i to infty sin theta i 0 nbsp and limi cos 8i 1 textstyle lim i to infty cos theta i 1 nbsp In particular in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles in each product there are only finitely many sine factors but there are cofinitely many cosine factors Terms with infinitely many sine factors would necessarily be equal to zero When only finitely many of the angles 8i displaystyle theta i nbsp are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish Furthermore in each term all but finitely many of the cosine factors are unity Tangents and cotangents of sums edit Let ek displaystyle e k nbsp for k 0 1 2 3 displaystyle k 0 1 2 3 ldots nbsp be the k th degree elementary symmetric polynomial in the variablesxi tan 8i displaystyle x i tan theta i nbsp for i 0 1 2 3 displaystyle i 0 1 2 3 ldots nbsp that is e0 1e1 ixi itan 8ie2 i lt jxixj i lt jtan 8itan 8je3 i lt j lt kxixjxk i lt j lt ktan 8itan 8jtan 8k displaystyle begin aligned e 0 amp 1 6pt e 1 amp sum i x i amp amp sum i tan theta i 6pt e 2 amp sum i lt j x i x j amp amp sum i lt j tan theta i tan theta j 6pt e 3 amp sum i lt j lt k x i x j x k amp amp sum i lt j lt k tan theta i tan theta j tan theta k amp vdots amp amp vdots end aligned nbsp Thentan i8i sin i8i icos 8icos i8i icos 8i odd k 1 1 k 12 A 1 2 3 A k i Atan 8i even k 0 1 k2 A 1 2 3 A k i Atan 8i e1 e3 e5 e0 e2 e4 cot i8i e0 e2 e4 e1 e3 e5 displaystyle begin aligned tan Bigl sum i theta i Bigr amp frac sin bigl sum i theta i bigr prod i cos theta i cos bigl sum i theta i bigr prod i cos theta i 10pt amp frac displaystyle sum text odd k geq 1 1 frac k 1 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix prod i in A tan theta i displaystyle sum text even k geq 0 1 frac k 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix prod i in A tan theta i frac e 1 e 3 e 5 cdots e 0 e 2 e 4 cdots 10pt cot Bigl sum i theta i Bigr amp frac e 0 e 2 e 4 cdots e 1 e 3 e 5 cdots end aligned nbsp using the sine and cosine sum formulae above The number of terms on the right side depends on the number of terms on the left side For example tan 81 82 e1e0 e2 x1 x21 x1x2 tan 81 tan 821 tan 81tan 82 tan 81 82 83 e1 e3e0 e2 x1 x2 x3 x1x2x3 1 x1x2 x1x3 x2x3 tan 81 82 83 84 e1 e3e0 e2 e4 x1 x2 x3 x4 x1x2x3 x1x2x4 x1x3x4 x2x3x4 1 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 x1x2x3x4 displaystyle begin aligned tan theta 1 theta 2 amp frac e 1 e 0 e 2 frac x 1 x 2 1 x 1 x 2 frac tan theta 1 tan theta 2 1 tan theta 1 tan theta 2 8pt tan theta 1 theta 2 theta 3 amp frac e 1 e 3 e 0 e 2 frac x 1 x 2 x 3 x 1 x 2 x 3 1 x 1 x 2 x 1 x 3 x 2 x 3 8pt tan theta 1 theta 2 theta 3 theta 4 amp frac e 1 e 3 e 0 e 2 e 4 8pt amp frac x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 1 x 2 x 4 x 1 x 3 x 4 x 2 x 3 x 4 1 x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 x 1 x 2 x 3 x 4 end aligned nbsp and so on The case of only finitely many terms can be proved by mathematical induction 14 The case of infinitely many terms can be proved by using some elementary inequalities 15 Secants and cosecants of sums edit sec i8i isec 8ie0 e2 e4 csc i8i isec 8ie1 e3 e5 displaystyle begin aligned sec Bigl sum i theta i Bigr amp frac prod i sec theta i e 0 e 2 e 4 cdots 8pt csc Bigl sum i theta i Bigr amp frac prod i sec theta i e 1 e 3 e 5 cdots end aligned nbsp where ek displaystyle e k nbsp is the k th degree elementary symmetric polynomial in the n variables xi tan 8i displaystyle x i tan theta i nbsp i 1 n displaystyle i 1 ldots n nbsp and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left 16 The case of only finitely many terms can be proved by mathematical induction on the number of such terms For example sec a b g sec asec bsec g1 tan atan b tan atan g tan btan gcsc a b g sec asec bsec gtan a tan b tan g tan atan btan g displaystyle begin aligned sec alpha beta gamma amp frac sec alpha sec beta sec gamma 1 tan alpha tan beta tan alpha tan gamma tan beta tan gamma 8pt csc alpha beta gamma amp frac sec alpha sec beta sec gamma tan alpha tan beta tan gamma tan alpha tan beta tan gamma end aligned nbsp Ptolemy s theorem edit Main article Ptolemy s theorem See also History of trigonometry Classical antiquity nbsp Diagram illustrating the relation between Ptolemy s theorem and the angle sum trig identity for sine Ptolemy s theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals When those side lengths are expressed in terms of the sin and cos values shown in the figure above this yields the angle sum trigonometric identity for sine sin a b sin a cos b cos a sin b Ptolemy s theorem is important in the history of trigonometric identities as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved It states that in a cyclic quadrilateral ABCD displaystyle ABCD nbsp as shown in the accompanying figure the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals In the special cases of one of the diagonals or sides being a diameter of the circle this theorem gives rise directly to the angle sum and difference trigonometric identities 17 The relationship follows most easily when the circle is constructed to have a diameter of length one as shown here By Thales s theorem DAB displaystyle angle DAB nbsp and DCB displaystyle angle DCB nbsp are both right angles The right angled triangles DAB displaystyle DAB nbsp and DCB displaystyle DCB nbsp both share the hypotenuse BD displaystyle overline BD nbsp of length 1 Thus the side AB sin a displaystyle overline AB sin alpha nbsp AD cos a displaystyle overline AD cos alpha nbsp BC sin b displaystyle overline BC sin beta nbsp and CD cos b displaystyle overline CD cos beta nbsp By the inscribed angle theorem the central angle subtended by the chord AC displaystyle overline AC nbsp at the circle s center is twice the angle ADC displaystyle angle ADC nbsp i e 2 a b displaystyle 2 alpha beta nbsp Therefore the symmetrical pair of red triangles each has the angle a b displaystyle alpha beta nbsp at the center Each of these triangles has a hypotenuse of length 12 textstyle frac 1 2 nbsp so the length of AC displaystyle overline AC nbsp is 2 12sin a b textstyle 2 times frac 1 2 sin alpha beta nbsp i e simply sin a b displaystyle sin alpha beta nbsp The quadrilateral s other diagonal is the diameter of length 1 so the product of the diagonals lengths is also sin a b displaystyle sin alpha beta nbsp When these values are substituted into the statement of Ptolemy s theorem that AC BD AB CD AD BC displaystyle overline AC cdot overline BD overline AB cdot overline CD overline AD cdot overline BC nbsp this yields the angle sum trigonometric identity for sine sin a b sin acos b cos asin b displaystyle sin alpha beta sin alpha cos beta cos alpha sin beta nbsp The angle difference formula for sin a b displaystyle sin alpha beta nbsp can be similarly derived by letting the side CD displaystyle overline CD nbsp serve as a diameter instead of BD displaystyle overline BD nbsp 17 Multiple angle and half angle formulae editTn is the n th Chebyshev polynomial cos n8 Tn cos 8 displaystyle cos n theta T n cos theta nbsp 18 de Moivre s formula i is the imaginary unit cos n8 isin n8 cos 8 isin 8 n displaystyle cos n theta i sin n theta cos theta i sin theta n nbsp 19 Multiple angle formulae edit Double angle formulae edit nbsp Visual demonstration of the double angle formula for sine For the above isosceles triangle with unit sides and angle 28 displaystyle 2 theta nbsp the area 1 2 base height is calculated in two orientations When upright the area is sin 8cos 8 displaystyle sin theta cos theta nbsp When on its side the same area is 12sin 28 textstyle frac 1 2 sin 2 theta nbsp Therefore sin 28 2sin 8cos 8 displaystyle sin 2 theta 2 sin theta cos theta nbsp Formulae for twice an angle 20 sin 28 2sin 8cos 8 sin 8 cos 8 2 1 2tan 81 tan2 8 displaystyle sin 2 theta 2 sin theta cos theta sin theta cos theta 2 1 frac 2 tan theta 1 tan 2 theta nbsp cos 28 cos2 8 sin2 8 2cos2 8 1 1 2sin2 8 1 tan2 81 tan2 8 displaystyle cos 2 theta cos 2 theta sin 2 theta 2 cos 2 theta 1 1 2 sin 2 theta frac 1 tan 2 theta 1 tan 2 theta nbsp tan 28 2tan 81 tan2 8 displaystyle tan 2 theta frac 2 tan theta 1 tan 2 theta nbsp cot 28 cot2 8 12cot 8 1 tan2 82tan 8 displaystyle cot 2 theta frac cot 2 theta 1 2 cot theta frac 1 tan 2 theta 2 tan theta nbsp sec 28 sec2 82 sec2 8 1 tan2 81 tan2 8 displaystyle sec 2 theta frac sec 2 theta 2 sec 2 theta frac 1 tan 2 theta 1 tan 2 theta nbsp csc 28 sec 8csc 82 1 tan2 82tan 8 displaystyle csc 2 theta frac sec theta csc theta 2 frac 1 tan 2 theta 2 tan theta nbsp Triple angle formulae edit Formulae for triple angles 20 sin 38 3sin 8 4sin3 8 4sin 8sin p3 8 sin p3 8 displaystyle sin 3 theta 3 sin theta 4 sin 3 theta 4 sin theta sin left frac pi 3 theta right sin left frac pi 3 theta right nbsp cos 38 4cos3 8 3cos 8 4cos 8cos p3 8 cos p3 8 displaystyle cos 3 theta 4 cos 3 theta 3 cos theta 4 cos theta cos left frac pi 3 theta right cos left frac pi 3 theta right nbsp tan 38 3tan 8 tan3 81 3tan2 8 tan 8tan p3 8 tan p3 8 displaystyle tan 3 theta frac 3 tan theta tan 3 theta 1 3 tan 2 theta tan theta tan left frac pi 3 theta right tan left frac pi 3 theta right nbsp cot 38 3cot 8 cot3 81 3cot2 8 displaystyle cot 3 theta frac 3 cot theta cot 3 theta 1 3 cot 2 theta nbsp sec 38 sec3 84 3sec2 8 displaystyle sec 3 theta frac sec 3 theta 4 3 sec 2 theta nbsp csc 38 csc3 83csc2 8 4 displaystyle csc 3 theta frac csc 3 theta 3 csc 2 theta 4 nbsp Multiple angle formulae edit Formulae for multiple angles 21 sin n8 k odd 1 k 12 nk cosn k 8sink 8 sin 8 i 0 n 1 2 j 0i 1 i j n2i 1 ij cosn 2 i j 1 8 2 n 1 k 0n 1sin kp n 8 displaystyle begin aligned sin n theta amp sum k text odd 1 frac k 1 2 n choose k cos n k theta sin k theta sin theta sum i 0 n 1 2 sum j 0 i 1 i j n choose 2i 1 i choose j cos n 2 i j 1 theta amp 2 n 1 prod k 0 n 1 sin k pi n theta end aligned nbsp cos n8 k even 1 k2 nk cosn k 8sink 8 i 0n 2 j 0i 1 i j n2i ij cosn 2 i j 8 displaystyle cos n theta sum k text even 1 frac k 2 n choose k cos n k theta sin k theta sum i 0 n 2 sum j 0 i 1 i j n choose 2i i choose j cos n 2 i j theta nbsp cos 2n 1 8 1 n22n k 02ncos kp 2n 1 8 displaystyle cos 2n 1 theta 1 n 2 2n prod k 0 2n cos k pi 2n 1 theta nbsp cos 2n8 1 n22n 1 k 02n 1cos 1 2k p 4n 8 displaystyle cos 2n theta 1 n 2 2n 1 prod k 0 2n 1 cos 1 2k pi 4n theta nbsp tan n8 k odd 1 k 12 nk tank 8 k even 1 k2 nk tank 8 displaystyle tan n theta frac sum k text odd 1 frac k 1 2 n choose k tan k theta sum k text even 1 frac k 2 n choose k tan k theta nbsp Chebyshev method edit The Chebyshev method is a recursive algorithm for finding the n th multiple angle formula knowing the n 1 displaystyle n 1 nbsp th and n 2 displaystyle n 2 nbsp th values 22 cos nx displaystyle cos nx nbsp can be computed from cos n 1 x displaystyle cos n 1 x nbsp cos n 2 x displaystyle cos n 2 x nbsp and cos x displaystyle cos x nbsp withcos nx 2cos xcos n 1 x cos n 2 x displaystyle cos nx 2 cos x cos n 1 x cos n 2 x nbsp This can be proved by adding together the formulaecos n 1 x x cos n 1 x cos x sin n 1 x sin xcos n 1 x x cos n 1 x cos x sin n 1 x sin x displaystyle begin aligned cos n 1 x x amp cos n 1 x cos x sin n 1 x sin x cos n 1 x x amp cos n 1 x cos x sin n 1 x sin x end aligned nbsp It follows by induction that cos nx displaystyle cos nx nbsp is a polynomial of cos x displaystyle cos x nbsp the so called Chebyshev polynomial of the first kind see Chebyshev polynomials Trigonometric definition Similarly sin nx displaystyle sin nx nbsp can be computed from sin n 1 x displaystyle sin n 1 x nbsp sin n 2 x displaystyle sin n 2 x nbsp and cos x displaystyle cos x nbsp withsin nx 2cos xsin n 1 x sin n 2 x displaystyle sin nx 2 cos x sin n 1 x sin n 2 x nbsp This can be proved by adding formulae for sin n 1 x x displaystyle sin n 1 x x nbsp and sin n 1 x x displaystyle sin n 1 x x nbsp Serving a purpose similar to that of the Chebyshev method for the tangent we can write tan nx tan n 1 x tan x1 tan n 1 x tan x displaystyle tan nx frac tan n 1 x tan x 1 tan n 1 x tan x nbsp Half angle formulae edit sin 82 sgn sin 82 1 cos 82cos 82 sgn cos 82 1 cos 82tan 82 1 cos 8sin 8 sin 81 cos 8 csc 8 cot 8 tan 81 sec 8 sgn sin 8 1 cos 81 cos 8 1 sgn cos 8 1 tan2 8tan 8cot 82 1 cos 8sin 8 sin 81 cos 8 csc 8 cot 8 sgn sin 8 1 cos 81 cos 8sec 82 sgn cos 82 21 cos 8csc 82 sgn sin 82 21 cos 8 displaystyle begin aligned sin frac theta 2 amp operatorname sgn left sin frac theta 2 right sqrt frac 1 cos theta 2 3pt cos frac theta 2 amp operatorname sgn left cos frac theta 2 right sqrt frac 1 cos theta 2 3pt tan frac theta 2 amp frac 1 cos theta sin theta frac sin theta 1 cos theta csc theta cot theta frac tan theta 1 sec theta 6mu amp operatorname sgn sin theta sqrt frac 1 cos theta 1 cos theta frac 1 operatorname sgn cos theta sqrt 1 tan 2 theta tan theta 3pt cot frac theta 2 amp frac 1 cos theta sin theta frac sin theta 1 cos theta csc theta cot theta operatorname sgn sin theta sqrt frac 1 cos theta 1 cos theta sec frac theta 2 amp operatorname sgn left cos frac theta 2 right sqrt frac 2 1 cos theta csc frac theta 2 amp operatorname sgn left sin frac theta 2 right sqrt frac 2 1 cos theta end aligned nbsp 23 24 Alsotan h 82 sin h sin 8cos h cos 8tan 82 p4 sec 8 tan 81 sin 81 sin 8 1 tan 82 1 tan 82 displaystyle begin aligned tan frac eta pm theta 2 amp frac sin eta pm sin theta cos eta cos theta 3pt tan left frac theta 2 frac pi 4 right amp sec theta tan theta 3pt sqrt frac 1 sin theta 1 sin theta amp frac left 1 tan frac theta 2 right left 1 tan frac theta 2 right end aligned nbsp Table edit See also Tangent half angle formula These can be shown by using either the sum and difference identities or the multiple angle formulae Sine Cosine Tangent CotangentDouble angle formula 25 26 sin 28 2sin 8cos 8 2tan 81 tan2 8 displaystyle begin aligned sin 2 theta amp 2 sin theta cos theta amp frac 2 tan theta 1 tan 2 theta end aligned nbsp cos 28 cos2 8 sin2 8 2cos2 8 1 1 2sin2 8 1 tan2 81 tan2 8 displaystyle begin aligned cos 2 theta amp cos 2 theta sin 2 theta amp 2 cos 2 theta 1 amp 1 2 sin 2 theta amp frac 1 tan 2 theta 1 tan 2 theta end aligned nbsp tan 28 2tan 81 tan2 8 displaystyle tan 2 theta frac 2 tan theta 1 tan 2 theta nbsp cot 28 cot2 8 12cot 8 displaystyle cot 2 theta frac cot 2 theta 1 2 cot theta nbsp Triple angle formula 18 27 sin 38 sin3 8 3cos2 8sin 8 4sin3 8 3sin 8 displaystyle begin aligned sin 3 theta amp sin 3 theta 3 cos 2 theta sin theta amp 4 sin 3 theta 3 sin theta end aligned nbsp cos 38 cos3 8 3sin2 8cos 8 4cos3 8 3cos 8 displaystyle begin aligned cos 3 theta amp cos 3 theta 3 sin 2 theta cos theta amp 4 cos 3 theta 3 cos theta end aligned nbsp tan 38 3tan 8 tan3 81 3tan2 8 displaystyle tan 3 theta frac 3 tan theta tan 3 theta 1 3 tan 2 theta nbsp cot 38 3cot 8 cot3 81 3cot2 8 displaystyle cot 3 theta frac 3 cot theta cot 3 theta 1 3 cot 2 theta nbsp Half angle formula 23 24 sin 82 sgn sin 82 1 cos 82 or sin2 82 1 cos 82 displaystyle begin aligned amp sin frac theta 2 operatorname sgn left sin frac theta 2 right sqrt frac 1 cos theta 2 amp left text or sin 2 frac theta 2 frac 1 cos theta 2 right end aligned nbsp cos 82 sgn cos 82 1 cos 82 or cos2 82 1 cos 82 displaystyle begin aligned amp cos frac theta 2 operatorname sgn left cos frac theta 2 right sqrt frac 1 cos theta 2 amp left text or cos 2 frac theta 2 frac 1 cos theta 2 right end aligned nbsp tan 82 csc 8 cot 8 1 cos 81 cos 8 sin 81 cos 8 1 cos 8sin 8tan h 82 sin h sin 8cos h cos 8tan 82 p4 sec 8 tan 81 sin 81 sin 8 1 tan 82 1 tan 82 tan 82 tan 81 1 tan2 8for 8 p2 p2 displaystyle begin aligned tan frac theta 2 amp csc theta cot theta amp pm sqrt frac 1 cos theta 1 cos theta 3pt amp frac sin theta 1 cos theta 3pt amp frac 1 cos theta sin theta 5pt tan frac eta theta 2 amp frac sin eta sin theta cos eta cos theta 5pt tan left frac theta 2 frac pi 4 right amp sec theta tan theta 5pt sqrt frac 1 sin theta 1 sin theta amp frac left 1 tan frac theta 2 right left 1 tan frac theta 2 right 5pt tan frac theta 2 amp frac tan theta 1 sqrt 1 tan 2 theta amp text for theta in left tfrac pi 2 tfrac pi 2 right end aligned nbsp cot 82 csc 8 cot 8 1 cos 81 cos 8 sin 81 cos 8 1 cos 8sin 8 displaystyle begin aligned cot frac theta 2 amp csc theta cot theta amp pm sqrt frac 1 cos theta 1 cos theta 3pt amp frac sin theta 1 cos theta 4pt amp frac 1 cos theta sin theta end aligned nbsp The fact that the triple angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation which allows one to prove that trisection is in general impossible using the given tools by field theory citation needed A formula for computing the trigonometric identities for the one third angle exists but it requires finding the zeroes of the cubic equation 4x3 3x d 0 where x displaystyle x nbsp is the value of the cosine function at the one third angle and d is the known value of the cosine function at the full angle However the discriminant of this equation is positive so this equation has three real roots of which only one is the solution for the cosine of the one third angle None of these solutions are reducible to a real algebraic expression as they use intermediate complex numbers under the cube roots Power reduction formulae editObtained by solving the second and third versions of the cosine double angle formula Sine Cosine Othersin2 8 1 cos 28 2 displaystyle sin 2 theta frac 1 cos 2 theta 2 nbsp cos2 8 1 cos 28 2 displaystyle cos 2 theta frac 1 cos 2 theta 2 nbsp sin2 8cos2 8 1 cos 48 8 displaystyle sin 2 theta cos 2 theta frac 1 cos 4 theta 8 nbsp sin3 8 3sin 8 sin 38 4 displaystyle sin 3 theta frac 3 sin theta sin 3 theta 4 nbsp cos3 8 3cos 8 cos 38 4 displaystyle cos 3 theta frac 3 cos theta cos 3 theta 4 nbsp sin3 8cos3 8 3sin 28 sin 68 32 displaystyle sin 3 theta cos 3 theta frac 3 sin 2 theta sin 6 theta 32 nbsp sin4 8 3 4cos 28 cos 48 8 displaystyle sin 4 theta frac 3 4 cos 2 theta cos 4 theta 8 nbsp cos4 8 3 4cos 28 cos 48 8 displaystyle cos 4 theta frac 3 4 cos 2 theta cos 4 theta 8 nbsp sin4 8cos4 8 3 4cos 48 cos 88 128 displaystyle sin 4 theta cos 4 theta frac 3 4 cos 4 theta cos 8 theta 128 nbsp sin5 8 10sin 8 5sin 38 sin 58 16 displaystyle sin 5 theta frac 10 sin theta 5 sin 3 theta sin 5 theta 16 nbsp cos5 8 10cos 8 5cos 38 cos 58 16 displaystyle cos 5 theta frac 10 cos theta 5 cos 3 theta cos 5 theta 16 nbsp sin5 8cos5 8 10sin 28 5sin 68 sin 108 512 displaystyle sin 5 theta cos 5 theta frac 10 sin 2 theta 5 sin 6 theta sin 10 theta 512 nbsp nbsp Cosine power reduction formula an illustrative diagram The red orange and blue triangles are all similar and the red and orange triangles are congruent The hypotenuse AD displaystyle overline AD nbsp of the blue triangle has length 2cos 8 displaystyle 2 cos theta nbsp The angle DAE displaystyle angle DAE nbsp is 8 displaystyle theta nbsp so the base AE displaystyle overline AE nbsp of that triangle has length 2cos2 8 displaystyle 2 cos 2 theta nbsp That length is also equal to the summed lengths of BD displaystyle overline BD nbsp and AF displaystyle overline AF nbsp i e 1 cos 28 displaystyle 1 cos 2 theta span, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.