fbpx
Wikipedia

Differential structure

In mathematics, an n-dimensional differential structure (or differentiable structure) on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.

Definition edit

For a natural number n and some k which may be a non-negative integer or infinity, an n-dimensional Ck differential structure[1] is defined using a Ck-atlas, which is a set of bijections called charts between subsets of M (whose union is the whole of M) and open subsets of  :

 

which are Ck-compatible (in the sense defined below):

Each chart allows a subset of the manifold to be viewed as an open subset of  , but the usefulness of this depends on how much the charts agree when their domains overlap.

Consider two charts:

 
 

The intersection of their domains is

 

whose images under the two charts are

 
 

The transition map between the two charts translates between their images on their shared domain:

 
 

Two charts   are Ck-compatible if

 

are open, and the transition maps

 

have continuous partial derivatives of order k. If k = 0, we only require that the transition maps are continuous, consequently a C0-atlas is simply another way to define a topological manifold. If k = ∞, derivatives of all orders must be continuous. A family of Ck-compatible charts covering the whole manifold is a Ck-atlas defining a Ck differential manifold. Two atlases are Ck-equivalent if the union of their sets of charts forms a Ck-atlas. In particular, a Ck-atlas that is C0-compatible with a C0-atlas that defines a topological manifold is said to determine a Ck differential structure on the topological manifold. The Ck equivalence classes of such atlases are the distinct Ck differential structures of the manifold. Each distinct differential structure is determined by a unique maximal atlas, which is simply the union of all atlases in the equivalence class.

For simplification of language, without any loss of precision, one might just call a maximal Ck−atlas on a given set a Ck−manifold. This maximal atlas then uniquely determines both the topology and the underlying set, the latter being the union of the domains of all charts, and the former having the set of all these domains as a basis.

Existence and uniqueness theorems edit

For any integer k > 0 and any n−dimensional Ck−manifold, the maximal atlas contains a C−atlas on the same underlying set by a theorem due to Hassler Whitney. It has also been shown that any maximal Ck−atlas contains some number of distinct maximal C−atlases whenever n > 0, although for any pair of these distinct C−atlases there exists a C−diffeomorphism identifying the two. It follows that there is only one class of smooth structures (modulo pairwise smooth diffeomorphism) over any topological manifold which admits a differentiable structure, i.e. The C−, structures in a Ck−manifold. A bit loosely, one might express this by saying that the smooth structure is (essentially) unique. The case for k = 0 is different. Namely, there exist topological manifolds which admit no C1−structure, a result proved by Kervaire (1960),[2] and later explained in the context of Donaldson's theorem (compare Hilbert's fifth problem).

Smooth structures on an orientable manifold are usually counted modulo orientation-preserving smooth homeomorphisms. There then arises the question whether orientation-reversing diffeomorphisms exist. There is an "essentially unique" smooth structure for any topological manifold of dimension smaller than 4. For compact manifolds of dimension greater than 4, there is a finite number of "smooth types", i.e. equivalence classes of pairwise smoothly diffeomorphic smooth structures. In the case of Rn with n ≠ 4, the number of these types is one, whereas for n = 4, there are uncountably many such types. One refers to these by exotic R4.

Differential structures on spheres of dimension 1 to 20 edit

The following table lists the number of smooth types of the topological m−sphere Sm for the values of the dimension m from 1 up to 20. Spheres with a smooth, i.e. C−differential structure not smoothly diffeomorphic to the usual one are known as exotic spheres.

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Smooth types 1 1 1 ≥1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24

It is not currently known how many smooth types the topological 4-sphere S4 has, except that there is at least one. There may be one, a finite number, or an infinite number. The claim that there is just one is known as the smooth Poincaré conjecture (see Generalized Poincaré conjecture). Most mathematicians believe that this conjecture is false, i.e. that S4 has more than one smooth type. The problem is connected with the existence of more than one smooth type of the topological 4-disk (or 4-ball).

Differential structures on topological manifolds edit

As mentioned above, in dimensions smaller than 4, there is only one differential structure for each topological manifold. That was proved by Tibor Radó for dimension 1 and 2, and by Edwin E. Moise in dimension 3.[3] By using obstruction theory, Robion Kirby and Laurent C. Siebenmann were able to show that the number of PL structures for compact topological manifolds of dimension greater than 4 is finite.[4] John Milnor, Michel Kervaire, and Morris Hirsch proved that the number of smooth structures on a compact PL manifold is finite and agrees with the number of differential structures on the sphere for the same dimension (see the book Asselmeyer-Maluga, Brans chapter 7) . By combining these results, the number of smooth structures on a compact topological manifold of dimension not equal to 4 is finite.

Dimension 4 is more complicated. For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b2. For large Betti numbers b2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many differential structures. But even for simple spaces such as   one doesn't know the construction of other differential structures. For non-compact 4-manifolds there are many examples like   having uncountably many differential structures.

See also edit

References edit

  1. ^ Hirsch, Morris, Differential Topology, Springer (1997), ISBN 0-387-90148-5. for a general mathematical account of differential structures
  2. ^ Kervaire, Michel (1960). "A manifold which does not admit any differentiable structure". Commentarii Mathematici Helvetici. 34: 257–270. doi:10.1007/BF02565940.
  3. ^ Moise, Edwin E. (1952). "Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung". Annals of Mathematics. Second Series. 56 (1): 96–114. doi:10.2307/1969769. JSTOR 1969769. MR 0048805.
  4. ^ Kirby, Robion C.; Siebenmann, Laurence C. (1977). Foundational Essays on Topological Manifolds. Smoothings, and Triangulations. Princeton, New Jersey: Princeton University Press. ISBN 0-691-08190-5.

differential, structure, mathematics, dimensional, differential, structure, differentiable, structure, makes, into, dimensional, differential, manifold, which, topological, manifold, with, some, additional, structure, that, allows, differential, calculus, mani. In mathematics an n dimensional differential structure or differentiable structure on a set M makes M into an n dimensional differential manifold which is a topological manifold with some additional structure that allows for differential calculus on the manifold If M is already a topological manifold it is required that the new topology be identical to the existing one Contents 1 Definition 2 Existence and uniqueness theorems 3 Differential structures on spheres of dimension 1 to 20 4 Differential structures on topological manifolds 5 See also 6 ReferencesDefinition editFor a natural number n and some k which may be a non negative integer or infinity an n dimensional Ck differential structure 1 is defined using a Ck atlas which is a set of bijections called charts between subsets of M whose union is the whole of M and open subsets of Rn displaystyle mathbb R n nbsp fi M Wi Ui Rn displaystyle varphi i M supset W i rightarrow U i subset mathbb R n nbsp which are Ck compatible in the sense defined below Each chart allows a subset of the manifold to be viewed as an open subset of Rn displaystyle mathbb R n nbsp but the usefulness of this depends on how much the charts agree when their domains overlap Consider two charts fi Wi Ui displaystyle varphi i W i rightarrow U i nbsp fj Wj Uj displaystyle varphi j W j rightarrow U j nbsp The intersection of their domains is Wij Wi Wj displaystyle W ij W i cap W j nbsp whose images under the two charts are Uij fi Wij displaystyle U ij varphi i left W ij right nbsp Uji fj Wij displaystyle U ji varphi j left W ij right nbsp The transition map between the two charts translates between their images on their shared domain fij Uij Uji displaystyle varphi ij U ij rightarrow U ji nbsp fij x fj fi 1 x displaystyle varphi ij x varphi j left varphi i 1 left x right right nbsp Two charts fi fj displaystyle varphi i varphi j nbsp are Ck compatible if Uij Uji displaystyle U ij U ji nbsp are open and the transition maps fij fji displaystyle varphi ij varphi ji nbsp have continuous partial derivatives of order k If k 0 we only require that the transition maps are continuous consequently a C0 atlas is simply another way to define a topological manifold If k derivatives of all orders must be continuous A family of Ck compatible charts covering the whole manifold is a Ck atlas defining a Ck differential manifold Two atlases are Ck equivalent if the union of their sets of charts forms a Ck atlas In particular a Ck atlas that is C0 compatible with a C0 atlas that defines a topological manifold is said to determine a Ck differential structure on the topological manifold The Ck equivalence classes of such atlases are the distinct Ck differential structures of the manifold Each distinct differential structure is determined by a unique maximal atlas which is simply the union of all atlases in the equivalence class For simplification of language without any loss of precision one might just call a maximal Ck atlas on a given set a Ck manifold This maximal atlas then uniquely determines both the topology and the underlying set the latter being the union of the domains of all charts and the former having the set of all these domains as a basis Existence and uniqueness theorems editFor any integer k gt 0 and any n dimensional Ck manifold the maximal atlas contains a C atlas on the same underlying set by a theorem due to Hassler Whitney It has also been shown that any maximal Ck atlas contains some number of distinct maximal C atlases whenever n gt 0 although for any pair of these distinct C atlases there exists a C diffeomorphism identifying the two It follows that there is only one class of smooth structures modulo pairwise smooth diffeomorphism over any topological manifold which admits a differentiable structure i e The C structures in a Ck manifold A bit loosely one might express this by saying that the smooth structure is essentially unique The case for k 0 is different Namely there exist topological manifolds which admit no C1 structure a result proved by Kervaire 1960 2 and later explained in the context of Donaldson s theorem compare Hilbert s fifth problem Smooth structures on an orientable manifold are usually counted modulo orientation preserving smooth homeomorphisms There then arises the question whether orientation reversing diffeomorphisms exist There is an essentially unique smooth structure for any topological manifold of dimension smaller than 4 For compact manifolds of dimension greater than 4 there is a finite number of smooth types i e equivalence classes of pairwise smoothly diffeomorphic smooth structures In the case of Rn with n 4 the number of these types is one whereas for n 4 there are uncountably many such types One refers to these by exotic R4 Differential structures on spheres of dimension 1 to 20 editMain article Exotic sphere The following table lists the number of smooth types of the topological m sphere Sm for the values of the dimension m from 1 up to 20 Spheres with a smooth i e C differential structure not smoothly diffeomorphic to the usual one are known as exotic spheres Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Smooth types 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24It is not currently known how many smooth types the topological 4 sphere S4 has except that there is at least one There may be one a finite number or an infinite number The claim that there is just one is known as the smooth Poincare conjecture see Generalized Poincare conjecture Most mathematicians believe that this conjecture is false i e that S4 has more than one smooth type The problem is connected with the existence of more than one smooth type of the topological 4 disk or 4 ball Differential structures on topological manifolds editAs mentioned above in dimensions smaller than 4 there is only one differential structure for each topological manifold That was proved by Tibor Rado for dimension 1 and 2 and by Edwin E Moise in dimension 3 3 By using obstruction theory Robion Kirby and Laurent C Siebenmann were able to show that the number of PL structures for compact topological manifolds of dimension greater than 4 is finite 4 John Milnor Michel Kervaire and Morris Hirsch proved that the number of smooth structures on a compact PL manifold is finite and agrees with the number of differential structures on the sphere for the same dimension see the book Asselmeyer Maluga Brans chapter 7 By combining these results the number of smooth structures on a compact topological manifold of dimension not equal to 4 is finite Dimension 4 is more complicated For compact manifolds results depend on the complexity of the manifold as measured by the second Betti number b2 For large Betti numbers b2 gt 18 in a simply connected 4 manifold one can use a surgery along a knot or link to produce a new differential structure With the help of this procedure one can produce countably infinite many differential structures But even for simple spaces such as S4 CP2 displaystyle S 4 mathbb C P 2 nbsp one doesn t know the construction of other differential structures For non compact 4 manifolds there are many examples like R4 S3 R M4 displaystyle mathbb R 4 S 3 times mathbb R M 4 smallsetminus nbsp having uncountably many differential structures See also editMathematical structure Exotic R4 Exotic sphereReferences edit Hirsch Morris Differential Topology Springer 1997 ISBN 0 387 90148 5 for a general mathematical account of differential structures Kervaire Michel 1960 A manifold which does not admit any differentiable structure Commentarii Mathematici Helvetici 34 257 270 doi 10 1007 BF02565940 Moise Edwin E 1952 Affine structures in 3 manifolds V The triangulation theorem and Hauptvermutung Annals of Mathematics Second Series 56 1 96 114 doi 10 2307 1969769 JSTOR 1969769 MR 0048805 Kirby Robion C Siebenmann Laurence C 1977 Foundational Essays on Topological Manifolds Smoothings and Triangulations Princeton New Jersey Princeton University Press ISBN 0 691 08190 5 Retrieved from https en wikipedia org w index php title Differential structure amp oldid 1217634707, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.