fbpx
Wikipedia

Desargues's theorem

In projective geometry, Desargues's theorem, named after Girard Desargues, states:

Perspective triangles. Corresponding sides of the triangles, when extended, meet at points on a line called the axis of perspectivity. The lines which run through corresponding vertices on the triangles meet at a point called the center of perspectivity. Desargues's theorem states that the truth of the first condition is necessary and sufficient for the truth of the second.
Two triangles are in perspective axially if and only if they are in perspective centrally.

Denote the three vertices of one triangle by a, b and c, and those of the other by A, B and C. Axial perspectivity means that lines ab and AB meet in a point, lines ac and AC meet in a second point, and lines bc and BC meet in a third point, and that these three points all lie on a common line called the axis of perspectivity. Central perspectivity means that the three lines Aa, Bb and Cc are concurrent, at a point called the center of perspectivity.

This intersection theorem is true in the usual Euclidean plane but special care needs to be taken in exceptional cases, as when a pair of sides are parallel, so that their "point of intersection" recedes to infinity. Commonly, to remove these exceptions, mathematicians "complete" the Euclidean plane by adding points at infinity, following Jean-Victor Poncelet. This results in a projective plane.

Desargues's theorem is true for the real projective plane and for any projective space defined arithmetically from a field or division ring; that includes any projective space of dimension greater than two or in which Pappus's theorem holds. However, there are many "non-Desarguesian planes", in which Desargues's theorem is false.

History

Desargues never published this theorem, but it appeared in an appendix entitled Universal Method of M. Desargues for Using Perspective (Manière universelle de M. Desargues pour practiquer la perspective) to a practical book on the use of perspective published in 1648.[1] by his friend and pupil Abraham Bosse (1602–1676).[2]

Coordinatization

The importance of Desargues's theorem in abstract projective geometry is due especially to the fact that a projective space satisfies that theorem if and only if it is isomorphic to a projective space defined over a field or division ring.

Projective versus affine spaces

In an affine space such as the Euclidean plane a similar statement is true, but only if one lists various exceptions involving parallel lines. Desargues's theorem is therefore one of the simplest geometric theorems whose natural home is in projective rather than affine space.

Self-duality

By definition, two triangles are perspective if and only if they are in perspective centrally (or, equivalently according to this theorem, in perspective axially). Note that perspective triangles need not be similar.

Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration.[3]

This self-duality in the statement is due to the usual modern way of writing the theorem. Historically, the theorem only read, "In a projective space, a pair of centrally perspective triangles is axially perspective" and the dual of this statement was called the converse of Desargues's theorem and was always referred to by that name.[4]

Proof of Desargues's theorem

Desargues's theorem holds for projective space of any dimension over any field or division ring, and also holds for abstract projective spaces of dimension at least 3. In dimension 2 the planes for which it holds are called Desarguesian planes and are the same as the planes that can be given coordinates over a division ring. There are also many non-Desarguesian planes where Desargues's theorem does not hold.

Three-dimensional proof

Desargues's theorem is true for any projective space of dimension at least 3, and more generally for any projective space that can be embedded in a space of dimension at least 3.

Desargues's theorem can be stated as follows:

If lines Aa, Bb and Cc are concurrent (meet at a point), then
the points ABab, ACac and BCbc are collinear.

The points A, B, a and b are coplanar (lie in the same plane) because of the assumed concurrency of Aa and Bb. Therefore, the lines AB and ab belong to the same plane and must intersect. Further, if the two triangles lie on different planes, then the point ABab belongs to both planes. By a symmetric argument, the points ACac and BCbc also exist and belong to the planes of both triangles. Since these two planes intersect in more than one point, their intersection is a line that contains all three points.

This proves Desargues's theorem if the two triangles are not contained in the same plane. If they are in the same plane, Desargues's theorem can be proved by choosing a point not in the plane, using this to lift the triangles out of the plane so that the argument above works, and then projecting back into the plane. The last step of the proof fails if the projective space has dimension less than 3, as in this case it is not possible to find a point not in the plane.

Monge's theorem also asserts that three points lie on a line, and has a proof using the same idea of considering it in three rather than two dimensions and writing the line as an intersection of two planes.

Two-dimensional proof

As there are non-Desarguesian projective planes in which Desargues's theorem is not true,[5] some extra conditions need to be met in order to prove it. These conditions usually take the form of assuming the existence of sufficiently many collineations of a certain type, which in turn leads to showing that the underlying algebraic coordinate system must be a division ring (skewfield).[6]

Relation to Pappus's theorem

Pappus's hexagon theorem states that, if a hexagon AbCaBc is drawn in such a way that vertices a, b and c lie on a line and vertices A, B and C lie on a second line, then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear. A plane in which Pappus's theorem is universally true is called Pappian. Hessenberg (1905)[7] showed that Desargues's theorem can be deduced from three applications of Pappus's theorem.[8]

The converse of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappus's theorem universally is equivalent to having the underlying coordinate system be commutative. A plane defined over a non-commutative division ring (a division ring that is not a field) would therefore be Desarguesian but not Pappian. However, due to Wedderburn's little theorem, which states that all finite division rings are fields, all finite Desarguesian planes are Pappian. There is no known completely geometric proof of this fact, although Bamberg & Penttila (2015) give a proof that uses only "elementary" algebraic facts (rather than the full strength of Wedderburn's little theorem).

The Desargues configuration

 
The Desargues configuration viewed as a pair of mutually inscribed pentagons: each pentagon vertex lies on the line through one of the sides of the other pentagon.

The ten lines involved in Desargues's theorem (six sides of triangles, the three lines Aa, Bb and Cc, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ten points, and each of the ten points lies on three of the ten lines. Those ten points and ten lines make up the Desargues configuration, an example of a projective configuration. Although Desargues's theorem chooses different roles for these ten lines and points, the Desargues configuration itself is more symmetric: any of the ten points may be chosen to be the center of perspectivity, and that choice determines which six points will be the vertices of triangles and which line will be the axis of perspectivity.

The little Desargues theorem

This restricted version states that if two triangles are perspective from a point on a given line, and two pairs of corresponding sides also meet on this line, then the third pair of corresponding sides meet on the line as well. Thus, it is the specialization of Desargues's Theorem to only the cases in which the center of perspectivity lies on the axis of perspectivity.

A Moufang plane is a projective plane in which the little Desargues theorem is valid for every line.

See also

Notes

  1. ^ Smith (1959, p. 307)
  2. ^ Katz (1998, p. 461)
  3. ^ (Coxeter 1964) pp. 26–27.
  4. ^ (Coxeter 1964, pg. 19)
  5. ^ The smallest examples of these can be found in Room & Kirkpatrick 1971.
  6. ^ (Albert & Sandler 2015), (Hughes & Piper 1973), and (Stevenson 1972).
  7. ^ According to (Dembowski 1968, pg. 159, footnote 1), Hessenberg's original proof is not complete; he disregarded the possibility that some additional incidences could occur in the Desargues configuration. A complete proof is provided by Cronheim 1953.
  8. ^ Coxeter 1969, p. 238, section 14.3

References

  • Albert, A. Adrian; Sandler, Reuben (2015) [1968], An Introduction to Finite Projective Planes, Dover, ISBN 978-0-486-78994-1
  • Bamberg, John; Penttila, Tim (2015), "Completing Segre's proof of Wedderburn's little theorem", Bulletin of the London Mathematical Society, 47 (3): 483–492, doi:10.1112/blms/bdv021
  • Casse, Rey (2006), Projective Geometry: An Introduction, Oxford: Oxford University Press, ISBN 0-19-929886-6
  • Coxeter, H.S.M. (1964), Projective Geometry, Blaisdell
  • Coxeter, Harold Scott MacDonald (1969), Introduction to Geometry (2nd ed.), Wiley, ISBN 978-0-471-50458-0, MR 0123930
  • Cronheim, Arno (1953), "A proof of Hessenberg's theorem", Proceedings of the American Mathematical Society, 4 (2): 219–221, doi:10.2307/2031794, JSTOR 2031794, MR 0053531
  • Dembowski, Peter (1968), Finite Geometries, Springer Verlag, ISBN 978-3-540-61786-0
  • Hessenberg, Gerhard (1905), "Beweis des Desarguesschen Satzes aus dem Pascalschen", Mathematische Annalen, Springer, 61 (2): 161–172, doi:10.1007/BF01457558, ISSN 1432-1807
  • Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), Chelsea, pp. 119–128, ISBN 0-8284-1087-9
  • Hughes, Dan; Piper, Fred (1973), Projective Planes, Springer-Verlag, ISBN 0-387-90044-6
  • Kárteszi, Ferenc (1976), Introduction to Finite Geometries, North-Holland, ISBN 0-7204-2832-7
  • Katz, Victor J. (1998), A History of Mathematics:An Introduction (2nd ed.), Reading, Mass.: Addison Wesley Longman, ISBN 0-321-01618-1
  • Pambuccian, Victor; Schacht, Celia (2019), "The axiomatic destiny of the theorems of Pappus and Desargues", in Dani, S. G.; Papadopoulos, A. (eds.), Geometry in history, Springer, pp. 355–399, ISBN 978-3-030-13611-6
  • Room, Thomas G.; Kirkpatrick, P. B. (1971), Miniquaternion Geometry, Cambridge: Cambridge University Press, ISBN 0-521-07926-8
  • Smith, David Eugene (1959), A Source Book in Mathematics, Dover, ISBN 0-486-64690-4
  • Stevenson, Frederick W. (1972), Projective Planes, W.H. Freeman, ISBN 0-7167-0443-9
  • Voitsekhovskii, M.I. (2001) [1994], "Desargues assumption", Encyclopedia of Mathematics, EMS Press

External links

desargues, theorem, projective, geometry, named, after, girard, desargues, states, perspective, triangles, corresponding, sides, triangles, when, extended, meet, points, line, called, axis, perspectivity, lines, which, through, corresponding, vertices, triangl. In projective geometry Desargues s theorem named after Girard Desargues states Perspective triangles Corresponding sides of the triangles when extended meet at points on a line called the axis of perspectivity The lines which run through corresponding vertices on the triangles meet at a point called the center of perspectivity Desargues s theorem states that the truth of the first condition is necessary and sufficient for the truth of the second Two triangles are in perspective axially if and only if they are in perspective centrally Denote the three vertices of one triangle by a b and c and those of the other by A B and C Axial perspectivity means that lines ab and AB meet in a point lines ac and AC meet in a second point and lines bc and BC meet in a third point and that these three points all lie on a common line called the axis of perspectivity Central perspectivity means that the three lines Aa Bb and Cc are concurrent at a point called the center of perspectivity This intersection theorem is true in the usual Euclidean plane but special care needs to be taken in exceptional cases as when a pair of sides are parallel so that their point of intersection recedes to infinity Commonly to remove these exceptions mathematicians complete the Euclidean plane by adding points at infinity following Jean Victor Poncelet This results in a projective plane Desargues s theorem is true for the real projective plane and for any projective space defined arithmetically from a field or division ring that includes any projective space of dimension greater than two or in which Pappus s theorem holds However there are many non Desarguesian planes in which Desargues s theorem is false Contents 1 History 2 Coordinatization 3 Projective versus affine spaces 4 Self duality 5 Proof of Desargues s theorem 5 1 Three dimensional proof 5 2 Two dimensional proof 6 Relation to Pappus s theorem 7 The Desargues configuration 8 The little Desargues theorem 9 See also 10 Notes 11 References 12 External linksHistory EditDesargues never published this theorem but it appeared in an appendix entitled Universal Method of M Desargues for Using Perspective Maniere universelle de M Desargues pour practiquer la perspective to a practical book on the use of perspective published in 1648 1 by his friend and pupil Abraham Bosse 1602 1676 2 Coordinatization EditThe importance of Desargues s theorem in abstract projective geometry is due especially to the fact that a projective space satisfies that theorem if and only if it is isomorphic to a projective space defined over a field or division ring Projective versus affine spaces EditIn an affine space such as the Euclidean plane a similar statement is true but only if one lists various exceptions involving parallel lines Desargues s theorem is therefore one of the simplest geometric theorems whose natural home is in projective rather than affine space Self duality EditBy definition two triangles are perspective if and only if they are in perspective centrally or equivalently according to this theorem in perspective axially Note that perspective triangles need not be similar Under the standard duality of plane projective geometry where points correspond to lines and collinearity of points corresponds to concurrency of lines the statement of Desargues s theorem is self dual axial perspectivity is translated into central perspectivity and vice versa The Desargues configuration below is a self dual configuration 3 This self duality in the statement is due to the usual modern way of writing the theorem Historically the theorem only read In a projective space a pair of centrally perspective triangles is axially perspective and the dual of this statement was called the converse of Desargues s theorem and was always referred to by that name 4 Proof of Desargues s theorem EditDesargues s theorem holds for projective space of any dimension over any field or division ring and also holds for abstract projective spaces of dimension at least 3 In dimension 2 the planes for which it holds are called Desarguesian planes and are the same as the planes that can be given coordinates over a division ring There are also many non Desarguesian planes where Desargues s theorem does not hold Three dimensional proof Edit Desargues s theorem is true for any projective space of dimension at least 3 and more generally for any projective space that can be embedded in a space of dimension at least 3 Desargues s theorem can be stated as follows If lines Aa Bb and Cc are concurrent meet at a point then the points AB ab AC ac and BC bc are collinear The points A B a and b are coplanar lie in the same plane because of the assumed concurrency of Aa and Bb Therefore the lines AB and ab belong to the same plane and must intersect Further if the two triangles lie on different planes then the point AB ab belongs to both planes By a symmetric argument the points AC ac and BC bc also exist and belong to the planes of both triangles Since these two planes intersect in more than one point their intersection is a line that contains all three points This proves Desargues s theorem if the two triangles are not contained in the same plane If they are in the same plane Desargues s theorem can be proved by choosing a point not in the plane using this to lift the triangles out of the plane so that the argument above works and then projecting back into the plane The last step of the proof fails if the projective space has dimension less than 3 as in this case it is not possible to find a point not in the plane Monge s theorem also asserts that three points lie on a line and has a proof using the same idea of considering it in three rather than two dimensions and writing the line as an intersection of two planes Two dimensional proof Edit As there are non Desarguesian projective planes in which Desargues s theorem is not true 5 some extra conditions need to be met in order to prove it These conditions usually take the form of assuming the existence of sufficiently many collineations of a certain type which in turn leads to showing that the underlying algebraic coordinate system must be a division ring skewfield 6 Relation to Pappus s theorem EditPappus s hexagon theorem states that if a hexagon AbCaBc is drawn in such a way that vertices a b and c lie on a line and vertices A B and C lie on a second line then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear A plane in which Pappus s theorem is universally true is called Pappian Hessenberg 1905 7 showed that Desargues s theorem can be deduced from three applications of Pappus s theorem 8 The converse of this result is not true that is not all Desarguesian planes are Pappian Satisfying Pappus s theorem universally is equivalent to having the underlying coordinate system be commutative A plane defined over a non commutative division ring a division ring that is not a field would therefore be Desarguesian but not Pappian However due to Wedderburn s little theorem which states that all finite division rings are fields all finite Desarguesian planes are Pappian There is no known completely geometric proof of this fact although Bamberg amp Penttila 2015 give a proof that uses only elementary algebraic facts rather than the full strength of Wedderburn s little theorem The Desargues configuration EditMain article Desargues configuration The Desargues configuration viewed as a pair of mutually inscribed pentagons each pentagon vertex lies on the line through one of the sides of the other pentagon The ten lines involved in Desargues s theorem six sides of triangles the three lines Aa Bb and Cc and the axis of perspectivity and the ten points involved the six vertices the three points of intersection on the axis of perspectivity and the center of perspectivity are so arranged that each of the ten lines passes through three of the ten points and each of the ten points lies on three of the ten lines Those ten points and ten lines make up the Desargues configuration an example of a projective configuration Although Desargues s theorem chooses different roles for these ten lines and points the Desargues configuration itself is more symmetric any of the ten points may be chosen to be the center of perspectivity and that choice determines which six points will be the vertices of triangles and which line will be the axis of perspectivity The little Desargues theorem EditThis restricted version states that if two triangles are perspective from a point on a given line and two pairs of corresponding sides also meet on this line then the third pair of corresponding sides meet on the line as well Thus it is the specialization of Desargues s Theorem to only the cases in which the center of perspectivity lies on the axis of perspectivity A Moufang plane is a projective plane in which the little Desargues theorem is valid for every line See also EditPascal s theoremNotes Edit Smith 1959 p 307 Katz 1998 p 461 Coxeter 1964 pp 26 27 Coxeter 1964 pg 19 The smallest examples of these can be found in Room amp Kirkpatrick 1971 Albert amp Sandler 2015 Hughes amp Piper 1973 and Stevenson 1972 According to Dembowski 1968 pg 159 footnote 1 Hessenberg s original proof is not complete he disregarded the possibility that some additional incidences could occur in the Desargues configuration A complete proof is provided by Cronheim 1953 Coxeter 1969 p 238 section 14 3References EditAlbert A Adrian Sandler Reuben 2015 1968 An Introduction to Finite Projective Planes Dover ISBN 978 0 486 78994 1 Bamberg John Penttila Tim 2015 Completing Segre s proof of Wedderburn s little theorem Bulletin of the London Mathematical Society 47 3 483 492 doi 10 1112 blms bdv021 Casse Rey 2006 Projective Geometry An Introduction Oxford Oxford University Press ISBN 0 19 929886 6 Coxeter H S M 1964 Projective Geometry Blaisdell Coxeter Harold Scott MacDonald 1969 Introduction to Geometry 2nd ed Wiley ISBN 978 0 471 50458 0 MR 0123930 Cronheim Arno 1953 A proof of Hessenberg s theorem Proceedings of the American Mathematical Society 4 2 219 221 doi 10 2307 2031794 JSTOR 2031794 MR 0053531 Dembowski Peter 1968 Finite Geometries Springer Verlag ISBN 978 3 540 61786 0 Hessenberg Gerhard 1905 Beweis des Desarguesschen Satzes aus dem Pascalschen Mathematische Annalen Springer 61 2 161 172 doi 10 1007 BF01457558 ISSN 1432 1807 Hilbert David Cohn Vossen Stephan 1952 Geometry and the Imagination 2nd ed Chelsea pp 119 128 ISBN 0 8284 1087 9 Hughes Dan Piper Fred 1973 Projective Planes Springer Verlag ISBN 0 387 90044 6 Karteszi Ferenc 1976 Introduction to Finite Geometries North Holland ISBN 0 7204 2832 7 Katz Victor J 1998 A History of Mathematics An Introduction 2nd ed Reading Mass Addison Wesley Longman ISBN 0 321 01618 1 Pambuccian Victor Schacht Celia 2019 The axiomatic destiny of the theorems of Pappus and Desargues in Dani S G Papadopoulos A eds Geometry in history Springer pp 355 399 ISBN 978 3 030 13611 6 Room Thomas G Kirkpatrick P B 1971 Miniquaternion Geometry Cambridge Cambridge University Press ISBN 0 521 07926 8 Smith David Eugene 1959 A Source Book in Mathematics Dover ISBN 0 486 64690 4 Stevenson Frederick W 1972 Projective Planes W H Freeman ISBN 0 7167 0443 9 Voitsekhovskii M I 2001 1994 Desargues assumption Encyclopedia of Mathematics EMS PressExternal links EditDesargues Theorem at MathWorld Desargues s Theorem at cut the knot Monge via Desargues at cut the knot Proof of Desargues s theorem at PlanetMath Desargues s Theorem at Dynamic Geometry Sketches Retrieved from https en wikipedia org w index php title Desargues 27s theorem amp oldid 1133173900, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.