fbpx
Wikipedia

Deinococcota

Deinococcota (synonym, Deinococcus-Thermus) is a phylum of bacteria with a single class, Deinococci, that are highly resistant to environmental hazards, also known as extremophiles.[4] These bacteria have thick cell walls that give them gram-positive stains, but they include a second membrane and so are closer in structure to those of gram-negative bacteria.[5][6][7]

Deinococcota
Scientific classification
Domain: Bacteria
Subkingdom: Negibacteria
Phylum: Deinococcota
Weisburg et al. 2021[2]
Class: Deinococci
Garrity and Holt 2002[1]
Orders & families
Synonyms
  • "Deinobacteria" Cavalier-Smith 2006
  • "Deinococcobacteria" Margulis & Schwartz 1998
  • "Deinococcaeota" Oren et al. 2015
  • "Deinococcota" Whitman et al. 2018
  • "Deinococcus–Thermus" Weisburg et al. 1989
  • "Hadobacteria" Cavalier-Smith 2006[3]
  • "Xenobacteria"

Taxonomy edit

The phylum Deinococcota consists of a single class (Deinococci) and two orders:

  • The Deinococcales include two families (Deinococcaceae and Trueperaceae), with three genera, Deinococcus, Deinobacterium and Truepera.[8][9][10] Truepera radiovictrix is the earliest diverging member of the order.[8] Within the order, Deinococcus forms a distinct monophyletic cluster with respect to Deinobacterium and Truepera species.[11] The genus includes several species that are resistant to radiation; they have become famous for their ability to eat nuclear waste and other toxic materials, survive in the vacuum of space and survive extremes of heat and cold.[12]
  • The Thermales include several genera resistant to heat (Marinithermus, Meiothermus, Oceanithermus, Thermus, Vulcanithermus, Rhabdothermus) placed within a single family, Thermaceae.[9][10][13] Phylogenetic analyses demonstrate that within the Thermales, Meiothermus and Thermus species form a monophyletic cluster, with respect to Marinithermus, Oceanithermus, Vulcanithermus and Rhabdothermus that branch as outgroups within the order.[11] This suggests that Meiothermus and Thermus species are more closely related to one another relative to other genera within the order. Thermus aquaticus was important in the development of the polymerase chain reaction where repeated cycles of heating DNA to near boiling make it advantageous to use a thermo-stable DNA polymerase enzyme.[14]

Though these two groups evolved from a common ancestor, the two mechanisms of resistance appear to be largely independent.[11][15]

Molecular signatures edit

Molecular signatures in the form of conserved signature indels (CSIs) and proteins (CSPs) have been found that are uniquely shared by all members belonging to the Deinococcota phylum.[4][11] These CSIs and CSPs are distinguishing characteristics that delineate the unique phylum from all other bacterial organisms, and their exclusive distribution is parallel with the observed differences in physiology. CSIs and CSPs have also been found that support order and family-level taxonomic rankings within the phylum. Some of the CSIs found to support order level distinctions are thought to play a role in the respective extremophilic characteristics.[11] The CSIs found in DNA-directed RNA polymerase subunit beta and DNA topoisomerase I in Thermales species may be involved in thermophilicity,[16] while those found in Excinuclease ABC, DNA gyrase, and DNA repair protein RadA in Deinococcales species may be associated with radioresistance.[17] Two CSPs that were found uniquely for all members belonging to the Deinococcus genus are well characterized and are thought to play a role in their characteristic radioresistant phenotype.[11] These CSPs include the DNA damage repair protein PprA the single-stranded DNA-binding protein DdrB.

Additionally, some genera within this group, including Deinococcus, Thermus, and Meiothermus, also have molecular signatures that demarcate them as individual genera, inclusive of their respective species, providing a means to distinguish them from the rest of the group and all other bacteria.[11] CSIs have also been found specific for Truepera radiovictrix .

Phylogeny edit

16S rRNA based LTP_08_2023[18][19][20] 120 marker proteins based GTDB 08-RS214[21][22][23]
"Deinococcia"
Thermales
Thermaceae

Allomeiothermus

Calidithermus

Meiothermus

Rhabdothermus

Vulcanithermus

Oceanithermus

Marinithermus

Thermus

"Deinococcia"
Deinococcales
"Marinithermaceae"

Marinithermus

Oceanithermus

Thermaceae

Allomeiothermus

Calidithermus

Meiothermus

Thermus

Trueperaceae

Truepera

Deinococcaceae

Deinobacterium

Deinococcus species-group 2

Deinococcus

Taxonomy edit

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[24] and National Center for Biotechnology Information (NCBI)[25]

  • Phylum Deinococcota Oren and Garrity 2021
    • Class Deinococci Garrity & Holt 2002 ["Deinococcia" Oren, Parte & Garrity 2016 ex Cavalier-Smith 2020; "Thermi" Rinke et al. 2013; "Thermia" Cavalier-Smith 2020]
      • Order Deinococcales Rainey et al. 1997 [Trueperales García-López et al. 2020]
        • Family Deinococcaceae Brooks and Murray 1981 emend. Rainey et al. 1997
        • Family Trueperaceae Rainey et al. 2005
          • Genus Truepera da Costa, Rainey and Albuquerque 2005
      • Order Thermales Rainey and Da Costa 2002
        • Family Thermaceae Da Costa and Rainey 2002
          • Genus Allomeiothermus Jiao et al. 2023
          • Genus Calidithermus Raposo et al. 2019
          • Genus Marinithermus Sako et al. 2003
          • Genus Meiothermus Nobre et al. 1996 emend. Albuquerque et al. 2009
          • Genus Oceanithermus Miroshnichenko et al. 2003 emend. Mori et al. 2004
          • Genus Rhabdothermus Steinsbu et al. 2011
          • Genus Thermus Brock and Freeze 1969 emend. Nobre et al. 1996
          • Genus Vulcanithermus Miroshnichenko et al. 2003

Sequenced genomes edit

Currently there are 10 sequenced genomes of strains in this phylum.[26]

  • Deinococcus radiodurans R1
  • Thermus thermophilus HB27
  • Thermus thermophilus HB8
  • Deinococcus geothermalis DSM 11300
  • Deinococcus deserti VCD115
  • Meiothermus ruber DSM 1279
  • Meiothermus silvanus DSM 9946
  • Truepera radiovictrix DSM 17093
  • Oceanithermus profundus DSM 14977

The two Meiothermus species were sequenced under the auspices of the Genomic Encyclopedia of Bacteria and Archaea project (GEBA), which aims at sequencing organisms based on phylogenetic novelty and not on pathogenicity or notoriety.[27]

See also edit

References edit

  1. ^ Garrity GM, Holt JG. (2001). "The Road Map to the Manual". In Boone DR, Castenholz RW, Garrity GM. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (The Archaea and the deeply branching and phototrophic Bacteria) (2nd ed.). New York, NY: Springer–Verlag. pp. 119–166.
  2. ^ Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987. S2CID 239887308.
  3. ^ Cavalier-Smith T (2006). "Rooting the tree of life by transition analyses". Biol. Direct. 1: 19. doi:10.1186/1745-6150-1-19. PMC 1586193. PMID 16834776.
  4. ^ a b Griffiths E, Gupta RS (September 2007). (PDF). Int. Microbiol. 10 (3): 201–8. PMID 18076002. Archived from the original (PDF) on 2011-06-14.
  5. ^ Gupta RS (2011). "Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes". Antonie van Leeuwenhoek. 100 (2): 171–182. doi:10.1007/s10482-011-9616-8. PMC 3133647. PMID 21717204.
  6. ^ Campbell C, Sutcliffe IC, Gupta RS (2014). "Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria" (PDF). Arch Microbiol. 196 (4): 307–310. Bibcode:2014ArMic.196..307C. doi:10.1007/s00203-014-0964-4. PMID 24535491. S2CID 10721294.
  7. ^ Sutcliffe IC (2010). "A phylum level perspective on bacterial cell envelope architecture". Trends Microbiol. 18 (10): 464–470. doi:10.1016/j.tim.2010.06.005. PMID 20637628.
  8. ^ a b Albuquerque L, Simões C, Nobre MF, et al. (2005). "Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov". FEMS Microbiol Lett. 247 (2): 161–169. doi:10.1016/j.femsle.2005.05.002. PMID 15927420.
  9. ^ a b Garrity GM, Holt JG. (2001) Phylum BIV. "Deinococcus–Thermus". In: Bergey’s manual of systematic bacteriology, pp. 395-420. Eds D. R. Boone, R. W. Castenholz. Springer-: New York.
  10. ^ a b Garrity GM, Bell JA, Lilburn TG. (2005) Phylum BIV. The revised road map to the Manual. In: Bergey’s manual of systematic bacteriology, pp. 159-220. Eds Brenner DJ, Krieg NR, Staley JT, Garrity GM. Springer-: New York.
  11. ^ a b c d e f g Ho J, Adeolu M, Khadka B, Gupta RS (2016). "Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus–Thermus" and distinguish its main constituent groups". Syst Appl Microbiol. 39 (7): 453–463. doi:10.1016/j.syapm.2016.07.003. PMID 27506333.
  12. ^ Battista JR, Earl AM, Park MJ (1999). "Why is Deinococcus radiodurans so resistant to ionizing radiation?". Trends Microbiol. 7 (9): 362–5. doi:10.1016/S0966-842X(99)01566-8. PMID 10470044.
  13. ^ . www.bacterio.cict.fr. Archived from the original on 2013-01-27.
  14. ^ Nelson RM, Long GL (1989). "A general method of site-specific mutagenesis using a modification of the Thermus aquaticus". Anal Biochem. 180 (1): 147–151. doi:10.1016/0003-2697(89)90103-6. PMID 2530914.
  15. ^ Omelchenko MV, Wolf YI, Gaidamakova EK, et al. (2005). "Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: Divergent routes of adaptation to thermophily and radiation resistance". BMC Evol. Biol. 5 (1): 57. Bibcode:2005BMCEE...5...57O. doi:10.1186/1471-2148-5-57. PMC 1274311. PMID 16242020.
  16. ^ Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999). "Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution". Cell. 98 (6): 811–824. doi:10.1016/S0092-8674(00)81515-9. PMID 10499798. S2CID 15695915.
  17. '^ Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR (2004). "Analysis of Deinococcus radioduranss transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance". Genetics. 168 (1): 21–23. doi:10.1534/genetics.104.029249. PMC 1448114. PMID 15454524.
  18. ^ "The LTP". Retrieved 20 November 2023.
  19. ^ "LTP_all tree in newick format". Retrieved 20 November 2023.
  20. ^ "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  21. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  22. ^ "bac120_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  23. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  24. ^ J.P. Euzéby. "Deinococcota". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-01-22.
  25. ^ Sayers; et al. "Deinococcus-Thermus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-03-20.
  26. ^ "Microbial Genomes".
  27. ^ Wu, D.; Hugenholtz, P.; Mavromatis, K.; Pukall, R. D.; Dalin, E.; Ivanova, N. N.; Kunin, V.; Goodwin, L.; Wu, M.; Tindall, B. J.; Hooper, S. D.; Pati, A.; Lykidis, A.; Spring, S.; Anderson, I. J.; d'Haeseleer, P.; Zemla, A.; Singer, M.; Lapidus, A.; Nolan, M.; Copeland, A.; Han, C.; Chen, F.; Cheng, J. F.; Lucas, S.; Kerfeld, C.; Lang, E.; Gronow, S.; Chain, P.; Bruce, D. (2009). "A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea". Nature. 462 (7276): 1056–1060. Bibcode:2009Natur.462.1056W. doi:10.1038/nature08656. PMC 3073058. PMID 20033048.

deinococcota, synonym, deinococcus, thermus, phylum, bacteria, with, single, class, deinococci, that, highly, resistant, environmental, hazards, also, known, extremophiles, these, bacteria, have, thick, cell, walls, that, give, them, gram, positive, stains, th. Deinococcota synonym Deinococcus Thermus is a phylum of bacteria with a single class Deinococci that are highly resistant to environmental hazards also known as extremophiles 4 These bacteria have thick cell walls that give them gram positive stains but they include a second membrane and so are closer in structure to those of gram negative bacteria 5 6 7 DeinococcotaScientific classificationDomain BacteriaSubkingdom NegibacteriaPhylum DeinococcotaWeisburg et al 2021 2 Class DeinococciGarrity and Holt 2002 1 Orders amp familiesDeinococcales Deinococcaceae Trueperaceae Thermales ThermaceaeSynonyms Deinobacteria Cavalier Smith 2006 Deinococcobacteria Margulis amp Schwartz 1998 Deinococcaeota Oren et al 2015 Deinococcota Whitman et al 2018 Deinococcus Thermus Weisburg et al 1989 Hadobacteria Cavalier Smith 2006 3 Xenobacteria Contents 1 Taxonomy 2 Molecular signatures 3 Phylogeny 4 Taxonomy 5 Sequenced genomes 6 See also 7 ReferencesTaxonomy editThe phylum Deinococcota consists of a single class Deinococci and two orders The Deinococcales include two families Deinococcaceae andTrueperaceae with three genera Deinococcus Deinobacterium and Truepera 8 9 10 Truepera radiovictrix is the earliest diverging member of the order 8 Within the order Deinococcus forms a distinct monophyletic cluster with respect to Deinobacterium and Truepera species 11 The genus includes several species that are resistant to radiation they have become famous for their ability to eat nuclear waste and other toxic materials survive in the vacuum of space and survive extremes of heat and cold 12 The Thermales include several genera resistant to heat Marinithermus Meiothermus Oceanithermus Thermus Vulcanithermus Rhabdothermus placed within a single family Thermaceae 9 10 13 Phylogenetic analyses demonstrate that within the Thermales Meiothermus and Thermus species form a monophyletic cluster with respect to Marinithermus Oceanithermus Vulcanithermus and Rhabdothermus that branch as outgroups within the order 11 This suggests that Meiothermus and Thermus species are more closely related to one another relative to other genera within the order Thermus aquaticus was important in the development of the polymerase chain reaction where repeated cycles of heating DNA to near boiling make it advantageous to use a thermo stable DNA polymerase enzyme 14 Though these two groups evolved from a common ancestor the two mechanisms of resistance appear to be largely independent 11 15 Molecular signatures editMolecular signatures in the form of conserved signature indels CSIs and proteins CSPs have been found that are uniquely shared by all members belonging to the Deinococcota phylum 4 11 These CSIs and CSPs are distinguishing characteristics that delineate the unique phylum from all other bacterial organisms and their exclusive distribution is parallel with the observed differences in physiology CSIs and CSPs have also been found that support order and family level taxonomic rankings within the phylum Some of the CSIs found to support order level distinctions are thought to play a role in the respective extremophilic characteristics 11 The CSIs found in DNA directed RNA polymerase subunit beta and DNA topoisomerase I in Thermales species may be involved in thermophilicity 16 while those found in Excinuclease ABC DNA gyrase and DNA repair protein RadA in Deinococcales species may be associated with radioresistance 17 Two CSPs that were found uniquely for all members belonging to the Deinococcus genus are well characterized and are thought to play a role in their characteristic radioresistant phenotype 11 These CSPs include the DNA damage repair protein PprA the single stranded DNA binding protein DdrB Additionally some genera within this group including Deinococcus Thermus and Meiothermus also have molecular signatures that demarcate them as individual genera inclusive of their respective species providing a means to distinguish them from the rest of the group and all other bacteria 11 CSIs have also been found specific for Truepera radiovictrix Phylogeny editThis section may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details January 2024 Learn how and when to remove this template message See also Bacterial taxonomy 16S rRNA based LTP 08 2023 18 19 20 120 marker proteins based GTDB 08 RS214 21 22 23 Deinococcia Thermales Thermaceae AllomeiothermusCalidithermusMeiothermusRhabdothermusVulcanithermusOceanithermusMarinithermusThermusTrueperales Trueperaceae TrueperaDeinococcales Deinococcaceae DeinobacteriumDeinococcus Deinococcia Deinococcales Marinithermaceae MarinithermusOceanithermusThermaceae AllomeiothermusCalidithermusMeiothermusThermusTrueperaceae TrueperaDeinococcaceae DeinobacteriumDeinococcus species group 2DeinococcusTaxonomy editThe currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature LPSN 24 and National Center for Biotechnology Information NCBI 25 Phylum Deinococcota Oren and Garrity 2021 Class Deinococci Garrity amp Holt 2002 Deinococcia Oren Parte amp Garrity 2016 ex Cavalier Smith 2020 Thermi Rinke et al 2013 Thermia Cavalier Smith 2020 Order Deinococcales Rainey et al 1997 Trueperales Garcia Lopez et al 2020 Family Deinococcaceae Brooks and Murray 1981 emend Rainey et al 1997 Genus Deinococcus Brooks and Murray 1981 emend Rainey et al 1997 Genus Deinobacterium Ekman et al 2011 Family Trueperaceae Rainey et al 2005 Genus Truepera da Costa Rainey and Albuquerque 2005 Order Thermales Rainey and Da Costa 2002 Family Thermaceae Da Costa and Rainey 2002 Genus Allomeiothermus Jiao et al 2023 Genus Calidithermus Raposo et al 2019 Genus Marinithermus Sako et al 2003 Genus Meiothermus Nobre et al 1996 emend Albuquerque et al 2009 Genus Oceanithermus Miroshnichenko et al 2003 emend Mori et al 2004 Genus Rhabdothermus Steinsbu et al 2011 Genus Thermus Brock and Freeze 1969 emend Nobre et al 1996 Genus Vulcanithermus Miroshnichenko et al 2003Sequenced genomes editCurrently there are 10 sequenced genomes of strains in this phylum 26 Deinococcus radiodurans R1 Thermus thermophilus HB27 Thermus thermophilus HB8 Deinococcus geothermalis DSM 11300 Deinococcus deserti VCD115 Meiothermus ruber DSM 1279 Meiothermus silvanus DSM 9946 Truepera radiovictrix DSM 17093 Oceanithermus profundus DSM 14977The two Meiothermus species were sequenced under the auspices of the Genomic Encyclopedia of Bacteria and Archaea project GEBA which aims at sequencing organisms based on phylogenetic novelty and not on pathogenicity or notoriety 27 See also editList of bacteria genera List of bacterial ordersReferences edit Garrity GM Holt JG 2001 The Road Map to the Manual In Boone DR Castenholz RW Garrity GM eds Bergey s Manual of Systematic Bacteriology Vol 1 The Archaea and the deeply branching and phototrophic Bacteria 2nd ed New York NY Springer Verlag pp 119 166 Oren A Garrity GM 2021 Valid publication of the names of forty two phyla of prokaryotes Int J Syst Evol Microbiol 71 10 5056 doi 10 1099 ijsem 0 005056 PMID 34694987 S2CID 239887308 Cavalier Smith T 2006 Rooting the tree of life by transition analyses Biol Direct 1 19 doi 10 1186 1745 6150 1 19 PMC 1586193 PMID 16834776 a b Griffiths E Gupta RS September 2007 Identification of signature proteins that are distinctive of the Deinococcus Thermus phylum PDF Int Microbiol 10 3 201 8 PMID 18076002 Archived from the original PDF on 2011 06 14 Gupta RS 2011 Origin of diderm Gram negative bacteria antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes Antonie van Leeuwenhoek 100 2 171 182 doi 10 1007 s10482 011 9616 8 PMC 3133647 PMID 21717204 Campbell C Sutcliffe IC Gupta RS 2014 Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria PDF Arch Microbiol 196 4 307 310 Bibcode 2014ArMic 196 307C doi 10 1007 s00203 014 0964 4 PMID 24535491 S2CID 10721294 Sutcliffe IC 2010 A phylum level perspective on bacterial cell envelope architecture Trends Microbiol 18 10 464 470 doi 10 1016 j tim 2010 06 005 PMID 20637628 a b Albuquerque L Simoes C Nobre MF et al 2005 Truepera radiovictrix gen nov sp nov a new radiation resistant species and the proposal of Trueperaceae fam nov FEMS Microbiol Lett 247 2 161 169 doi 10 1016 j femsle 2005 05 002 PMID 15927420 a b Garrity GM Holt JG 2001 Phylum BIV Deinococcus Thermus In Bergey s manual of systematic bacteriology pp 395 420 Eds D R Boone R W Castenholz Springer New York a b Garrity GM Bell JA Lilburn TG 2005 Phylum BIV The revised road map to the Manual In Bergey s manual of systematic bacteriology pp 159 220 Eds Brenner DJ Krieg NR Staley JT Garrity GM Springer New York a b c d e f g Ho J Adeolu M Khadka B Gupta RS 2016 Identification of distinctive molecular traits that are characteristic of the phylum Deinococcus Thermus and distinguish its main constituent groups Syst Appl Microbiol 39 7 453 463 doi 10 1016 j syapm 2016 07 003 PMID 27506333 Battista JR Earl AM Park MJ 1999 Why is Deinococcus radiodurans so resistant to ionizing radiation Trends Microbiol 7 9 362 5 doi 10 1016 S0966 842X 99 01566 8 PMID 10470044 Classification of bacteria www bacterio cict fr Archived from the original on 2013 01 27 Nelson RM Long GL 1989 A general method of site specific mutagenesis using a modification of the Thermus aquaticus Anal Biochem 180 1 147 151 doi 10 1016 0003 2697 89 90103 6 PMID 2530914 Omelchenko MV Wolf YI Gaidamakova EK et al 2005 Comparative genomics of Thermus thermophilus and Deinococcus radiodurans Divergent routes of adaptation to thermophily and radiation resistance BMC Evol Biol 5 1 57 Bibcode 2005BMCEE 5 57O doi 10 1186 1471 2148 5 57 PMC 1274311 PMID 16242020 Zhang G Campbell EA Minakhin L Richter C Severinov K Darst SA 1999 Crystal structure of Thermus aquaticus core RNA polymerase at 3 3 A resolution Cell 98 6 811 824 doi 10 1016 S0092 8674 00 81515 9 PMID 10499798 S2CID 15695915 Tanaka M Earl AM Howell HA Park MJ Eisen JA Peterson SN Battista JR 2004 Analysis ofDeinococcus radioduranss transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance Genetics 168 1 21 23 doi 10 1534 genetics 104 029249 PMC 1448114 PMID 15454524 The LTP Retrieved 20 November 2023 LTP all tree in newick format Retrieved 20 November 2023 LTP 08 2023 Release Notes PDF Retrieved 20 November 2023 GTDB release 08 RS214 Genome Taxonomy Database Retrieved 10 May 2023 bac120 r214 sp label Genome Taxonomy Database Retrieved 10 May 2023 Taxon History Genome Taxonomy Database Retrieved 10 May 2023 J P Euzeby Deinococcota List of Prokaryotic names with Standing in Nomenclature LPSN Retrieved 2022 01 22 Sayers et al Deinococcus Thermus National Center for Biotechnology Information NCBI taxonomy database Retrieved 2016 03 20 Microbial Genomes Wu D Hugenholtz P Mavromatis K Pukall R D Dalin E Ivanova N N Kunin V Goodwin L Wu M Tindall B J Hooper S D Pati A Lykidis A Spring S Anderson I J d Haeseleer P Zemla A Singer M Lapidus A Nolan M Copeland A Han C Chen F Cheng J F Lucas S Kerfeld C Lang E Gronow S Chain P Bruce D 2009 A phylogeny driven genomic encyclopaedia of Bacteria and Archaea Nature 462 7276 1056 1060 Bibcode 2009Natur 462 1056W doi 10 1038 nature08656 PMC 3073058 PMID 20033048 Portal nbsp Biology Retrieved from https en wikipedia org w index php title Deinococcota amp oldid 1202003948, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.