fbpx
Wikipedia

DPANN

DPANN is a superphylum of Archaea first proposed in 2013.[2] Many members show novel signs of horizontal gene transfer from other domains of life.[2] They are known as nanoarchaea or ultra-small archaea due to their smaller size (nanometric) compared to other archaea.

DPANN
Parvarchaeum acidiphilum
Scientific classification
Domain: Archaea
Superphylum: DPANN
Rinke et al. 2013
Phyla[1]

DPANN is an acronym formed by the initials of the first five groups discovered, Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota. Later Woesearchaeota and Pacearchaeota were discovered and proposed within the DPANN superphylum.[3] In 2017, another phylum Altiarchaeota was placed into this superphylum.[4] The monophyly of DPANN is not yet considered established, due to the high mutation rate of the included phyla, which can lead to the artifact of the long branch attraction (LBA) where the lineages are grouped basally or artificially at the base of the phylogenetic tree without being related.[5][6] These analyzes instead suggest that DPANN belongs to Euryarchaeota or is polyphyletic occupying various positions within Euryarchaeota.[5][6][7]

The DPANN groups together different phyla with a variety of environmental distribution and metabolism, ranging from symbiotic and thermophilic forms such as Nanoarchaeota, acidophiles like Parvarchaeota and non-extremophiles like Aenigmarchaeota and Diapherotrites. DPANN was also detected in nitrate-rich groundwater, on the water surface but not below, indicating that these taxa are still quite difficult to locate.[8]

Characteristics

They are characterized by being small in size compared to other archaea (nanometric size) and in keeping with their small genome, they have limited but sufficient catabolic capacities to lead a free life, although many are episymbionts that depend on a symbiotic or parasitic association with other organisms. Many of their characteristics are similar or analogous to those of ultra-small bacteria (CPR group).[3]

Limited metabolic capacities are a product of the small genome and are reflected in the fact that many lack central biosynthetic pathways for nucleotides, aminoacids, and lipids; hence most DPANN archaea, such as ARMAN archaea, which rely on other microbes to meet their biological requirements. But those that have the potential to live freely are fermentative and aerobic heterotrophs.[3]

They are mostly anaerobic and cannot be cultivated. They live in extreme environments such as thermophilic, hyperacidophilic, hyperhalophilic or metal-resistant; or also in the temperate environment of marine and lake sediments. They are rarely found on the ground or in the open ocean.[3]

Classification

Phylogeny

Tom A. Williams et al. 2017,[19] Castelle et al. 2015[3] and Dombrowski et al. 2020.[20] Jordan et al. 2017[7] Cavalier-Smith2020[6] and Feng et al 2021.[21]

DPANN may be the first divergent clade of archaea according to some phylogenetic analyses. Recent phylogenetic analyses have found the following phylogeny between phyla.[3][19][20]

Other phylogenetic analyzes have suggested that DPANN could belong to Euryarchaeota or that it may even be polyphyletic occupying different positions within Euryarchaeota. It is also debated whether the phylum Altiarchaeota should be classified in DPANN or Euryarchaeota.[20][5] An alternative location for DPANN in the phylogenetic tree is as follows.[7][6][21] The groups marked in quotes are lineages assigned to DPANN, but phylogenetically separated from the rest.

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[22] and National Center for Biotechnology Information (NCBI).[23]

GTDB phylogeny of "DPANN"[24][25][26]


DPANN
"Undinarchaeota"
"Undinarchaeia"

"Undinarchaeales"

"Huberarchaeota"
"Huberarchaeia"

"Huberarchaeales"

"Aenigmarchaeota"
"Aenigmarchaeia"

"Aenigmarchaeales"

"Nanohalarchaeota"
"Nanohalobiia"

"Nanohalobiales"

"Nanoarchaeota"
"Nanoarchaeia"

"Tiddalikarchaeales"

"Parvarchaeales"

"Pacearchaeales"

"Woesearchaeales"

"Nanoarchaeales"

"Altarchaeota"
"Altarchaeia"

"Altarchaeales"

"Iainarchaeota"
"Iainarchaeia"

"Forterreales"

"Iainarchaeales"

"Micrarchaeota"
"Micrarchaeia"

"Norongarragalinales"

"Micrarchaeales"

"Anstonellales"

"Fermentimicrarchaeales"

"Burarchaeales"

"Gugararchaeales"

"Hadarchaeota"

Methanobacteriota_B

"Methanomada"

"Hydrothermarchaeota"

"Methanobacteriota"

"Neoeuryarchaeota"

"Thermoplasmatota"

"Halobacteriota"

"Proteoarchaeota"
DPANN

Super Phylum "DPANN" Rinke et al. 2013

  • Phylum "Undinarchaeota" Dombrowski et al. 2020
    • Class "Undinarchaeia" Dombrowski et al. 2020
      • Order "Undinarchaeales" Dombrowski et al. 2020
  • Phylum "Huberarchaeota" Probst et al. 2019
    • Class "Huberarchaeia" corrig. Probst et al. 2019
      • Order "Huberarchaeales" Rinke et al. 2020
  • Phylum "Aenigmatarchaeota" corrig. Rinke et al. 2013 (DSEG, DUSEL2)
    • Class "Aenigmatarchaeia" corrig. Rinke et al. 2020
      • Order "Aenigmatarchaeales" corrig. Rinke et al. 2020
  • Phylum "Nanohalarchaeota" corrig. Rinke et al. 2013
    • Class "Nanohalobiia" corrig.La Cono et al. 2020
      • Order "Nanohalobiales" La Cono et al. 2020
    • Class ?"Nanohalarchaeia" corrig. Narasingarao et al. 2012
      • Order "Nanohalarchaeales"
  • Phylum Altarchaeota Probst et al. 2018 (SM1)
    • Class "Altarchaeia" corrig. Probst et al. 2014
      • Order "Altarchaeales" corrig. Probst et al. 2014
  • Phylum "Iainarchaeota" ["Diapherotrites" Rinke et al. 2013] (DUSEL-3)
    • Class "Iainarchaeia" Rinke et al. 2020
      • Order "Forterreales" Probst & Banfield 2017
      • Order "Iainarchaeales" Rinke et al. 2020
  • Phylum "Micrarchaeota" Baker & Dick 2013
    • Class "Micrarchaeia" Vazquez-Campos et al. 2021
      • Order "Anstonellales" Vazquez-Campos et al. 2021 (LFWA-IIIc)
      • Order "Burarchaeales" Vazquez-Campos et al. 2021 (LFWA-IIIb)
      • Order "Fermentimicrarchaeales" Kadnikov et al. 2020
      • Order "Gugararchaeales" Vazquez-Campos et al. 2021 (LFWA-IIIa)
      • Order "Micrarchaeales" Vazquez-Campos et al. 2021
      • Order "Norongarragalinales" Vazquez-Campos et al. 2021 (LFWA-II)
  • Phylum "Nanoarchaeota" Huber et al. 2002
    • Class "Nanoarchaeia" Vazquez-Campos et al. 2021
      • Order "Jingweiarchaeales" Rao et al. 2023 [DTBS01]
      • Order "Nanoarchaeales" Huber et al. 2011
      • Order "Pacearchaeales" (DHVE-5, DUSEL-1)
      • Order "Parvarchaeales" Rinke et al. 2020 (ARMAN 4 & 5)
      • Order "Tiddalikarchaeales" Vazquez-Campos et al. 2021 (LFW-252_1)
      • Order "Woesearchaeales" (DHVE-6)
  • Phylum ?"Mamarchaeota"
  • Order ?"Wiannamattarchaeales"

See also

References

  1. ^ Castelle CJ, Banfield JF (2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell. 172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016. PMID 29522741.
  2. ^ a b Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (July 2013). "Insights into the phylogeny and coding potential of microbial dark matter" (PDF). Nature. 499 (7459): 431–437. Bibcode:2013Natur.499..431R. doi:10.1038/nature12352. PMID 23851394. S2CID 4394530.
  3. ^ a b c d e f g Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (March 2015). "Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling". Current Biology. 25 (6): 690–701. doi:10.1016/j.cub.2015.01.014. PMID 25702576.
  4. ^ Spang A, Caceres EF, Ettema TJ (August 2017). "Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life". Science. 357 (6351): eaaf3883. doi:10.1126/science.aaf3883. PMID 28798101.
  5. ^ a b c Nina Dombrowski, Jun-Hoe Lee, Tom A Williams, Pierre Offre, Anja Spang (2019). Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. Nature.
  6. ^ a b c d Cavalier-Smith, Thomas; Chao, Ema E-Yung (2020). "Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)". Protoplasma. 257 (3): 621–753. doi:10.1007/s00709-019-01442-7. PMC 7203096. PMID 31900730.
  7. ^ a b c Jordan T. Bird, Brett J. Baker, Alexander J. Probst, Mircea Podar, Karen G. Lloyd (2017). Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales. Frontiers.
  8. ^ Ludington WB, Seher TD, Applegate O, Li X, Kliegman JI, Langelier C, Atwill ER, Harter T, DeRisi JL (2017-04-06). "Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater". PLOS ONE. 12 (4): e0174930. doi:10.1371/journal.pone.0174930. PMC 5383146. PMID 28384184.
  9. ^ Genomes Online Database
  10. ^ Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (February 2009). "Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon". The ISME Journal. 3 (2): 159–167. doi:10.1038/ismej.2008.99. PMID 18946497.
  11. ^ Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (December 2006). "Lineages of acidophilic archaea revealed by community genomic analysis". Science. 314 (5807): 1933–1935. doi:10.1126/science.1132690. PMID 17185602. S2CID 26033384.
  12. ^ Murakami S, Fujishima K, Tomita M, Kanai A (February 2012). "Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation". Applied and Environmental Microbiology. 78 (4): 1015–1022. doi:10.1128/AEM.06811-11. PMC 3272989. PMID 22156430.
  13. ^ Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF (May 2010). "Enigmatic, ultrasmall, uncultivated Archaea". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8806–8811. doi:10.1073/pnas.0914470107. PMC 2889320. PMID 20421484.
  14. ^ Ortiz-Alvarez R, Casamayor EO (April 2016). "High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes". Environmental Microbiology Reports. 8 (2): 210–217. doi:10.1111/1758-2229.12370. PMID 26711582.
  15. ^ Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (December 2001). "Archaeal diversity in waters from deep South African gold mines". Applied and Environmental Microbiology. 67 (12): 5750–5760. doi:10.1128/AEM.67.21.5750-5760.2001. PMC 93369. PMID 11722932.
  16. ^ Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (January 2012). "De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities". The ISME Journal. 6 (1): 81–93. doi:10.1038/ismej.2011.78. PMC 3246234. PMID 21716304.
  17. ^ Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M (October 2003). "The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12984–12988. doi:10.1073/pnas.1735403100. PMC 240731. PMID 14566062.
  18. ^ Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL (December 2013). "Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park". Biology Direct. 8 (1): 9. doi:10.1186/1745-6150-8-9. PMC 3655853. PMID 23607440.
  19. ^ a b Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, et al. (June 2017). "Integrative modeling of gene and genome evolution roots the archaeal tree of life". Proceedings of the National Academy of Sciences of the United States of America. 114 (23): E4602–E4611. doi:10.1073/pnas.1618463114. PMC 5468678. PMID 28533395.
  20. ^ a b c Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee JH, Minh BQ, et al. (August 2020). "Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution". Nature Communications. 11 (1): 3939. doi:10.1038/s41467-020-17408-w. PMC 7414124. PMID 32770105.
  21. ^ a b Yutian Feng, Uri Neri, Sean Gosselin, Artemis S Louyakis, R Thane Papke, Uri Gophna, Johann Peter Gogarten (2021). The Evolutionary Origins of Extreme Halophilic Archaeal Lineages. Oxford Academic.
  22. ^ J.P. Euzéby. "Parvarchaeota". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-06-27.
  23. ^ Sayers; et al. "Parvarchaeota". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  24. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 6 December 2021.
  25. ^ "ar53_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  26. ^ "Taxon History". Genome Taxonomy Database. Retrieved 6 December 2021.

External links

  •   Data related to DPANN group at Wikispecies


dpann, superphylum, archaea, first, proposed, 2013, many, members, show, novel, signs, horizontal, gene, transfer, from, other, domains, life, they, known, nanoarchaea, ultra, small, archaea, their, smaller, size, nanometric, compared, other, archaea, parvarch. DPANN is a superphylum of Archaea first proposed in 2013 2 Many members show novel signs of horizontal gene transfer from other domains of life 2 They are known as nanoarchaea or ultra small archaea due to their smaller size nanometric compared to other archaea DPANNParvarchaeum acidiphilumScientific classificationDomain ArchaeaSuperphylum DPANNRinke et al 2013Phyla 1 Aenigmatarchaeota Altarchaeota Diapherotrites Huberarchaeota Mamarchaeota Micrarchaeota Nanoarchaeota Nanohalarchaeota Pacearchaeota Parvarchaeota Undinarchaeota WoesearchaeotaDPANN is an acronym formed by the initials of the first five groups discovered Diapherotrites Parvarchaeota Aenigmarchaeota Nanoarchaeota and Nanohaloarchaeota Later Woesearchaeota and Pacearchaeota were discovered and proposed within the DPANN superphylum 3 In 2017 another phylum Altiarchaeota was placed into this superphylum 4 The monophyly of DPANN is not yet considered established due to the high mutation rate of the included phyla which can lead to the artifact of the long branch attraction LBA where the lineages are grouped basally or artificially at the base of the phylogenetic tree without being related 5 6 These analyzes instead suggest that DPANN belongs to Euryarchaeota or is polyphyletic occupying various positions within Euryarchaeota 5 6 7 The DPANN groups together different phyla with a variety of environmental distribution and metabolism ranging from symbiotic and thermophilic forms such as Nanoarchaeota acidophiles like Parvarchaeota and non extremophiles like Aenigmarchaeota and Diapherotrites DPANN was also detected in nitrate rich groundwater on the water surface but not below indicating that these taxa are still quite difficult to locate 8 Contents 1 Characteristics 2 Classification 2 1 Phylogeny 2 2 Taxonomy 3 See also 4 References 5 External linksCharacteristics EditThey are characterized by being small in size compared to other archaea nanometric size and in keeping with their small genome they have limited but sufficient catabolic capacities to lead a free life although many are episymbionts that depend on a symbiotic or parasitic association with other organisms Many of their characteristics are similar or analogous to those of ultra small bacteria CPR group 3 Limited metabolic capacities are a product of the small genome and are reflected in the fact that many lack central biosynthetic pathways for nucleotides aminoacids and lipids hence most DPANN archaea such as ARMAN archaea which rely on other microbes to meet their biological requirements But those that have the potential to live freely are fermentative and aerobic heterotrophs 3 They are mostly anaerobic and cannot be cultivated They live in extreme environments such as thermophilic hyperacidophilic hyperhalophilic or metal resistant or also in the temperate environment of marine and lake sediments They are rarely found on the ground or in the open ocean 3 Classification EditDiapherotrites Found by phylogenetic analysis of the genomes recovered from the groundwater filtration of a gold mine abandoned in the USA 9 10 Parvarchaeota and Micrarchaeota Discovered in 2006 in acidic mine drainage from a US mine 11 12 13 They are of very small size and provisionally called ARMAN Archaeal Richmond Mine acidophilic nanoorganisms Woesearchaeota and Pacearchaeota They have been identified both in sediments and in surface waters of aquifers and lakes abounding especially in saline conditions 3 14 Aenigmarchaeota Found in wastewater from mines and in sediments from hot springs 15 Nanohalarchaeota Distributed in environments with high salinity 16 Nanoarchaeota They were the first discovered in 2002 in a hydrothermal source next to the coast of Iceland They live as symbionts of other archaea 17 18 Phylogeny Edit Tom A Williams et al 2017 19 Castelle et al 2015 3 and Dombrowski et al 2020 20 Jordan et al 2017 7 Cavalier Smith2020 6 and Feng et al 2021 21 DPANN may be the first divergent clade of archaea according to some phylogenetic analyses Recent phylogenetic analyses have found the following phylogeny between phyla 3 19 20 BacteriaArchaea DPANN AltarchaeotaDiapherotritesMicrarchaeotaUndinarchaeotaAenigmatarchaeotaNanohaloarchaeotaNanoarchaeotaParvarchaeotaMamarchaeotaPacearchaeotaWoesearchaeotaEuryarchaeotaProteoarchaeota TACKAsgard LokiarchaeotaOdinarchaeotaThorarchaeotaHeimdallarchaeota a Proteobacteria Eukaryota Other phylogenetic analyzes have suggested that DPANN could belong to Euryarchaeota or that it may even be polyphyletic occupying different positions within Euryarchaeota It is also debated whether the phylum Altiarchaeota should be classified in DPANN or Euryarchaeota 20 5 An alternative location for DPANN in the phylogenetic tree is as follows 7 6 21 The groups marked in quotes are lineages assigned to DPANN but phylogenetically separated from the rest BacteriaArchaea Euryarchaeota ThermococciHadesarchaeaMethanobacteriaMethanopyriMethanococciThermoplasmataArchaeoglobiMethanomicrobia Nanohaloarchaeota Haloarchaea Altarchaeota DPANN DiapherotritesMicrarchaeotaUndinarchaeotaAenigmatarchaeotaNanoarchaeotaParvarchaeotaMamarchaeotaPacearchaeotaWoesearchaeotaProteoarchaeota TACKAsgard LokiarchaeotaOdinarchaeotaThorarchaeotaHeimdallarchaeota a Proteobacteria EukaryotaTaxonomy Edit The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature LPSN 22 and National Center for Biotechnology Information NCBI 23 GTDB phylogeny of DPANN 24 25 26 DPANN Undinarchaeota Undinarchaeia Undinarchaeales Huberarchaeota Huberarchaeia Huberarchaeales Aenigmarchaeota Aenigmarchaeia Aenigmarchaeales Nanohalarchaeota Nanohalobiia Nanohalobiales Nanoarchaeota Nanoarchaeia Tiddalikarchaeales Parvarchaeales Pacearchaeales Woesearchaeales Nanoarchaeales Altarchaeota Altarchaeia Altarchaeales Iainarchaeota Iainarchaeia Forterreales Iainarchaeales Micrarchaeota Micrarchaeia Norongarragalinales Micrarchaeales Anstonellales Fermentimicrarchaeales Burarchaeales Gugararchaeales Hadarchaeota Methanobacteriota B Methanomada Hydrothermarchaeota Methanobacteriota Neoeuryarchaeota Thermoplasmatota Halobacteriota Proteoarchaeota Asgardaeota Thermoproteota DPANN Euryarchaeota Super Phylum DPANN Rinke et al 2013 Phylum Undinarchaeota Dombrowski et al 2020 Class Undinarchaeia Dombrowski et al 2020 Order Undinarchaeales Dombrowski et al 2020 Phylum Huberarchaeota Probst et al 2019 Class Huberarchaeia corrig Probst et al 2019 Order Huberarchaeales Rinke et al 2020 Phylum Aenigmatarchaeota corrig Rinke et al 2013 DSEG DUSEL2 Class Aenigmatarchaeia corrig Rinke et al 2020 Order Aenigmatarchaeales corrig Rinke et al 2020 Phylum Nanohalarchaeota corrig Rinke et al 2013 Class Nanohalobiia corrig La Cono et al 2020 Order Nanohalobiales La Cono et al 2020 Class Nanohalarchaeia corrig Narasingarao et al 2012 Order Nanohalarchaeales Phylum Altarchaeota Probst et al 2018 SM1 Class Altarchaeia corrig Probst et al 2014 Order Altarchaeales corrig Probst et al 2014 Phylum Iainarchaeota Diapherotrites Rinke et al 2013 DUSEL 3 Class Iainarchaeia Rinke et al 2020 Order Forterreales Probst amp Banfield 2017 Order Iainarchaeales Rinke et al 2020 Phylum Micrarchaeota Baker amp Dick 2013 Class Micrarchaeia Vazquez Campos et al 2021 Order Anstonellales Vazquez Campos et al 2021 LFWA IIIc Order Burarchaeales Vazquez Campos et al 2021 LFWA IIIb Order Fermentimicrarchaeales Kadnikov et al 2020 Order Gugararchaeales Vazquez Campos et al 2021 LFWA IIIa Order Micrarchaeales Vazquez Campos et al 2021 Order Norongarragalinales Vazquez Campos et al 2021 LFWA II Phylum Nanoarchaeota Huber et al 2002 Class Nanoarchaeia Vazquez Campos et al 2021 Order Jingweiarchaeales Rao et al 2023 DTBS01 Order Nanoarchaeales Huber et al 2011 Order Pacearchaeales DHVE 5 DUSEL 1 Order Parvarchaeales Rinke et al 2020 ARMAN 4 amp 5 Order Tiddalikarchaeales Vazquez Campos et al 2021 LFW 252 1 Order Woesearchaeales DHVE 6 Phylum Mamarchaeota Order Wiannamattarchaeales See also EditList of Archaea generaReferences Edit Castelle CJ Banfield JF 2018 Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life Cell 172 6 1181 1197 doi 10 1016 j cell 2018 02 016 PMID 29522741 a b Rinke C Schwientek P Sczyrba A Ivanova NN Anderson IJ Cheng JF Darling A Malfatti S Swan BK Gies EA Dodsworth JA Hedlund BP Tsiamis G Sievert SM Liu WT Eisen JA Hallam SJ Kyrpides NC Stepanauskas R Rubin EM Hugenholtz P Woyke T July 2013 Insights into the phylogeny and coding potential of microbial dark matter PDF Nature 499 7459 431 437 Bibcode 2013Natur 499 431R doi 10 1038 nature12352 PMID 23851394 S2CID 4394530 a b c d e f g Castelle CJ Wrighton KC Thomas BC Hug LA Brown CT Wilkins MJ Frischkorn KR Tringe SG Singh A Markillie LM Taylor RC Williams KH Banfield JF March 2015 Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling Current Biology 25 6 690 701 doi 10 1016 j cub 2015 01 014 PMID 25702576 Spang A Caceres EF Ettema TJ August 2017 Genomic exploration of the diversity ecology and evolution of the archaeal domain of life Science 357 6351 eaaf3883 doi 10 1126 science aaf3883 PMID 28798101 a b c Nina Dombrowski Jun Hoe Lee Tom A Williams Pierre Offre Anja Spang 2019 Genomic diversity lifestyles and evolutionary origins of DPANN archaea Nature a b c d Cavalier Smith Thomas Chao Ema E Yung 2020 Multidomain ribosomal protein trees and the planctobacterial origin of neomura Eukaryotes archaebacteria Protoplasma 257 3 621 753 doi 10 1007 s00709 019 01442 7 PMC 7203096 PMID 31900730 a b c Jordan T Bird Brett J Baker Alexander J Probst Mircea Podar Karen G Lloyd 2017 Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales Frontiers Ludington WB Seher TD Applegate O Li X Kliegman JI Langelier C Atwill ER Harter T DeRisi JL 2017 04 06 Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing A diverse anammox community dominates nitrate rich groundwater PLOS ONE 12 4 e0174930 doi 10 1371 journal pone 0174930 PMC 5383146 PMID 28384184 Genomes Online Database Comolli LR Baker BJ Downing KH Siegerist CE Banfield JF February 2009 Three dimensional analysis of the structure and ecology of a novel ultra small archaeon The ISME Journal 3 2 159 167 doi 10 1038 ismej 2008 99 PMID 18946497 Baker BJ Tyson GW Webb RI Flanagan J Hugenholtz P Allen EE Banfield JF December 2006 Lineages of acidophilic archaea revealed by community genomic analysis Science 314 5807 1933 1935 doi 10 1126 science 1132690 PMID 17185602 S2CID 26033384 Murakami S Fujishima K Tomita M Kanai A February 2012 Metatranscriptomic analysis of microbes in an Oceanfront deep subsurface hot spring reveals novel small RNAs and type specific tRNA degradation Applied and Environmental Microbiology 78 4 1015 1022 doi 10 1128 AEM 06811 11 PMC 3272989 PMID 22156430 Baker BJ Comolli LR Dick GJ Hauser LJ Hyatt D Dill BD Land ML Verberkmoes NC Hettich RL Banfield JF May 2010 Enigmatic ultrasmall uncultivated Archaea Proceedings of the National Academy of Sciences of the United States of America 107 19 8806 8811 doi 10 1073 pnas 0914470107 PMC 2889320 PMID 20421484 Ortiz Alvarez R Casamayor EO April 2016 High occurrence of Pacearchaeota and Woesearchaeota Archaea superphylum DPANN in the surface waters of oligotrophic high altitude lakes Environmental Microbiology Reports 8 2 210 217 doi 10 1111 1758 2229 12370 PMID 26711582 Takai K Moser DP DeFlaun M Onstott TC Fredrickson JK December 2001 Archaeal diversity in waters from deep South African gold mines Applied and Environmental Microbiology 67 12 5750 5760 doi 10 1128 AEM 67 21 5750 5760 2001 PMC 93369 PMID 11722932 Narasingarao P Podell S Ugalde JA Brochier Armanet C Emerson JB Brocks JJ Heidelberg KB Banfield JF Allen EE January 2012 De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities The ISME Journal 6 1 81 93 doi 10 1038 ismej 2011 78 PMC 3246234 PMID 21716304 Waters E Hohn MJ Ahel I Graham DE Adams MD Barnstead M Beeson KY Bibbs L Bolanos R Keller M Kretz K Lin X Mathur E Ni J Podar M Richardson T Sutton GG Simon M Soll D Stetter KO Short JM Noordewier M October 2003 The genome of Nanoarchaeum equitans insights into early archaeal evolution and derived parasitism Proceedings of the National Academy of Sciences of the United States of America 100 22 12984 12988 doi 10 1073 pnas 1735403100 PMC 240731 PMID 14566062 Podar M Makarova KS Graham DE Wolf YI Koonin EV Reysenbach AL December 2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool Yellowstone National Park Biology Direct 8 1 9 doi 10 1186 1745 6150 8 9 PMC 3655853 PMID 23607440 a b Williams TA Szollosi GJ Spang A Foster PG Heaps SE Boussau B et al June 2017 Integrative modeling of gene and genome evolution roots the archaeal tree of life Proceedings of the National Academy of Sciences of the United States of America 114 23 E4602 E4611 doi 10 1073 pnas 1618463114 PMC 5468678 PMID 28533395 a b c Dombrowski N Williams TA Sun J Woodcroft BJ Lee JH Minh BQ et al August 2020 Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution Nature Communications 11 1 3939 doi 10 1038 s41467 020 17408 w PMC 7414124 PMID 32770105 a b Yutian Feng Uri Neri Sean Gosselin Artemis S Louyakis R Thane Papke Uri Gophna Johann Peter Gogarten 2021 The Evolutionary Origins of Extreme Halophilic Archaeal Lineages Oxford Academic J P Euzeby Parvarchaeota List of Prokaryotic names with Standing in Nomenclature LPSN Retrieved 2021 06 27 Sayers et al Parvarchaeota National Center for Biotechnology Information NCBI taxonomy database Retrieved 2021 03 20 GTDB release 08 RS214 Genome Taxonomy Database Retrieved 6 December 2021 ar53 r214 sp label Genome Taxonomy Database Retrieved 10 May 2023 Taxon History Genome Taxonomy Database Retrieved 6 December 2021 External links Edit Data related to DPANN group at Wikispecies Retrieved from https en wikipedia org w index php title DPANN amp oldid 1158868902, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.