fbpx
Wikipedia

Wolf–Lundmark–Melotte

The Wolf–Lundmark–Melotte (WLM) is a barred irregular galaxy discovered in 1909 by Max Wolf, located on the outer edges of the Local Group. The discovery of the nature of the galaxy was accredited to Knut Lundmark and Philibert Jacques Melotte in 1926. It is in the constellation Cetus.

Wolf–Lundmark–Melotte
The galaxy Wolf–Lundmark–Melotte (WLM), imaged by VLT
Observation data (J2000 epoch)
ConstellationCetus
Right ascension00h 01m 58.1s[1]
Declination−15° 27′ 39″[1]
Redshift−122±2 km/s[1]
Distance3.04 ± 0.11 Mly (930 ± 30 kpc)[2]
Apparent magnitude (V)11.0[1]
Characteristics
TypeIB(s)m[1]
Apparent size (V)11.5 × 4.2[1]
Other designations
WLM,[1] DDO 221,[1] UGCA 444,[1] PGC 143[1]

Properties edit

Wolf–Lundmark–Melotte is a rotating disk that is seen edge-on. It is relatively isolated from the rest of the Local Group, and does not seem to show much evidence of interaction. However, the rotation curve of Wolf–Lundmark–Melotte is asymmetrical, in that the receding side and approaching side of the galaxy are rotating in different ways.[3]

Although isolated, Wolf–Lundmark–Melotte shows evidence of ram pressure stripping. It is far outside of the virial radius of the Milky Way, so it is possible that Wolf–Lundmark–Melotte is currently passing through some relatively dense medium.[4]

Star formation edit

In 1994, A. E. Dolphin used the Hubble Space Telescope to create a color–magnitude diagram for WLM. It showed that around half of all the star formation in this galaxy occurred during a starburst that started ~13 Gyr ago. During the starburst, the metallicity of WLM rose from [Fe/H] ~ −2.2 to [Fe/H] −1.3. There being no horizontal-branch population, Dolphin concludes that no more than ~20 M per Myr of star formation occurred in the period from 12 to 15 Gyr ago. From 2.5 to 9 Gyr ago, the mean rate of star formation was 100 to 200 M per Myr.[5] Being at the edge of the Local Group has also protected WLM from interactions and mergers with other galaxies, giving it a "pristine" stellar population and state that make it particularly useful for comparative studies.[6]

WLM is currently forming stars, as evidenced by clumps of newly formed stars visible in ultraviolet light. These clumps are about 20 to 100 light-years (7 to 30 parsecs) in size. The youngest clumps are found in the southern half of the galaxy, which has more star formation.[7]

Globular cluster edit

 
WLM Globular Cluster, Hubble Space Telescope

WLM has one known globular cluster (WLM-1) at 00h 01m 29.5s −15° 27′ 51″ that Hodge et al. (1999) determined as having an absolute magnitude of −8.8 and a metallicity of –1.5, with an age of ~15 billion years. This cluster has a luminosity that is slightly over the average for all globulars. The seeming lack of faint low-mass globular clusters cannot be explained by the weak tidal forces of the WLM system.[5]

References in popular culture edit

 
A portion of the dwarf galaxy Wolf–Lundmark–Melotte (WLM) captured by the JWST's NIRCam. Credit: NASA, ESA, CSA

In E. E. Smith's Lensman novels, the "Second Galaxy" is identified as "Lundmark's Nebula".[8][9] However, some believe the "Second Galaxy" may not be the Wolf–Lundmark–Melotte galaxy, since the first chapter of the first novel in the series (Triplanetary) and the series-establishing material appearing at the beginning of subsequent novels states that the "Second Galaxy" and the "First Galaxy" (the Milky Way) collided and passed through each other "edge-on" during the "planet-forming era"—implying that the "Lundmark's Nebula" of the series must necessarily be obscured from view by the Milky Way; however, according to others, it could have passed through at an angle and thus be identified with the galaxy described in this article; some have stated that this is the galaxy that E.E. Smith was thinking of when he wrote the series. However, the distance to Lundmark's nebula is defined quite precisely in Gray Lensman as approximately 24 million parsecs, much larger than the distance to Wolf–Lundmark–Melotte (approximately 930,000 parsecs). Additionally, in Second Stage Lensmen multiple references are made to the spiral arms of Lundmark's Nebula. Wolf–Lundmark–Melotte does not possess such structures. At the time of writing of these books, the name of Lundmark was associated with such classifications and Smith may have elected to use this as a "believable" name for an entirely fictional galaxy.

At the time the Lensman series was written, most astronomers favored the tidal theory of Solar System formation, which required that planets be formed by the close approach of another star. In order to produce the massive numbers of planets necessary to evolve into galactic civilizations in both the Milky Way and Lundmark's Nebula, as portrayed in the Lensman series, E.E. Smith thought it would have been necessary for another galaxy to have passed through the Milky Way to produce the large number of close encounters necessary to form so many planets.

The Doctor Who novel Synthespians™ by Craig Hinton refers to the New Earth Republic of the 101st Century and beyond, which spearheads a programme of colonisation, sending sleeper ships to the Wolf-Lundmark-Melotte galaxy and Andromeda.[10]

References edit

  1. ^ a b c d e f g h i j "NASA/IPAC Extragalactic Database". Results for WLM. Retrieved 2006-12-23.
  2. ^ McConnachie, A. W.; Irwin, M. J.; Ferguson, A. M. N.; Ibata, R. A.; et al. (2005). "Distances and metallicities for 17 Local Group galaxies". Monthly Notices of the Royal Astronomical Society. 356 (4): 979–997. arXiv:astro-ph/0410489. Bibcode:2005MNRAS.356..979M. doi:10.1111/j.1365-2966.2004.08514.x.
  3. ^ Khademi, M.; Yang, Y.; Hammer, F.; Nasiri, S. (2021). "Kinematical asymmetry in the dwarf irregular galaxy WLM and a perturbed halo potential". Astronomy & Astrophysics. 654: A7. arXiv:2107.02928. Bibcode:2021A&A...654A...7K. doi:10.1051/0004-6361/202140336. ISSN 0004-6361. S2CID 237266871.
  4. ^ Yang, Yanbin; Ianjamasimanana, Roger; Hammer, Francois; Higgs, Clare; Namumba, Brenda; Carignan, Claude; Józsa, Gyula I. G.; McConnachie, Alan W. (2022). "Evidence of ram-pressure stripping of WLM, a dwarf galaxy far away from any large host galaxy". Astronomy & Astrophysics. 660: L11. arXiv:2204.03662. Bibcode:2022A&A...660L..11Y. doi:10.1051/0004-6361/202243307. S2CID 248069632.
  5. ^ a b van den Bergh, Sidney (April 2000). "Updated Information on the Local Group". The Publications of the Astronomical Society of the Pacific. 112 (770): 529–536. arXiv:astro-ph/0001040. Bibcode:2000PASP..112..529V. doi:10.1086/316548. S2CID 1805423.
  6. ^ (eso1610)"The Wilds of the Local Group", 23 March 2016 (Accessed 24/3/2016) http://www.eso.org/public/news/eso1610/
  7. ^ Mondal, Chayan; Subramaniam, Annapurni; George, Koshy (2021). "A tale of two nearby dwarf irregular galaxies WLM and IC 2574: As revealed by UVIT". Journal of Astrophysics and Astronomy. 42 (2): 50. arXiv:2105.13048. Bibcode:2021JApA...42...50M. doi:10.1007/s12036-021-09761-z. S2CID 235212077.
  8. ^ E.E. Smith (1951) [1939]. Gray Lensman. Gnome. p. 66. ISBN 978-1-882968-12-1.
  9. ^ Ron Ellik; Bill Evans & Al Lewis (1966). The Universes of E.E. Smith. Advent. p. 121. ISBN 0-911682-03-1.
  10. ^ "Synthespians (TM) | Discontinuity Guide | the Whoniverse".

External links edit

  •   Media related to WLM galaxy at Wikimedia Commons

wolf, lundmark, melotte, barred, irregular, galaxy, discovered, 1909, wolf, located, outer, edges, local, group, discovery, nature, galaxy, accredited, knut, lundmark, philibert, jacques, melotte, 1926, constellation, cetus, galaxy, imaged, vltobservation, dat. The Wolf Lundmark Melotte WLM is a barred irregular galaxy discovered in 1909 by Max Wolf located on the outer edges of the Local Group The discovery of the nature of the galaxy was accredited to Knut Lundmark and Philibert Jacques Melotte in 1926 It is in the constellation Cetus Wolf Lundmark MelotteThe galaxy Wolf Lundmark Melotte WLM imaged by VLTObservation data J2000 epoch ConstellationCetusRight ascension00h 01m 58 1s 1 Declination 15 27 39 1 Redshift 122 2 km s 1 Distance3 04 0 11 Mly 930 30 kpc 2 Apparent magnitude V 11 0 1 CharacteristicsTypeIB s m 1 Apparent size V 11 5 4 2 1 Other designationsWLM 1 DDO 221 1 UGCA 444 1 PGC 143 1 Contents 1 Properties 2 Star formation 3 Globular cluster 4 References in popular culture 5 References 6 External linksProperties editWolf Lundmark Melotte is a rotating disk that is seen edge on It is relatively isolated from the rest of the Local Group and does not seem to show much evidence of interaction However the rotation curve of Wolf Lundmark Melotte is asymmetrical in that the receding side and approaching side of the galaxy are rotating in different ways 3 Although isolated Wolf Lundmark Melotte shows evidence of ram pressure stripping It is far outside of the virial radius of the Milky Way so it is possible that Wolf Lundmark Melotte is currently passing through some relatively dense medium 4 Star formation editIn 1994 A E Dolphin used the Hubble Space Telescope to create a color magnitude diagram for WLM It showed that around half of all the star formation in this galaxy occurred during a starburst that started 13 Gyr ago During the starburst the metallicity of WLM rose from Fe H 2 2 to Fe H 1 3 There being no horizontal branch population Dolphin concludes that no more than 20 M per Myr of star formation occurred in the period from 12 to 15 Gyr ago From 2 5 to 9 Gyr ago the mean rate of star formation was 100 to 200 M per Myr 5 Being at the edge of the Local Group has also protected WLM from interactions and mergers with other galaxies giving it a pristine stellar population and state that make it particularly useful for comparative studies 6 WLM is currently forming stars as evidenced by clumps of newly formed stars visible in ultraviolet light These clumps are about 20 to 100 light years 7 to 30 parsecs in size The youngest clumps are found in the southern half of the galaxy which has more star formation 7 Globular cluster edit nbsp WLM Globular Cluster Hubble Space TelescopeWLM has one known globular cluster WLM 1 at 00h 01m 29 5s 15 27 51 that Hodge et al 1999 determined as having an absolute magnitude of 8 8 and a metallicity of 1 5 with an age of 15 billion years This cluster has a luminosity that is slightly over the average for all globulars The seeming lack of faint low mass globular clusters cannot be explained by the weak tidal forces of the WLM system 5 References in popular culture edit nbsp A portion of the dwarf galaxy Wolf Lundmark Melotte WLM captured by the JWST s NIRCam Credit NASA ESA CSAIn E E Smith s Lensman novels the Second Galaxy is identified as Lundmark s Nebula 8 9 However some believe the Second Galaxy may not be the Wolf Lundmark Melotte galaxy since the first chapter of the first novel in the series Triplanetary and the series establishing material appearing at the beginning of subsequent novels states that the Second Galaxy and the First Galaxy the Milky Way collided and passed through each other edge on during the planet forming era implying that the Lundmark s Nebula of the series must necessarily be obscured from view by the Milky Way however according to others it could have passed through at an angle and thus be identified with the galaxy described in this article some have stated that this is the galaxy that E E Smith was thinking of when he wrote the series However the distance to Lundmark s nebula is defined quite precisely in Gray Lensman as approximately 24 million parsecs much larger than the distance to Wolf Lundmark Melotte approximately 930 000 parsecs Additionally in Second Stage Lensmen multiple references are made to the spiral arms of Lundmark s Nebula Wolf Lundmark Melotte does not possess such structures At the time of writing of these books the name of Lundmark was associated with such classifications and Smith may have elected to use this as a believable name for an entirely fictional galaxy At the time the Lensman series was written most astronomers favored the tidal theory of Solar System formation which required that planets be formed by the close approach of another star In order to produce the massive numbers of planets necessary to evolve into galactic civilizations in both the Milky Way and Lundmark s Nebula as portrayed in the Lensman series E E Smith thought it would have been necessary for another galaxy to have passed through the Milky Way to produce the large number of close encounters necessary to form so many planets The Doctor Who novel Synthespians by Craig Hinton refers to the New Earth Republic of the 101st Century and beyond which spearheads a programme of colonisation sending sleeper ships to the Wolf Lundmark Melotte galaxy and Andromeda 10 References edit a b c d e f g h i j NASA IPAC Extragalactic Database Results for WLM Retrieved 2006 12 23 McConnachie A W Irwin M J Ferguson A M N Ibata R A et al 2005 Distances and metallicities for 17 Local Group galaxies Monthly Notices of the Royal Astronomical Society 356 4 979 997 arXiv astro ph 0410489 Bibcode 2005MNRAS 356 979M doi 10 1111 j 1365 2966 2004 08514 x Khademi M Yang Y Hammer F Nasiri S 2021 Kinematical asymmetry in the dwarf irregular galaxy WLM and a perturbed halo potential Astronomy amp Astrophysics 654 A7 arXiv 2107 02928 Bibcode 2021A amp A 654A 7K doi 10 1051 0004 6361 202140336 ISSN 0004 6361 S2CID 237266871 Yang Yanbin Ianjamasimanana Roger Hammer Francois Higgs Clare Namumba Brenda Carignan Claude Jozsa Gyula I G McConnachie Alan W 2022 Evidence of ram pressure stripping of WLM a dwarf galaxy far away from any large host galaxy Astronomy amp Astrophysics 660 L11 arXiv 2204 03662 Bibcode 2022A amp A 660L 11Y doi 10 1051 0004 6361 202243307 S2CID 248069632 a b van den Bergh Sidney April 2000 Updated Information on the Local Group The Publications of the Astronomical Society of the Pacific 112 770 529 536 arXiv astro ph 0001040 Bibcode 2000PASP 112 529V doi 10 1086 316548 S2CID 1805423 eso1610 The Wilds of the Local Group 23 March 2016 Accessed 24 3 2016 http www eso org public news eso1610 Mondal Chayan Subramaniam Annapurni George Koshy 2021 A tale of two nearby dwarf irregular galaxies WLM and IC 2574 As revealed by UVIT Journal of Astrophysics and Astronomy 42 2 50 arXiv 2105 13048 Bibcode 2021JApA 42 50M doi 10 1007 s12036 021 09761 z S2CID 235212077 E E Smith 1951 1939 Gray Lensman Gnome p 66 ISBN 978 1 882968 12 1 Ron Ellik Bill Evans amp Al Lewis 1966 The Universes of E E Smith Advent p 121 ISBN 0 911682 03 1 Synthespians TM Discontinuity Guide the Whoniverse External links edit nbsp Media related to WLM galaxy at Wikimedia Commons Retrieved from https en wikipedia org w index php title Wolf Lundmark Melotte amp oldid 1209207365, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.