fbpx
Wikipedia

Cytochrome c oxidase subunit III

Cytochrome c oxidase subunit III (COX3) is an enzyme that in humans is encoded by the MT-CO3 gene.[6] It is one of main transmembrane subunits of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits (MT-CO1, MT-CO2, MT-CO3) of respiratory complex IV. Variants of it have been associated with isolated myopathy, severe encephalomyopathy, Leber hereditary optic neuropathy, mitochondrial complex IV deficiency, and recurrent myoglobinuria .[7][8][9]

COX3
Identifiers
AliasesCOX3, COIII, MTCO3, Cytochrome c oxidase subunit III, cytochrome c oxidase III
External IDsOMIM: 516050 MGI: 102502 HomoloGene: 5014 GeneCards: COX3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

NP_904334

Location (UCSC)Chr M: 0.01 – 0.01 MbChr M: 0.01 – 0.01 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Location of the MT-CO3 gene in the human mitochondrial genome. MT-CO3 is one of the three cytochrome c oxidase subunit mitochondrial genes (orange boxes).
Cytochrome c oxidase subunit III
Structure of the 13-subunit oxidized cytochrome c oxidase.[5]
Identifiers
SymbolCOX3
PfamPF00510
InterProIPR000298
PROSITEPDOC50253
SCOP21occ / SCOPe / SUPFAM
TCDB3.D.4
OPM superfamily4
OPM protein1v55
CDDcd01665
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Structure

The MT-CO3 gene produces a 30 kDa protein composed of 261 amino acids.[10][11] COX3, the protein encoded by this gene, is a member of the cytochrome c oxidase subunit 3 family. This protein is located on the inner mitochondrial membrane. COX3 is a multi-pass transmembrane protein: in human, it contains 7 transmembrane domains at positions 15–35, 42–59, 81–101, 127–147, 159–179, 197–217, and 239–259.[8][9]

Function

Cytochrome c oxidase (EC 1.9.3.1) is the terminal enzyme of the respiratory chain of mitochondria and many aerobic bacteria. It catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen:

4 cytochrome c+2 + 4 H+ + O2   4 cytochrome c+3 + 2 H2O

This reaction is coupled to the pumping of four additional protons across the mitochondrial or bacterial membrane.[12][13]

Cytochrome c oxidase is an oligomeric enzymatic complex that is located in the mitochondrial inner membrane of eukaryotes and in the plasma membrane of aerobic prokaryotes. The core structure of prokaryotic and eukaryotic cytochrome c oxidase contains three common subunits, I, II and III. In prokaryotes, subunits I and III can be fused and a fourth subunit is sometimes found, whereas in eukaryotes there are a variable number of additional small subunits.[14]

As the bacterial respiratory systems are branched, they have a number of distinct terminal oxidases, rather than the single cytochrome c oxidase present in the eukaryotic mitochondrial systems. Although the cytochrome o oxidases do not catalyze the cytochrome c but the quinol (ubiquinol) oxidation they belong to the same haem-copper oxidase superfamily as cytochrome c oxidases. Members of this family share sequence similarities in all three core subunits: subunit I is the most conserved subunit, whereas subunit II is the least conserved.[15][16][17]

Clinical significance

Mutations in mtDNA-encoded cytochrome c oxidase subunit genes have been observed to be associated with isolated myopathy, severe encephalomyopathy, Leber hereditary optic neuropathy, mitochondrial complex IV deficiency, and recurrent myoglobinuria .[7][8][9]

Leber hereditary optic neuropathy (LHON)

LHON is a maternally inherited disease resulting in acute or subacute loss of central vision, due to optic nerve dysfunction. Cardiac conduction defects and neurological defects have also been described in some patients. LHON results from primary mitochondrial DNA mutations affecting the respiratory chain complexes. Mutations at positions 9438 and 9804, which result in glycine-78 to serine and alanine-200 to threonine amino acid changes, have been associated with this disease.[18][8][9]

Mitochondrial complex IV deficiency (MT-C4D)

Complex IV deficiency (COX deficiency) is a disorder of the mitochondrial respiratory chain with heterogeneous clinical manifestations, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. Features include hypertrophic cardiomyopathy, hepatomegaly and liver dysfunction, hypotonia, muscle weakness, exercise intolerance, developmental delay, delayed motor development, mental retardation, lactic acidemia, encephalopathy, ataxia, and cardiac arrhythmia. Some affected individuals manifest a fatal hypertrophic cardiomyopathy resulting in neonatal death and a subset of patients manifest Leigh syndrome. The mutations G7970T and G9952A have been associated with this disease.[7][19][8][9]

Recurrent myoglobinuria mitochondrial (RM-MT)

Recurrent myoglobinuria is characterized by recurrent attacks of rhabdomyolysis (necrosis or disintegration of skeletal muscle) associated with muscle pain and weakness, and followed by excretion of myoglobin in the urine. It has been associated with mitochondrial complex IV deficiency.[20][8][9]

Subfamilies

  • Cytochrome o ubiquinol oxidase, subunit III InterProIPR014206
  • Cytochrome aa3 quinol oxidase, subunit III InterProIPR014246

Interactions

COX3 has been shown to have 15 binary protein-protein interactions including 8 co-complex interactions. COX3 appears to interact with SNCA, KRAS, RAC1, and HSPB2.[21]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198938 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000064358 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Miki K, Sogabe S, Uno A, Ezoe T, Kasai N, Saeda M, Matsuura Y, Miki M (May 1994). "Application of an automatic molecular-replacement procedure to crystal structure analysis of cytochrome c2 from Rhodopseudomonas viridis". Acta Crystallographica Section D. 50 (Pt 3): 271–5. doi:10.1107/S0907444993013952. PMID 15299438.
  6. ^ "Entrez Gene: COX3 cytochrome c oxidase subunit III".  This article incorporates text from this source, which is in the public domain.
  7. ^ a b c Horváth R, Schoser BG, Müller-Höcker J, Völpel M, Jaksch M, Lochmüller H (December 2005). "Mutations in mtDNA-encoded cytochrome c oxidase subunit genes causing isolated myopathy or severe encephalomyopathy". Neuromuscular Disorders. 15 (12): 851–7. doi:10.1016/j.nmd.2005.09.005. PMID 16288875. S2CID 11683931.
  8. ^ a b c d e f "MT-CO3 - Cytochrome c oxidase subunit 3 - Homo sapiens (Human) - MT-CO3 gene & protein". www.uniprot.org. Retrieved 2018-08-21.  This article incorporates text available under the CC BY 4.0 license.
  9. ^ a b c d e f "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  10. ^ Yao, Daniel. . amino.heartproteome.org. Archived from the original on 2018-08-22. Retrieved 2018-08-21.
  11. ^ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  12. ^ Michel H (November 1999). "Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion". Biochemistry. 38 (46): 15129–40. doi:10.1021/bi9910934. PMID 10563795.
  13. ^ Belevich I, Verkhovsky MI, Wikström M (April 2006). "Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase". Nature. 440 (7085): 829–32. Bibcode:2006Natur.440..829B. doi:10.1038/nature04619. PMID 16598262. S2CID 4312050.
  14. ^ Mather MW, Springer P, Hensel S, Buse G, Fee JA (March 1993). "Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3". The Journal of Biological Chemistry. 268 (8): 5395–408. doi:10.1016/S0021-9258(18)53335-4. PMID 8383670.
  15. ^ Santana M, Kunst F, Hullo MF, Rapoport G, Danchin A, Glaser P (May 1992). "Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase". The Journal of Biological Chemistry. 267 (15): 10225–31. doi:10.1016/S0021-9258(19)50007-2. PMID 1316894.
  16. ^ Chepuri V, Lemieux L, Au DC, Gennis RB (July 1990). "The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases". The Journal of Biological Chemistry. 265 (19): 11185–92. doi:10.1016/S0021-9258(19)38574-6. PMID 2162835.
  17. ^ García-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (September 1994). "The superfamily of heme-copper respiratory oxidases". Journal of Bacteriology. 176 (18): 5587–600. doi:10.1128/jb.176.18.5587-5600.1994. PMC 196760. PMID 8083153.
  18. ^ Johns DR, Neufeld MJ (October 1993). "Cytochrome c oxidase mutations in Leber hereditary optic neuropathy". Biochemical and Biophysical Research Communications. 196 (2): 810–5. doi:10.1006/bbrc.1993.2321. PMID 8240356.
  19. ^ Hanna MG, Nelson IP, Rahman S, Lane RJ, Land J, Heales S, Cooper MJ, Schapira AH, Morgan-Hughes JA, Wood NW (July 1998). "Cytochrome c oxidase deficiency associated with the first stop-codon point mutation in human mtDNA". American Journal of Human Genetics. 63 (1): 29–36. doi:10.1086/301910. PMC 1377234. PMID 9634511.
  20. ^ Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WS, Penn AM, Buist NR, Kennaway NG (April 1996). "A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria". Nature Genetics. 12 (4): 410–6. doi:10.1038/ng0496-410. PMID 8630495. S2CID 13314201.
  21. ^ "2 binary interactions found for search term COX3". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-08-21.

Further reading

  • Moraes CT, Andreetta F, Bonilla E, Shanske S, DiMauro S, Schon EA (March 1991). "Replication-competent human mitochondrial DNA lacking the heavy-strand promoter region". Molecular and Cellular Biology. 11 (3): 1631–7. doi:10.1128/MCB.11.3.1631. PMC 369459. PMID 1996112.
  • Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G (October 1986). "URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit". Science. 234 (4776): 614–8. Bibcode:1986Sci...234..614C. doi:10.1126/science.3764430. PMID 3764430.
  • Chomyn A, Mariottini P, Cleeter MW, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985). "Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase". Nature. 314 (6012): 592–7. Bibcode:1985Natur.314..592C. doi:10.1038/314592a0. PMID 3921850. S2CID 32964006.
  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (April 1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–65. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID 7219534. S2CID 4355527.
  • Montoya J, Ojala D, Attardi G (April 1981). "Distinctive features of the 5'-terminal sequences of the human mitochondrial mRNAs". Nature. 290 (5806): 465–70. Bibcode:1981Natur.290..465M. doi:10.1038/290465a0. PMID 7219535. S2CID 4358928.
  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (October 1999). "Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA". Nature Genetics. 23 (2): 147. doi:10.1038/13779. PMID 10508508. S2CID 32212178.
  • Ingman M, Kaessmann H, Pääbo S, Gyllensten U (December 2000). "Mitochondrial genome variation and the origin of modern humans". Nature. 408 (6813): 708–13. Bibcode:2000Natur.408..708I. doi:10.1038/35047064. PMID 11130070. S2CID 52850476.
  • Maca-Meyer N, González AM, Larruga JM, Flores C, Cabrera VM (2003). "Major genomic mitochondrial lineages delineate early human expansions". BMC Genetics. 2: 13. doi:10.1186/1471-2156-2-13. PMC 55343. PMID 11553319.
  • Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C, Ghosh SS, Olefsky JM, Beal MF, Davis RE, Howell N (May 2002). "Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups". American Journal of Human Genetics. 70 (5): 1152–71. doi:10.1086/339933. PMC 447592. PMID 11938495.
  • Silva WA, Bonatto SL, Holanda AJ, Ribeiro-Dos-Santos AK, Paixão BM, Goldman GH, Abe-Sandes K, Rodriguez-Delfin L, Barbosa M, Paçó-Larson ML, Petzl-Erler ML, Valente V, Santos SE, Zago MA (July 2002). "Mitochondrial genome diversity of Native Americans supports a single early entry of founder populations into America". American Journal of Human Genetics. 71 (1): 187–92. doi:10.1086/341358. PMC 384978. PMID 12022039.
  • Elkon H, Don J, Melamed E, Ziv I, Shirvan A, Offen D (June 2002). "Mutant and wild-type alpha-synuclein interact with mitochondrial cytochrome C oxidase". Journal of Molecular Neuroscience. 18 (3): 229–38. doi:10.1385/JMN:18:3:229. PMID 12059041. S2CID 42265181.
  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (January 2003). "Natural selection shaped regional mtDNA variation in humans". Proceedings of the National Academy of Sciences of the United States of America. 100 (1): 171–6. Bibcode:2003PNAS..100..171M. doi:10.1073/pnas.0136972100. PMC 140917. PMID 12509511.
  • Ingman M, Gyllensten U (July 2003). "Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines". Genome Research. 13 (7): 1600–6. doi:10.1101/gr.686603. PMC 403733. PMID 12840039.
  • Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP (September 2003). "Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences". American Journal of Human Genetics. 73 (3): 671–6. doi:10.1086/377718. PMC 1180693. PMID 12870132.
  • Temperley RJ, Seneca SH, Tonska K, Bartnik E, Bindoff LA, Lightowlers RN, Chrzanowska-Lightowlers ZM (September 2003). "Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria". Human Molecular Genetics. 12 (18): 2341–8. doi:10.1093/hmg/ddg238. PMID 12915481.
  • Maca-Meyer N, González AM, Pestano J, Flores C, Larruga JM, Cabrera VM (October 2003). "Mitochondrial DNA transit between West Asia and North Africa inferred from U6 phylogeography". BMC Genetics. 4: 15. doi:10.1186/1471-2156-4-15. PMC 270091. PMID 14563219.
  • Coble MD, Just RS, O'Callaghan JE, Letmanyi IH, Peterson CT, Irwin JA, Parsons TJ (June 2004). "Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians". International Journal of Legal Medicine. 118 (3): 137–46. doi:10.1007/s00414-004-0427-6. PMID 14760490. S2CID 8413730.
  • Palanichamy MG, Sun C, Agrawal S, Bandelt HJ, Kong QP, Khan F, Wang CY, Chaudhuri TK, Palla V, Zhang YP (December 2004). "Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia". American Journal of Human Genetics. 75 (6): 966–78. doi:10.1086/425871. PMC 1182158. PMID 15467980.
  • Starikovskaya EB, Sukernik RI, Derbeneva OA, Volodko NV, Ruiz-Pesini E, Torroni A, Brown MD, Lott MT, Hosseini SH, Huoponen K, Wallace DC (January 2005). "Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups". Annals of Human Genetics. 69 (Pt 1): 67–89. doi:10.1046/j.1529-8817.2003.00127.x. PMC 3905771. PMID 15638829.
  • Rajkumar R, Banerjee J, Gunturi HB, Trivedi R, Kashyap VK (April 2005). "Phylogeny and antiquity of M macrohaplogroup inferred from complete mt DNA sequence of Indian specific lineages". BMC Evolutionary Biology. 5: 26. doi:10.1186/1471-2148-5-26. PMC 1079809. PMID 15804362.

External links

  • GeneReviews/NCBI/NIH/UW entry on Mitochondrial DNA-Associated Leigh Syndrome and NARP

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


cytochrome, oxidase, subunit, cox3, redirects, here, cyclooxygenase, isoenzyme, cox3, enzyme, that, humans, encoded, gene, main, transmembrane, subunits, cytochrome, oxidase, also, three, mitochondrial, mtdna, encoded, subunits, respiratory, complex, variants,. COX3 redirects here For the cyclooxygenase isoenzyme see COX 3 Cytochrome c oxidase subunit III COX3 is an enzyme that in humans is encoded by the MT CO3 gene 6 It is one of main transmembrane subunits of cytochrome c oxidase It is also one of the three mitochondrial DNA mtDNA encoded subunits MT CO1 MT CO2 MT CO3 of respiratory complex IV Variants of it have been associated with isolated myopathy severe encephalomyopathy Leber hereditary optic neuropathy mitochondrial complex IV deficiency and recurrent myoglobinuria 7 8 9 COX3IdentifiersAliasesCOX3 COIII MTCO3 Cytochrome c oxidase subunit III cytochrome c oxidase IIIExternal IDsOMIM 516050 MGI 102502 HomoloGene 5014 GeneCards COX3Gene location Human Chr Mitochondrial DNA human 1 Bandn aStart9 207 bp 1 End9 990 bp 1 Gene location Mouse Chr Mitochondrial DNA mouse 2 Bandn aStart8 607 bp 2 End9 390 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed ingastric mucosaskin of abdomenamygdalahippocampus propersubcutaneous adipose tissuecanal of the cervixrectumBrodmann area 9hypothalamusgallbladderTop expressed inquadriceps femoris muscleproximal tubuleduodenumganglionic eminencezone of skinjejunumbone marrowhippocampus properthymusneural tubeMore reference expression dataBioGPSn aGene ontologyMolecular functioncytochrome c oxidase activity protein binding electron transfer activity oxidoreduction driven active transmembrane transporter activityCellular componentintegral component of membrane mitochondrial inner membrane respiratory chain complex IV membrane mitochondrion mitochondrial respiratory chain complex IVBiological processproton transmembrane transport aerobic electron transport chain respiratory chain complex IV assembly respiratory electron transport chain mitochondrial electron transport cytochrome c to oxygen aerobic respiration transmembrane transportSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez451417710EnsemblENSG00000198938ENSMUSG00000064358UniProtP00414P00416RefSeq mRNA n an aRefSeq protein n aNP 904334Location UCSC Chr M 0 01 0 01 MbChr M 0 01 0 01 MbPubMed search 3 4 WikidataView Edit HumanView Edit MouseLocation of the MT CO3 gene in the human mitochondrial genome MT CO3 is one of the three cytochrome c oxidase subunit mitochondrial genes orange boxes Cytochrome c oxidase subunit IIIStructure of the 13 subunit oxidized cytochrome c oxidase 5 IdentifiersSymbolCOX3PfamPF00510InterProIPR000298PROSITEPDOC50253SCOP21occ SCOPe SUPFAMTCDB3 D 4OPM superfamily4OPM protein1v55CDDcd01665Available protein structures Pfam structures ECOD PDBRCSB PDB PDBe PDBjPDBsumstructure summary Contents 1 Structure 2 Function 3 Clinical significance 3 1 Leber hereditary optic neuropathy LHON 3 2 Mitochondrial complex IV deficiency MT C4D 3 3 Recurrent myoglobinuria mitochondrial RM MT 4 Subfamilies 5 Interactions 6 References 7 Further reading 8 External linksStructure EditThe MT CO3 gene produces a 30 kDa protein composed of 261 amino acids 10 11 COX3 the protein encoded by this gene is a member of the cytochrome c oxidase subunit 3 family This protein is located on the inner mitochondrial membrane COX3 is a multi pass transmembrane protein in human it contains 7 transmembrane domains at positions 15 35 42 59 81 101 127 147 159 179 197 217 and 239 259 8 9 Function EditCytochrome c oxidase EC 1 9 3 1 is the terminal enzyme of the respiratory chain of mitochondria and many aerobic bacteria It catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen 4 cytochrome c 2 4 H O2 displaystyle rightleftharpoons 4 cytochrome c 3 2 H2OThis reaction is coupled to the pumping of four additional protons across the mitochondrial or bacterial membrane 12 13 Cytochrome c oxidase is an oligomeric enzymatic complex that is located in the mitochondrial inner membrane of eukaryotes and in the plasma membrane of aerobic prokaryotes The core structure of prokaryotic and eukaryotic cytochrome c oxidase contains three common subunits I II and III In prokaryotes subunits I and III can be fused and a fourth subunit is sometimes found whereas in eukaryotes there are a variable number of additional small subunits 14 As the bacterial respiratory systems are branched they have a number of distinct terminal oxidases rather than the single cytochrome c oxidase present in the eukaryotic mitochondrial systems Although the cytochrome o oxidases do not catalyze the cytochrome c but the quinol ubiquinol oxidation they belong to the same haem copper oxidase superfamily as cytochrome c oxidases Members of this family share sequence similarities in all three core subunits subunit I is the most conserved subunit whereas subunit II is the least conserved 15 16 17 Clinical significance EditMutations in mtDNA encoded cytochrome c oxidase subunit genes have been observed to be associated with isolated myopathy severe encephalomyopathy Leber hereditary optic neuropathy mitochondrial complex IV deficiency and recurrent myoglobinuria 7 8 9 Leber hereditary optic neuropathy LHON Edit LHON is a maternally inherited disease resulting in acute or subacute loss of central vision due to optic nerve dysfunction Cardiac conduction defects and neurological defects have also been described in some patients LHON results from primary mitochondrial DNA mutations affecting the respiratory chain complexes Mutations at positions 9438 and 9804 which result in glycine 78 to serine and alanine 200 to threonine amino acid changes have been associated with this disease 18 8 9 Mitochondrial complex IV deficiency MT C4D Edit Complex IV deficiency COX deficiency is a disorder of the mitochondrial respiratory chain with heterogeneous clinical manifestations ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs Features include hypertrophic cardiomyopathy hepatomegaly and liver dysfunction hypotonia muscle weakness exercise intolerance developmental delay delayed motor development mental retardation lactic acidemia encephalopathy ataxia and cardiac arrhythmia Some affected individuals manifest a fatal hypertrophic cardiomyopathy resulting in neonatal death and a subset of patients manifest Leigh syndrome The mutations G7970T and G9952A have been associated with this disease 7 19 8 9 Recurrent myoglobinuria mitochondrial RM MT Edit Recurrent myoglobinuria is characterized by recurrent attacks of rhabdomyolysis necrosis or disintegration of skeletal muscle associated with muscle pain and weakness and followed by excretion of myoglobin in the urine It has been associated with mitochondrial complex IV deficiency 20 8 9 Subfamilies EditCytochrome o ubiquinol oxidase subunit III InterPro IPR014206 Cytochrome aa3 quinol oxidase subunit III InterPro IPR014246Interactions EditCOX3 has been shown to have 15 binary protein protein interactions including 8 co complex interactions COX3 appears to interact with SNCA KRAS RAC1 and HSPB2 21 References Edit a b c GRCh38 Ensembl release 89 ENSG00000198938 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000064358 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Miki K Sogabe S Uno A Ezoe T Kasai N Saeda M Matsuura Y Miki M May 1994 Application of an automatic molecular replacement procedure to crystal structure analysis of cytochrome c2 from Rhodopseudomonas viridis Acta Crystallographica Section D 50 Pt 3 271 5 doi 10 1107 S0907444993013952 PMID 15299438 Entrez Gene COX3 cytochrome c oxidase subunit III This article incorporates text from this source which is in the public domain a b c Horvath R Schoser BG Muller Hocker J Volpel M Jaksch M Lochmuller H December 2005 Mutations in mtDNA encoded cytochrome c oxidase subunit genes causing isolated myopathy or severe encephalomyopathy Neuromuscular Disorders 15 12 851 7 doi 10 1016 j nmd 2005 09 005 PMID 16288875 S2CID 11683931 a b c d e f MT CO3 Cytochrome c oxidase subunit 3 Homo sapiens Human MT CO3 gene amp protein www uniprot org Retrieved 2018 08 21 This article incorporates text available under the CC BY 4 0 license a b c d e f UniProt the universal protein knowledgebase Nucleic Acids Research 45 D1 D158 D169 January 2017 doi 10 1093 nar gkw1099 PMC 5210571 PMID 27899622 Yao Daniel Cardiac Organellar Protein Atlas Knowledgebase COPaKB Protein Information amino heartproteome org Archived from the original on 2018 08 22 Retrieved 2018 08 21 Zong NC Li H Li H Lam MP Jimenez RC Kim CS Deng N Kim AK Choi JH Zelaya I Liem D Meyer D Odeberg J Fang C Lu HJ Xu T Weiss J Duan H Uhlen M Yates JR Apweiler R Ge J Hermjakob H Ping P October 2013 Integration of cardiac proteome biology and medicine by a specialized knowledgebase Circulation Research 113 9 1043 53 doi 10 1161 CIRCRESAHA 113 301151 PMC 4076475 PMID 23965338 Michel H November 1999 Cytochrome c oxidase catalytic cycle and mechanisms of proton pumping a discussion Biochemistry 38 46 15129 40 doi 10 1021 bi9910934 PMID 10563795 Belevich I Verkhovsky MI Wikstrom M April 2006 Proton coupled electron transfer drives the proton pump of cytochrome c oxidase Nature 440 7085 829 32 Bibcode 2006Natur 440 829B doi 10 1038 nature04619 PMID 16598262 S2CID 4312050 Mather MW Springer P Hensel S Buse G Fee JA March 1993 Cytochrome oxidase genes from Thermus thermophilus Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3 The Journal of Biological Chemistry 268 8 5395 408 doi 10 1016 S0021 9258 18 53335 4 PMID 8383670 Santana M Kunst F Hullo MF Rapoport G Danchin A Glaser P May 1992 Molecular cloning sequencing and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3 600 quinol oxidase The Journal of Biological Chemistry 267 15 10225 31 doi 10 1016 S0021 9258 19 50007 2 PMID 1316894 Chepuri V Lemieux L Au DC Gennis RB July 1990 The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3 type family of cytochrome c oxidases The Journal of Biological Chemistry 265 19 11185 92 doi 10 1016 S0021 9258 19 38574 6 PMID 2162835 Garcia Horsman JA Barquera B Rumbley J Ma J Gennis RB September 1994 The superfamily of heme copper respiratory oxidases Journal of Bacteriology 176 18 5587 600 doi 10 1128 jb 176 18 5587 5600 1994 PMC 196760 PMID 8083153 Johns DR Neufeld MJ October 1993 Cytochrome c oxidase mutations in Leber hereditary optic neuropathy Biochemical and Biophysical Research Communications 196 2 810 5 doi 10 1006 bbrc 1993 2321 PMID 8240356 Hanna MG Nelson IP Rahman S Lane RJ Land J Heales S Cooper MJ Schapira AH Morgan Hughes JA Wood NW July 1998 Cytochrome c oxidase deficiency associated with the first stop codon point mutation in human mtDNA American Journal of Human Genetics 63 1 29 36 doi 10 1086 301910 PMC 1377234 PMID 9634511 Keightley JA Hoffbuhr KC Burton MD Salas VM Johnston WS Penn AM Buist NR Kennaway NG April 1996 A microdeletion in cytochrome c oxidase COX subunit III associated with COX deficiency and recurrent myoglobinuria Nature Genetics 12 4 410 6 doi 10 1038 ng0496 410 PMID 8630495 S2CID 13314201 2 binary interactions found for search term COX3 IntAct Molecular Interaction Database EMBL EBI Retrieved 2018 08 21 Further reading EditMoraes CT Andreetta F Bonilla E Shanske S DiMauro S Schon EA March 1991 Replication competent human mitochondrial DNA lacking the heavy strand promoter region Molecular and Cellular Biology 11 3 1631 7 doi 10 1128 MCB 11 3 1631 PMC 369459 PMID 1996112 Chomyn A Cleeter MW Ragan CI Riley M Doolittle RF Attardi G October 1986 URF6 last unidentified reading frame of human mtDNA codes for an NADH dehydrogenase subunit Science 234 4776 614 8 Bibcode 1986Sci 234 614C doi 10 1126 science 3764430 PMID 3764430 Chomyn A Mariottini P Cleeter MW Ragan CI Matsuno Yagi A Hatefi Y Doolittle RF Attardi G 1985 Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory chain NADH dehydrogenase Nature 314 6012 592 7 Bibcode 1985Natur 314 592C doi 10 1038 314592a0 PMID 3921850 S2CID 32964006 Anderson S Bankier AT Barrell BG de Bruijn MH Coulson AR Drouin J Eperon IC Nierlich DP Roe BA Sanger F Schreier PH Smith AJ Staden R Young IG April 1981 Sequence and organization of the human mitochondrial genome Nature 290 5806 457 65 Bibcode 1981Natur 290 457A doi 10 1038 290457a0 PMID 7219534 S2CID 4355527 Montoya J Ojala D Attardi G April 1981 Distinctive features of the 5 terminal sequences of the human mitochondrial mRNAs Nature 290 5806 465 70 Bibcode 1981Natur 290 465M doi 10 1038 290465a0 PMID 7219535 S2CID 4358928 Andrews RM Kubacka I Chinnery PF Lightowlers RN Turnbull DM Howell N October 1999 Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nature Genetics 23 2 147 doi 10 1038 13779 PMID 10508508 S2CID 32212178 Ingman M Kaessmann H Paabo S Gyllensten U December 2000 Mitochondrial genome variation and the origin of modern humans Nature 408 6813 708 13 Bibcode 2000Natur 408 708I doi 10 1038 35047064 PMID 11130070 S2CID 52850476 Maca Meyer N Gonzalez AM Larruga JM Flores C Cabrera VM 2003 Major genomic mitochondrial lineages delineate early human expansions BMC Genetics 2 13 doi 10 1186 1471 2156 2 13 PMC 55343 PMID 11553319 Herrnstadt C Elson JL Fahy E Preston G Turnbull DM Anderson C Ghosh SS Olefsky JM Beal MF Davis RE Howell N May 2002 Reduced median network analysis of complete mitochondrial DNA coding region sequences for the major African Asian and European haplogroups American Journal of Human Genetics 70 5 1152 71 doi 10 1086 339933 PMC 447592 PMID 11938495 Silva WA Bonatto SL Holanda AJ Ribeiro Dos Santos AK Paixao BM Goldman GH Abe Sandes K Rodriguez Delfin L Barbosa M Paco Larson ML Petzl Erler ML Valente V Santos SE Zago MA July 2002 Mitochondrial genome diversity of Native Americans supports a single early entry of founder populations into America American Journal of Human Genetics 71 1 187 92 doi 10 1086 341358 PMC 384978 PMID 12022039 Elkon H Don J Melamed E Ziv I Shirvan A Offen D June 2002 Mutant and wild type alpha synuclein interact with mitochondrial cytochrome C oxidase Journal of Molecular Neuroscience 18 3 229 38 doi 10 1385 JMN 18 3 229 PMID 12059041 S2CID 42265181 Mishmar D Ruiz Pesini E Golik P Macaulay V Clark AG Hosseini S Brandon M Easley K Chen E Brown MD Sukernik RI Olckers A Wallace DC January 2003 Natural selection shaped regional mtDNA variation in humans Proceedings of the National Academy of Sciences of the United States of America 100 1 171 6 Bibcode 2003PNAS 100 171M doi 10 1073 pnas 0136972100 PMC 140917 PMID 12509511 Ingman M Gyllensten U July 2003 Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines Genome Research 13 7 1600 6 doi 10 1101 gr 686603 PMC 403733 PMID 12840039 Kong QP Yao YG Sun C Bandelt HJ Zhu CL Zhang YP September 2003 Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences American Journal of Human Genetics 73 3 671 6 doi 10 1086 377718 PMC 1180693 PMID 12870132 Temperley RJ Seneca SH Tonska K Bartnik E Bindoff LA Lightowlers RN Chrzanowska Lightowlers ZM September 2003 Investigation of a pathogenic mtDNA microdeletion reveals a translation dependent deadenylation decay pathway in human mitochondria Human Molecular Genetics 12 18 2341 8 doi 10 1093 hmg ddg238 PMID 12915481 Maca Meyer N Gonzalez AM Pestano J Flores C Larruga JM Cabrera VM October 2003 Mitochondrial DNA transit between West Asia and North Africa inferred from U6 phylogeography BMC Genetics 4 15 doi 10 1186 1471 2156 4 15 PMC 270091 PMID 14563219 Coble MD Just RS O Callaghan JE Letmanyi IH Peterson CT Irwin JA Parsons TJ June 2004 Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians International Journal of Legal Medicine 118 3 137 46 doi 10 1007 s00414 004 0427 6 PMID 14760490 S2CID 8413730 Palanichamy MG Sun C Agrawal S Bandelt HJ Kong QP Khan F Wang CY Chaudhuri TK Palla V Zhang YP December 2004 Phylogeny of mitochondrial DNA macrohaplogroup N in India based on complete sequencing implications for the peopling of South Asia American Journal of Human Genetics 75 6 966 78 doi 10 1086 425871 PMC 1182158 PMID 15467980 Starikovskaya EB Sukernik RI Derbeneva OA Volodko NV Ruiz Pesini E Torroni A Brown MD Lott MT Hosseini SH Huoponen K Wallace DC January 2005 Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia and the origins of Native American haplogroups Annals of Human Genetics 69 Pt 1 67 89 doi 10 1046 j 1529 8817 2003 00127 x PMC 3905771 PMID 15638829 Rajkumar R Banerjee J Gunturi HB Trivedi R Kashyap VK April 2005 Phylogeny and antiquity of M macrohaplogroup inferred from complete mt DNA sequence of Indian specific lineages BMC Evolutionary Biology 5 26 doi 10 1186 1471 2148 5 26 PMC 1079809 PMID 15804362 External links EditGeneReviews NCBI NIH UW entry on Mitochondrial DNA Associated Leigh Syndrome and NARPThis article incorporates text from the United States National Library of Medicine which is in the public domain Retrieved from https en wikipedia org w index php title Cytochrome c oxidase subunit III amp oldid 1072166326, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.