fbpx
Wikipedia

Restricted sumset

In additive number theory and combinatorics, a restricted sumset has the form

where are finite nonempty subsets of a field F and is a polynomial over F.

If is a constant non-zero function, for example for any , then is the usual sumset which is denoted by if

When

S is written as which is denoted by if

Note that |S| > 0 if and only if there exist with

Cauchy–Davenport theorem edit

The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group   we have the inequality[1][2][3]

 

where  , i.e. we're using modular arithmetic. It can be generalised to arbitrary (not necessarily abelian) groups using a Dyson transform. If   are subsets of a group  , then[4]

 

where   is the size of the smallest nontrivial subgroup of   (we set it to   if there is no such subgroup).

We may use this to deduce the Erdős–Ginzburg–Ziv theorem: given any sequence of 2n−1 elements in the cyclic group  , there are n elements that sum to zero modulo n. (Here n does not need to be prime.)[5][6]

A direct consequence of the Cauchy-Davenport theorem is: Given any sequence S of p−1 or more nonzero elements, not necessarily distinct, of  , every element of   can be written as the sum of the elements of some subsequence (possibly empty) of S.[7]

Kneser's theorem generalises this to general abelian groups.[8]

Erdős–Heilbronn conjecture edit

The Erdős–Heilbronn conjecture posed by Paul Erdős and Hans Heilbronn in 1964 states that   if p is a prime and A is a nonempty subset of the field Z/pZ.[9] This was first confirmed by J. A. Dias da Silva and Y. O. Hamidoune in 1994[10] who showed that

 

where A is a finite nonempty subset of a field F, and p(F) is a prime p if F is of characteristic p, and p(F) = ∞ if F is of characteristic 0. Various extensions of this result were given by Noga Alon, M. B. Nathanson and I. Ruzsa in 1996,[11] Q. H. Hou and Zhi-Wei Sun in 2002,[12] and G. Karolyi in 2004.[13]

Combinatorial Nullstellensatz edit

A powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle: the combinatorial Nullstellensatz.[14] Let   be a polynomial over a field  . Suppose that the coefficient of the monomial   in   is nonzero and   is the total degree of  . If   are finite subsets of   with   for  , then there are   such that  .

This tool was rooted in a paper of N. Alon and M. Tarsi in 1989,[15] and developed by Alon, Nathanson and Ruzsa in 1995–1996,[11] and reformulated by Alon in 1999.[14]

See also edit

References edit

  1. ^ Nathanson (1996) p.44
  2. ^ Geroldinger & Ruzsa (2009) pp.141–142
  3. ^ Jeffrey Paul Wheeler (2012). "The Cauchy-Davenport Theorem for Finite Groups". arXiv:1202.1816 [math.CO].
  4. ^ DeVos, Matt (2016). "On a Generalization of the Cauchy-Davenport Theorem". Integers. 16.
  5. ^ Nathanson (1996) p.48
  6. ^ Geroldinger & Ruzsa (2009) p.53
  7. ^ Wolfram's MathWorld, Cauchy-Davenport Theorem, http://mathworld.wolfram.com/Cauchy-DavenportTheorem.html, accessed 20 June 2012.
  8. ^ Geroldinger & Ruzsa (2009) p.143
  9. ^ Nathanson (1996) p.77
  10. ^ Dias da Silva, J. A.; Hamidoune, Y. O. (1994). "Cyclic spaces for Grassmann derivatives and additive theory". Bulletin of the London Mathematical Society. 26 (2): 140–146. doi:10.1112/blms/26.2.140.
  11. ^ a b Alon, Noga; Nathanson, Melvyn B.; Ruzsa, Imre (1996). "The polynomial method and restricted sums of congruence classes" (PDF). Journal of Number Theory. 56 (2): 404–417. doi:10.1006/jnth.1996.0029. MR 1373563.
  12. ^ Hou, Qing-Hu; Sun, Zhi-Wei (2002). "Restricted sums in a field". Acta Arithmetica. 102 (3): 239–249. Bibcode:2002AcAri.102..239H. doi:10.4064/aa102-3-3. MR 1884717.
  13. ^ Károlyi, Gyula (2004). "The Erdős–Heilbronn problem in abelian groups". Israel Journal of Mathematics. 139: 349–359. doi:10.1007/BF02787556. MR 2041798. S2CID 33387005.
  14. ^ a b Alon, Noga (1999). "Combinatorial Nullstellensatz" (PDF). Combinatorics, Probability and Computing. 8 (1–2): 7–29. doi:10.1017/S0963548398003411. MR 1684621. S2CID 209877602.
  15. ^ Alon, Noga; Tarsi, Michael (1989). "A nowhere-zero point in linear mappings". Combinatorica. 9 (4): 393–395. CiteSeerX 10.1.1.163.2348. doi:10.1007/BF02125351. MR 1054015. S2CID 8208350.
  • Geroldinger, Alfred; Ruzsa, Imre Z., eds. (2009). Combinatorial number theory and additive group theory. Advanced Courses in Mathematics CRM Barcelona. Elsholtz, C.; Freiman, G.; Hamidoune, Y. O.; Hegyvári, N.; Károlyi, G.; Nathanson, M.; Solymosi, J.; Stanchescu, Y. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse). Basel: Birkhäuser. ISBN 978-3-7643-8961-1. Zbl 1177.11005.
  • Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. ISBN 0-387-94655-1. Zbl 0859.11003.

External links edit

restricted, sumset, additive, number, theory, combinatorics, restricted, sumset, form, displaystyle, cdots, ldots, mathrm, ldots, where, displaystyle, ldots, finite, nonempty, subsets, field, displaystyle, ldots, polynomial, over, displaystyle, constant, zero,. In additive number theory and combinatorics a restricted sumset has the form S a 1 a n a 1 A 1 a n A n a n d P a 1 a n 0 displaystyle S a 1 cdots a n a 1 in A 1 ldots a n in A n mathrm and P a 1 ldots a n not 0 where A 1 A n displaystyle A 1 ldots A n are finite nonempty subsets of a field F and P x 1 x n displaystyle P x 1 ldots x n is a polynomial over F If P displaystyle P is a constant non zero function for example P x 1 x n 1 displaystyle P x 1 ldots x n 1 for any x 1 x n displaystyle x 1 ldots x n then S displaystyle S is the usual sumset A 1 A n displaystyle A 1 cdots A n which is denoted by n A displaystyle nA if A 1 A n A displaystyle A 1 cdots A n A When P x 1 x n 1 i lt j n x j x i displaystyle P x 1 ldots x n prod 1 leq i lt j leq n x j x i S is written as A 1 A n displaystyle A 1 dotplus cdots dotplus A n which is denoted by n A displaystyle n wedge A if A 1 A n A displaystyle A 1 cdots A n A Note that S gt 0 if and only if there exist a 1 A 1 a n A n displaystyle a 1 in A 1 ldots a n in A n with P a 1 a n 0 displaystyle P a 1 ldots a n not 0 Contents 1 Cauchy Davenport theorem 2 Erdos Heilbronn conjecture 3 Combinatorial Nullstellensatz 4 See also 5 References 6 External linksCauchy Davenport theorem editThe Cauchy Davenport theorem named after Augustin Louis Cauchy and Harold Davenport asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group Z p Z displaystyle mathbb Z p mathbb Z nbsp we have the inequality 1 2 3 A B min p A B 1 displaystyle A B geq min p A B 1 nbsp where A B a b mod p a A b B displaystyle A B a b pmod p mid a in A b in B nbsp i e we re using modular arithmetic It can be generalised to arbitrary not necessarily abelian groups using a Dyson transform If A B displaystyle A B nbsp are subsets of a group G displaystyle G nbsp then 4 A B min p G A B 1 displaystyle A B geq min p G A B 1 nbsp where p G displaystyle p G nbsp is the size of the smallest nontrivial subgroup of G displaystyle G nbsp we set it to 1 displaystyle 1 nbsp if there is no such subgroup We may use this to deduce the Erdos Ginzburg Ziv theorem given any sequence of 2n 1 elements in the cyclic group Z n Z displaystyle mathbb Z n mathbb Z nbsp there are n elements that sum to zero modulo n Here n does not need to be prime 5 6 A direct consequence of the Cauchy Davenport theorem is Given any sequence S of p 1 or more nonzero elements not necessarily distinct of Z p Z displaystyle mathbb Z p mathbb Z nbsp every element of Z p Z displaystyle mathbb Z p mathbb Z nbsp can be written as the sum of the elements of some subsequence possibly empty of S 7 Kneser s theorem generalises this to general abelian groups 8 Erdos Heilbronn conjecture editThe Erdos Heilbronn conjecture posed by Paul Erdos and Hans Heilbronn in 1964 states that 2 A min p 2 A 3 displaystyle 2 wedge A geq min p 2 A 3 nbsp if p is a prime and A is a nonempty subset of the field Z pZ 9 This was first confirmed by J A Dias da Silva and Y O Hamidoune in 1994 10 who showed that n A min p F n A n 2 1 displaystyle n wedge A geq min p F n A n 2 1 nbsp where A is a finite nonempty subset of a field F and p F is a prime p if F is of characteristic p and p F if F is of characteristic 0 Various extensions of this result were given by Noga Alon M B Nathanson and I Ruzsa in 1996 11 Q H Hou and Zhi Wei Sun in 2002 12 and G Karolyi in 2004 13 Combinatorial Nullstellensatz editA powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle the combinatorial Nullstellensatz 14 Let f x 1 x n displaystyle f x 1 ldots x n nbsp be a polynomial over a field F displaystyle F nbsp Suppose that the coefficient of the monomial x 1 k 1 x n k n displaystyle x 1 k 1 cdots x n k n nbsp in f x 1 x n displaystyle f x 1 ldots x n nbsp is nonzero and k 1 k n displaystyle k 1 cdots k n nbsp is the total degree of f x 1 x n displaystyle f x 1 ldots x n nbsp If A 1 A n displaystyle A 1 ldots A n nbsp are finite subsets of F displaystyle F nbsp with A i gt k i displaystyle A i gt k i nbsp for i 1 n displaystyle i 1 ldots n nbsp then there are a 1 A 1 a n A n displaystyle a 1 in A 1 ldots a n in A n nbsp such that f a 1 a n 0 displaystyle f a 1 ldots a n not 0 nbsp This tool was rooted in a paper of N Alon and M Tarsi in 1989 15 and developed by Alon Nathanson and Ruzsa in 1995 1996 11 and reformulated by Alon in 1999 14 See also editPolynomial method in combinatoricsReferences edit Nathanson 1996 p 44 Geroldinger amp Ruzsa 2009 pp 141 142 Jeffrey Paul Wheeler 2012 The Cauchy Davenport Theorem for Finite Groups arXiv 1202 1816 math CO DeVos Matt 2016 On a Generalization of the Cauchy Davenport Theorem Integers 16 Nathanson 1996 p 48 Geroldinger amp Ruzsa 2009 p 53 Wolfram s MathWorld Cauchy Davenport Theorem http mathworld wolfram com Cauchy DavenportTheorem html accessed 20 June 2012 Geroldinger amp Ruzsa 2009 p 143 Nathanson 1996 p 77 Dias da Silva J A Hamidoune Y O 1994 Cyclic spaces for Grassmann derivatives and additive theory Bulletin of the London Mathematical Society 26 2 140 146 doi 10 1112 blms 26 2 140 a b Alon Noga Nathanson Melvyn B Ruzsa Imre 1996 The polynomial method and restricted sums of congruence classes PDF Journal of Number Theory 56 2 404 417 doi 10 1006 jnth 1996 0029 MR 1373563 Hou Qing Hu Sun Zhi Wei 2002 Restricted sums in a field Acta Arithmetica 102 3 239 249 Bibcode 2002AcAri 102 239H doi 10 4064 aa102 3 3 MR 1884717 Karolyi Gyula 2004 The Erdos Heilbronn problem in abelian groups Israel Journal of Mathematics 139 349 359 doi 10 1007 BF02787556 MR 2041798 S2CID 33387005 a b Alon Noga 1999 Combinatorial Nullstellensatz PDF Combinatorics Probability and Computing 8 1 2 7 29 doi 10 1017 S0963548398003411 MR 1684621 S2CID 209877602 Alon Noga Tarsi Michael 1989 A nowhere zero point in linear mappings Combinatorica 9 4 393 395 CiteSeerX 10 1 1 163 2348 doi 10 1007 BF02125351 MR 1054015 S2CID 8208350 Geroldinger Alfred Ruzsa Imre Z eds 2009 Combinatorial number theory and additive group theory Advanced Courses in Mathematics CRM Barcelona Elsholtz C Freiman G Hamidoune Y O Hegyvari N Karolyi G Nathanson M Solymosi J Stanchescu Y With a foreword by Javier Cilleruelo Marc Noy and Oriol Serra Coordinators of the DocCourse Basel Birkhauser ISBN 978 3 7643 8961 1 Zbl 1177 11005 Nathanson Melvyn B 1996 Additive Number Theory Inverse Problems and the Geometry of Sumsets Graduate Texts in Mathematics Vol 165 Springer Verlag ISBN 0 387 94655 1 Zbl 0859 11003 External links editWeisstein Eric W Erdos Heilbronn Conjecture MathWorld Retrieved from https en wikipedia org w index php title Restricted sumset amp oldid 1195078374 Combinatorial Nullstellensatz, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.