fbpx
Wikipedia

Automatic sequence

In mathematics and theoretical computer science, an automatic sequence (also called a k-automatic sequence or a k-recognizable sequence when one wants to indicate that the base of the numerals used is k) is an infinite sequence of terms characterized by a finite automaton. The n-th term of an automatic sequence a(n) is a mapping of the final state reached in a finite automaton accepting the digits of the number n in some fixed base k.[1][2]

An automatic set is a set of non-negative integers S for which the sequence of values of its characteristic function χS is an automatic sequence; that is, S is k-automatic if χS(n) is k-automatic, where χS(n) = 1 if n  S and 0 otherwise.[3][4]

Definition edit

Automatic sequences may be defined in a number of ways, all of which are equivalent. Four common definitions are as follows.

Automata-theoretic edit

Let k be a positive integer, and let D = (Q, Σk, δ, q0, Δ, τ) be a deterministic finite automaton with output, where

  • Q is the finite set of states;
  • the input alphabet Σk consists of the set {0,1,...,k-1} of possible digits in base-k notation;
  • δ : Q × ΣkQ is the transition function;
  • q0Q is the initial state;
  • the output alphabet Δ is a finite set; and
  • τ : Q → Δ is the output function mapping from the set of internal states to the output alphabet.

Extend the transition function δ from acting on single digits to acting on strings of digits by defining the action of δ on a string s consisting of digits s1s2...st as:

δ(q,s) = δ(δ(q, s1s2...st-1), st).

Define a function a from the set of positive integers to the output alphabet Δ as follows:

a(n) = τ(δ(q0,s(n))),

where s(n) is n written in base k. Then the sequence a = a(1)a(2)a(3)... is a k-automatic sequence.[1]

An automaton reading the base k digits of s(n) starting with the most significant digit is said to be direct reading, while an automaton starting with the least significant digit is reverse reading.[4] The above definition holds whether s(n) is direct or reverse reading.[5]

Substitution edit

Let   be a k-uniform morphism of a free monoid   and let   be a coding (that is, a  -uniform morphism), as in the automata-theoretic case. If   is a fixed point of  —that is, if  —then   is a k-automatic sequence.[6] Conversely, every k-automatic sequence is obtainable in this way.[4] This result is due to Cobham, and it is referred to in the literature as Cobham's little theorem.[2][7]

k-kernel edit

Let k ≥ 2. The k-kernel of the sequence s(n) is the set of subsequences

 

In most cases, the k-kernel of a sequence is infinite. However, if the k-kernel is finite, then the sequence s(n) is k-automatic, and the converse is also true. This is due to Eilenberg.[8][9][10]

It follows that a k-automatic sequence is necessarily a sequence on a finite alphabet.

Formal power series edit

Let u(n) be a sequence over an alphabet Σ and suppose that there is an injective function β from Σ to the finite field Fq, where q = pn for some prime p. The associated formal power series is

 

Then the sequence u is q-automatic if and only if this formal power series is algebraic over Fq(X). This result is due to Christol, and it is referred to in the literature as Christol's theorem.[11]

History edit

Automatic sequences were introduced by Büchi in 1960,[12] although his paper took a more logico-theoretic approach to the matter and did not use the terminology found in this article. The notion of automatic sequences was further studied by Cobham in 1972, who called these sequences "uniform tag sequences".[7]

The term "automatic sequence" first appeared in a paper of Deshouillers.[13]

Examples edit

The following sequences are automatic:

Thue–Morse sequence edit

 
DFAO generating the Thue–Morse sequence

The Thue–Morse sequence t(n) (OEISA010060) is the fixed point of the morphism 0 → 01, 1 → 10. Since the n-th term of the Thue–Morse sequence counts the number of ones modulo 2 in the base-2 representation of n, it is generated by the two-state deterministic finite automaton with output pictured here, where being in state q0 indicates there are an even number of ones in the representation of n and being in state q1 indicates there are an odd number of ones. Hence, the Thue–Morse sequence is 2-automatic.

Period-doubling sequence edit

The n-th term of the period-doubling sequence d(n) (OEISA096268) is determined by the parity of the exponent of the highest power of 2 dividing n. It is also the fixed point of the morphism 0 → 01, 1 → 00.[14] Starting with the initial term w = 0 and iterating the 2-uniform morphism φ on w where φ(0) = 01 and φ(1) = 00, it is evident that the period-doubling sequence is the fixed-point of φ(w) and thus it is 2-automatic.

Rudin–Shapiro sequence edit

The n-th term of the Rudin–Shapiro sequence r(n) (OEISA020985) is determined by the number of consecutive ones in the base-2 representation of n. The 2-kernel of the Rudin–Shapiro sequence[15] is

 

Since the 2-kernel consists only of r(n), r(2n + 1), r(4n + 3), and r(8n + 3), it is finite and thus the Rudin–Shapiro sequence is 2-automatic.

Other sequences edit

Both the Baum–Sweet sequence[16] (OEISA086747) and the regular paperfolding sequence[17][18][19] (OEISA014577) are automatic. In addition, the general paperfolding sequence with a periodic sequence of folds is also automatic.[20]

Properties edit

Automatic sequences exhibit a number of interesting properties. A non-exhaustive list of these properties is presented below.

  • Every automatic sequence is a morphic word.[21]
  • For k ≥ 2 and r ≥ 1, a sequence is k-automatic if and only if it is kr-automatic. This result is due to Eilenberg.[22]
  • For h and k multiplicatively independent, a sequence is both h-automatic and k-automatic if and only if it is ultimately periodic.[23] This result is due to Cobham also known as Cobham's theorem,[24] with a multidimensional generalisation due to Semenov.[25][26]
  • If u(n) is a k-automatic sequence over an alphabet Σ and f is a uniform morphism from Σ to another alphabet Δ, then f(u) is a k-automatic sequence over Δ.[27]
  • If u(n) is a k-automatic sequence, then the sequences u(kn) and u(kn − 1) are ultimately periodic.[28] Conversely, if u(n) is an ultimately periodic sequence, then the sequence v defined by v(kn) = u(n) and otherwise zero is k-automatic.[29]

Proving and disproving automaticity edit

Given a candidate sequence  , it is usually easier to disprove its automaticity than to prove it. By the k-kernel characterization of k-automatic sequences, it suffices to produce infinitely many distinct elements in the k-kernel   to show that   is not k-automatic. Heuristically, one might try to prove automaticity by checking the agreement of terms in the k-kernel, but this can occasionally lead to wrong guesses. For example, let

 

be the Thue–Morse word. Let   be the word given by concatenating successive terms in the sequence of run-lengths of  . Then   begins

 .

It is known that   is the fixed point   of the morphism

 

The word   is not 2-automatic, but certain elements of its 2-kernel agree for many terms. For example,  

but not for  .[30]

Given a sequence that is conjectured to be automatic, there are a few useful approaches to proving it actually is. One approach is to directly construct a deterministic automaton with output that gives the sequence. Let   written in the alphabet  , and let   denote the base-  expansion of  . Then the sequence   is  -automatic if and only each of the fibres

 

is a regular language.[31] Checking regularity of the fibres can often be done using the pumping lemma for regular languages.

If   denotes the sum of the digits in the base-  expansion of   and   is a polynomial with non-negative integer coefficients, and if  ,   are integers, then the sequence

 

is  -automatic if and only if   or  .[32]

1-automatic sequences edit

k-automatic sequences are normally only defined for k ≥ 2.[1] The concept can be extended to k = 1 by defining a 1-automatic sequence to be a sequence whose n-th term depends on the unary notation for n; that is, (1)n. Since a finite state automaton must eventually return to a previously visited state, all 1-automatic sequences are ultimately periodic.

Generalizations edit

Automatic sequences are robust against variations to either the definition or the input sequence. For instance, as noted in the automata-theoretic definition, a given sequence remains automatic under both direct and reverse reading of the input sequence. A sequence also remains automatic when an alternate set of digits is used or when the base is negated; that is, when the input sequence is represented in base −k instead of in base k.[33] However, in contrast to using an alternate set of digits, a change of base may affect the automaticity of a sequence.

The domain of an automatic sequence can be extended from the natural numbers to the integers via two-sided automatic sequences. This stems from the fact that, given k ≥ 2, every integer can be represented uniquely in the form   where  . Then a two-sided infinite sequence a(n)n   is (−k)-automatic if and only if its subsequences a(n)n ≥ 0 and a(−n)n ≥ 0 are k-automatic.[34]

The alphabet of a k-automatic sequence can be extended from finite size to infinite size via k-regular sequences.[35] The k-regular sequences can be characterized as those sequences whose k-kernel is finitely-generated. Every bounded k-regular sequence is automatic.[36]

Logical approach edit

For many 2-automatic sequences  , the map   has the property that the first-order theory   is decidable. Since many non-trivial properties of automatic sequences can be written in first-order logic, it is possible to prove these properties mechanically by executing the decision procedure.[37]

For example, the following properties of the Thue–Morse word can all be verified mechanically in this way:

  • The Thue–Morse word is overlap-free, i.e., it does not contain a word of the form   where   is a single letter and   is a possibly empty word.
  • A non-empty word   is bordered if there is a non-empty word   and a possibly empty word   with  . The Thue–Morse word contains a bordered factor for each length greater than 1.[38]
  • There is an unbordered factor of length   in the Thue–Morse word if and only if   where   denotes the binary representation of  .[39]

The software Walnut,[40][41] developed by Hamoon Mousavi, implements a decision procedure for deciding many properties of certain automatic words, such as the Thue–Morse word. This implementation is a consequence of the above work on the logical approach to automatic sequences.

See also edit

Notes edit

  1. ^ a b c Allouche & Shallit (2003) p. 152
  2. ^ a b Berstel et al (2009) p. 78
  3. ^ Allouche & Shallit (2003) p. 168
  4. ^ a b c Pytheas Fogg (2002) p. 13
  5. ^ Pytheas Fogg (2002) p. 15
  6. ^ Allouche & Shallit (2003) p. 175
  7. ^ a b Cobham (1972)
  8. ^ Allouche & Shallit (2003) p. 185
  9. ^ Lothaire (2005) p. 527
  10. ^ Berstel & Reutenauer (2011) p. 91
  11. ^ Christol, G. (1979). "Ensembles presque périodiques k-reconnaissables". Theoret. Comput. Sci. 9: 141–145. doi:10.1016/0304-3975(79)90011-2.
  12. ^ Büchi, J. R. (1990). "Weak Second-Order Arithmetic and Finite Automata". The Collected Works of J. Richard Büchi. Z. Math. Logik Grundlagen Math. Vol. 6. pp. 66–92. doi:10.1007/978-1-4613-8928-6_22. ISBN 978-1-4613-8930-9.
  13. ^ Deshouillers, J.-M. (1979–1980). "La répartition modulo 1 des puissances de rationnels dans l'anneau des séries formelles sur un corps fini". Séminaire de Théorie des Nombres de Bordeaux: 5.01–5.22.
  14. ^ Allouche & Shallit (2003) p. 176
  15. ^ Allouche & Shallit (2003) p. 186
  16. ^ Allouche & Shallit (2003) p. 156
  17. ^ Berstel & Reutenauer (2011) p. 92
  18. ^ Allouche & Shallit (2003) p. 155
  19. ^ Lothaire (2005) p. 526
  20. ^ Allouche & Shallit (2003) p. 183
  21. ^ Lothaire (2005) p. 524
  22. ^ Eilenberg, Samuel (1974). Automata, languages, and machines. Vol. A. Orlando: Academic Press. ISBN 978-0-122-34001-7.
  23. ^ Allouche & Shallit (2003) pp. 345–350
  24. ^ Cobham, A. (1969). "On the base-dependence of sets of numbers recognizable by finite automata". Math. Systems Theory. 3 (2): 186–192. doi:10.1007/BF01746527. S2CID 19792434.
  25. ^ Semenov, A. L. (1977). "Presburgerness of predicates regular in two number systems". Sibirsk. Mat. Zh. (in Russian). 18: 403–418.
  26. ^ Point, F.; Bruyère, V. (1997). "On the Cobham-Semenov theorem". Theory of Computing Systems. 30 (2): 197–220. doi:10.1007/BF02679449. S2CID 31270341.
  27. ^ Lothaire (2005) p. 532
  28. ^ Lothaire (2005) p. 529
  29. ^ Berstel & Reutenauer (2011) p. 103
  30. ^ Allouche, G.; Allouche, J.-P.; Shallit, J. (2006). "Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde". Annales de l'Institut Fourier. 56 (7): 2126. doi:10.5802/aif.2235.
  31. ^ Allouche and Shallit (2003) p. 160
  32. ^ Allouche and Shallit (2003) p. 197
  33. ^ Allouche & Shallit (2003) p. 157
  34. ^ Allouche & Shallit (2003) p. 162
  35. ^ Allouche, J.-P.; Shallit, J. (1992). "The ring of k-regular sequences". Theoret. Comput. Sci. 98 (2): 163–197. doi:10.1016/0304-3975(92)90001-v.
  36. ^ Shallit, Jeffrey. "The Logical Approach to Automatic Sequences, Part 1: Automatic Sequences and k-Regular Sequences" (PDF). Retrieved April 1, 2020.
  37. ^ Shallit, J. "The Logical Approach to Automatic Sequences: Part 1" (PDF). Retrieved April 1, 2020.
  38. ^ Shallit, J. "The Logical Approach to Automatic Sequences: Part 3" (PDF). Retrieved April 1, 2020.
  39. ^ Shallit, J. "The Logical Approach to Automatic Sequences: Part 3" (PDF). Retrieved April 1, 2020.
  40. ^ Shallit, J. "Walnut Software". Retrieved April 1, 2020.
  41. ^ Mousavi, H. (2016). "Automatic Theorem Proving in Walnut". arXiv:1603.06017 [cs.FL].

References edit

Further reading edit

automatic, sequence, mathematics, theoretical, computer, science, automatic, sequence, also, called, automatic, sequence, recognizable, sequence, when, wants, indicate, that, base, numerals, used, infinite, sequence, terms, characterized, finite, automaton, te. In mathematics and theoretical computer science an automatic sequence also called a k automatic sequence or a k recognizable sequence when one wants to indicate that the base of the numerals used is k is an infinite sequence of terms characterized by a finite automaton The n th term of an automatic sequence a n is a mapping of the final state reached in a finite automaton accepting the digits of the number n in some fixed base k 1 2 An automatic set is a set of non negative integers S for which the sequence of values of its characteristic function xS is an automatic sequence that is S is k automatic if xS n is k automatic where xS n 1 if n displaystyle in S and 0 otherwise 3 4 Contents 1 Definition 1 1 Automata theoretic 1 2 Substitution 1 3 k kernel 1 4 Formal power series 2 History 3 Examples 3 1 Thue Morse sequence 3 2 Period doubling sequence 3 3 Rudin Shapiro sequence 3 4 Other sequences 4 Properties 5 Proving and disproving automaticity 6 1 automatic sequences 7 Generalizations 8 Logical approach 9 See also 10 Notes 11 References 12 Further readingDefinition editAutomatic sequences may be defined in a number of ways all of which are equivalent Four common definitions are as follows Automata theoretic edit Let k be a positive integer and let D Q Sk d q0 D t be a deterministic finite automaton with output where Q is the finite set of states the input alphabet Sk consists of the set 0 1 k 1 of possible digits in base k notation d Q Sk Q is the transition function q0 Q is the initial state the output alphabet D is a finite set and t Q D is the output function mapping from the set of internal states to the output alphabet Extend the transition function d from acting on single digits to acting on strings of digits by defining the action of d on a string s consisting of digits s1s2 st as d q s d d q s1s2 st 1 st Define a function a from the set of positive integers to the output alphabet D as follows a n t d q0 s n where s n is n written in base k Then the sequence a a 1 a 2 a 3 is a k automatic sequence 1 An automaton reading the base k digits of s n starting with the most significant digit is said to be direct reading while an automaton starting with the least significant digit is reverse reading 4 The above definition holds whether s n is direct or reverse reading 5 Substitution edit Let f displaystyle varphi nbsp be a k uniform morphism of a free monoid S displaystyle Sigma nbsp and let t displaystyle tau nbsp be a coding that is a 1 displaystyle 1 nbsp uniform morphism as in the automata theoretic case If w displaystyle w nbsp is a fixed point of f displaystyle varphi nbsp that is if w f w displaystyle w varphi w nbsp then s t w displaystyle s tau w nbsp is a k automatic sequence 6 Conversely every k automatic sequence is obtainable in this way 4 This result is due to Cobham and it is referred to in the literature as Cobham s little theorem 2 7 k kernel edit Let k 2 The k kernel of the sequence s n is the set of subsequences K k s s k e n r e 0 and 0 r k e 1 displaystyle K k s s k e n r e geq 0 text and 0 leq r leq k e 1 nbsp In most cases the k kernel of a sequence is infinite However if the k kernel is finite then the sequence s n is k automatic and the converse is also true This is due to Eilenberg 8 9 10 It follows that a k automatic sequence is necessarily a sequence on a finite alphabet Formal power series edit Let u n be a sequence over an alphabet S and suppose that there is an injective function b from S to the finite field Fq where q pn for some prime p The associated formal power series is i 0 b u i X i displaystyle sum i geq 0 beta u i X i nbsp Then the sequence u is q automatic if and only if this formal power series is algebraic over Fq X This result is due to Christol and it is referred to in the literature as Christol s theorem 11 History editAutomatic sequences were introduced by Buchi in 1960 12 although his paper took a more logico theoretic approach to the matter and did not use the terminology found in this article The notion of automatic sequences was further studied by Cobham in 1972 who called these sequences uniform tag sequences 7 The term automatic sequence first appeared in a paper of Deshouillers 13 Examples editThe following sequences are automatic Thue Morse sequence edit nbsp DFAO generating the Thue Morse sequenceThe Thue Morse sequence t n OEIS A010060 is the fixed point of the morphism 0 01 1 10 Since the n th term of the Thue Morse sequence counts the number of ones modulo 2 in the base 2 representation of n it is generated by the two state deterministic finite automaton with output pictured here where being in state q0 indicates there are an even number of ones in the representation of n and being in state q1 indicates there are an odd number of ones Hence the Thue Morse sequence is 2 automatic Period doubling sequence edit The n th term of the period doubling sequence d n OEIS A096268 is determined by the parity of the exponent of the highest power of 2 dividing n It is also the fixed point of the morphism 0 01 1 00 14 Starting with the initial term w 0 and iterating the 2 uniform morphism f on w where f 0 01 and f 1 00 it is evident that the period doubling sequence is the fixed point of f w and thus it is 2 automatic Rudin Shapiro sequence edit The n th term of the Rudin Shapiro sequence r n OEIS A020985 is determined by the number of consecutive ones in the base 2 representation of n The 2 kernel of the Rudin Shapiro sequence 15 is r 2 n r n r 4 n 1 r n r 8 n 7 r 2 n 1 r 16 n 3 r 8 n 3 r 16 n 11 r 4 n 3 displaystyle begin aligned r 2n amp r n r 4n 1 amp r n r 8n 7 amp r 2n 1 r 16n 3 amp r 8n 3 r 16n 11 amp r 4n 3 end aligned nbsp Since the 2 kernel consists only of r n r 2n 1 r 4n 3 and r 8n 3 it is finite and thus the Rudin Shapiro sequence is 2 automatic Other sequences edit Both the Baum Sweet sequence 16 OEIS A086747 and the regular paperfolding sequence 17 18 19 OEIS A014577 are automatic In addition the general paperfolding sequence with a periodic sequence of folds is also automatic 20 Properties editAutomatic sequences exhibit a number of interesting properties A non exhaustive list of these properties is presented below Every automatic sequence is a morphic word 21 For k 2 and r 1 a sequence is k automatic if and only if it is kr automatic This result is due to Eilenberg 22 For h and k multiplicatively independent a sequence is both h automatic and k automatic if and only if it is ultimately periodic 23 This result is due to Cobham also known as Cobham s theorem 24 with a multidimensional generalisation due to Semenov 25 26 If u n is a k automatic sequence over an alphabet S and f is a uniform morphism from S to another alphabet D then f u is a k automatic sequence over D 27 If u n is a k automatic sequence then the sequences u kn and u kn 1 are ultimately periodic 28 Conversely if u n is an ultimately periodic sequence then the sequence v defined by v kn u n and otherwise zero is k automatic 29 Proving and disproving automaticity editGiven a candidate sequence s s n n 0 displaystyle s s n n geq 0 nbsp it is usually easier to disprove its automaticity than to prove it By the k kernel characterization of k automatic sequences it suffices to produce infinitely many distinct elements in the k kernel K k s displaystyle K k s nbsp to show that s displaystyle s nbsp is not k automatic Heuristically one might try to prove automaticity by checking the agreement of terms in the k kernel but this can occasionally lead to wrong guesses For example let t 011010011 displaystyle t 011010011 dots nbsp be the Thue Morse word Let s displaystyle s nbsp be the word given by concatenating successive terms in the sequence of run lengths of t displaystyle t nbsp Then s displaystyle s nbsp begins s 12112221 displaystyle s 12112221 dots nbsp It is known that s displaystyle s nbsp is the fixed point h w 1 displaystyle h omega 1 nbsp of the morphism h 1 121 h 2 12221 displaystyle h 1 121 h 2 12221 nbsp The word s displaystyle s nbsp is not 2 automatic but certain elements of its 2 kernel agree for many terms For example s 16 n 1 s 64 n 1 for 0 n 1864134 displaystyle s 16n 1 s 64n 1 text for 0 leq n leq 1864134 nbsp but not for n 1864135 displaystyle n 1864135 nbsp 30 Given a sequence that is conjectured to be automatic there are a few useful approaches to proving it actually is One approach is to directly construct a deterministic automaton with output that gives the sequence Let s n n 0 displaystyle s n n geq 0 nbsp written in the alphabet D displaystyle Delta nbsp and let n k displaystyle n k nbsp denote the base k displaystyle k nbsp expansion of n displaystyle n nbsp Then the sequence s s n n 0 displaystyle s s n n geq 0 nbsp is k displaystyle k nbsp automatic if and only each of the fibres I k s d n k s n d displaystyle I k s d n k mid s n d nbsp is a regular language 31 Checking regularity of the fibres can often be done using the pumping lemma for regular languages If s k n displaystyle s k n nbsp denotes the sum of the digits in the base k displaystyle k nbsp expansion of n displaystyle n nbsp and p X displaystyle p X nbsp is a polynomial with non negative integer coefficients and if k 2 displaystyle k geq 2 nbsp m 1 displaystyle m geq 1 nbsp are integers then the sequence s k p n mod m n 0 displaystyle s k p n pmod m n geq 0 nbsp is k displaystyle k nbsp automatic if and only if deg p 1 displaystyle deg p leq 1 nbsp or m k 1 displaystyle m mid k 1 nbsp 32 1 automatic sequences editk automatic sequences are normally only defined for k 2 1 The concept can be extended to k 1 by defining a 1 automatic sequence to be a sequence whose n th term depends on the unary notation for n that is 1 n Since a finite state automaton must eventually return to a previously visited state all 1 automatic sequences are ultimately periodic Generalizations editAutomatic sequences are robust against variations to either the definition or the input sequence For instance as noted in the automata theoretic definition a given sequence remains automatic under both direct and reverse reading of the input sequence A sequence also remains automatic when an alternate set of digits is used or when the base is negated that is when the input sequence is represented in base k instead of in base k 33 However in contrast to using an alternate set of digits a change of base may affect the automaticity of a sequence The domain of an automatic sequence can be extended from the natural numbers to the integers via two sided automatic sequences This stems from the fact that given k 2 every integer can be represented uniquely in the form 0 i r a i k i displaystyle sum 0 leq i leq r a i k i nbsp where a i 0 k 1 displaystyle a i in 0 dots k 1 nbsp Then a two sided infinite sequence a n n Z displaystyle in mathbb Z nbsp is k automatic if and only if its subsequences a n n 0 and a n n 0 are k automatic 34 The alphabet of a k automatic sequence can be extended from finite size to infinite size via k regular sequences 35 The k regular sequences can be characterized as those sequences whose k kernel is finitely generated Every bounded k regular sequence is automatic 36 Logical approach editFor many 2 automatic sequences s s n n 0 displaystyle s s n n geq 0 nbsp the map n s n displaystyle n mapsto s n nbsp has the property that the first order theory FO N 0 1 n s n displaystyle text FO mathbb N 0 1 n mapsto s n nbsp is decidable Since many non trivial properties of automatic sequences can be written in first order logic it is possible to prove these properties mechanically by executing the decision procedure 37 For example the following properties of the Thue Morse word can all be verified mechanically in this way The Thue Morse word is overlap free i e it does not contain a word of the form c x c x c displaystyle cxcxc nbsp where c displaystyle c nbsp is a single letter and w displaystyle w nbsp is a possibly empty word A non empty word x displaystyle x nbsp is bordered if there is a non empty word w displaystyle w nbsp and a possibly empty word y displaystyle y nbsp with x w y w displaystyle x wyw nbsp The Thue Morse word contains a bordered factor for each length greater than 1 38 There is an unbordered factor of length n displaystyle n nbsp in the Thue Morse word if and only if n 2 1 01 0 10 1 displaystyle n 2 notin 1 01 0 10 1 nbsp where n 2 displaystyle n 2 nbsp denotes the binary representation of n displaystyle n nbsp 39 The software Walnut 40 41 developed by Hamoon Mousavi implements a decision procedure for deciding many properties of certain automatic words such as the Thue Morse word This implementation is a consequence of the above work on the logical approach to automatic sequences See also editBuchi arithmeticNotes edit a b c Allouche amp Shallit 2003 p 152 a b Berstel et al 2009 p 78 Allouche amp Shallit 2003 p 168 a b c Pytheas Fogg 2002 p 13 Pytheas Fogg 2002 p 15 Allouche amp Shallit 2003 p 175 a b Cobham 1972 Allouche amp Shallit 2003 p 185 Lothaire 2005 p 527 Berstel amp Reutenauer 2011 p 91 Christol G 1979 Ensembles presque periodiques k reconnaissables Theoret Comput Sci 9 141 145 doi 10 1016 0304 3975 79 90011 2 Buchi J R 1990 Weak Second Order Arithmetic and Finite Automata The Collected Works of J Richard Buchi Z Math Logik Grundlagen Math Vol 6 pp 66 92 doi 10 1007 978 1 4613 8928 6 22 ISBN 978 1 4613 8930 9 Deshouillers J M 1979 1980 La repartition modulo 1 des puissances de rationnels dans l anneau des series formelles sur un corps fini Seminaire de Theorie des Nombres de Bordeaux 5 01 5 22 Allouche amp Shallit 2003 p 176 Allouche amp Shallit 2003 p 186 Allouche amp Shallit 2003 p 156 Berstel amp Reutenauer 2011 p 92 Allouche amp Shallit 2003 p 155 Lothaire 2005 p 526 Allouche amp Shallit 2003 p 183 Lothaire 2005 p 524 Eilenberg Samuel 1974 Automata languages and machines Vol A Orlando Academic Press ISBN 978 0 122 34001 7 Allouche amp Shallit 2003 pp 345 350 Cobham A 1969 On the base dependence of sets of numbers recognizable by finite automata Math Systems Theory 3 2 186 192 doi 10 1007 BF01746527 S2CID 19792434 Semenov A L 1977 Presburgerness of predicates regular in two number systems Sibirsk Mat Zh in Russian 18 403 418 Point F Bruyere V 1997 On the Cobham Semenov theorem Theory of Computing Systems 30 2 197 220 doi 10 1007 BF02679449 S2CID 31270341 Lothaire 2005 p 532 Lothaire 2005 p 529 Berstel amp Reutenauer 2011 p 103 Allouche G Allouche J P Shallit J 2006 Kolam indiens dessins sur le sable aux iles Vanuatu courbe de Sierpinski et morphismes de monoide Annales de l Institut Fourier 56 7 2126 doi 10 5802 aif 2235 Allouche and Shallit 2003 p 160 Allouche and Shallit 2003 p 197 Allouche amp Shallit 2003 p 157 Allouche amp Shallit 2003 p 162 Allouche J P Shallit J 1992 The ring of k regular sequences Theoret Comput Sci 98 2 163 197 doi 10 1016 0304 3975 92 90001 v Shallit Jeffrey The Logical Approach to Automatic Sequences Part 1 Automatic Sequences and k Regular Sequences PDF Retrieved April 1 2020 Shallit J The Logical Approach to Automatic Sequences Part 1 PDF Retrieved April 1 2020 Shallit J The Logical Approach to Automatic Sequences Part 3 PDF Retrieved April 1 2020 Shallit J The Logical Approach to Automatic Sequences Part 3 PDF Retrieved April 1 2020 Shallit J Walnut Software Retrieved April 1 2020 Mousavi H 2016 Automatic Theorem Proving in Walnut arXiv 1603 06017 cs FL References editAllouche Jean Paul Shallit Jeffrey 2003 Automatic Sequences Theory Applications Generalizations Cambridge University Press ISBN 978 0 521 82332 6 Zbl 1086 11015 Berstel Jean Lauve Aaron Reutenauer Christophe Saliola Franco V 2009 Combinatorics on words Christoffel words and repetitions in words CRM Monograph Series Vol 27 Providence RI American Mathematical Society ISBN 978 0 8218 4480 9 Zbl 1161 68043 Berstel Jean Reutenauer Christophe 2011 Noncommutative rational series with applications Encyclopedia of Mathematics and Its Applications Vol 137 Cambridge Cambridge University Press ISBN 978 0 521 19022 0 Zbl 1250 68007 Cobham Alan 1972 Uniform tag sequences Mathematical Systems Theory 6 1 2 164 192 doi 10 1007 BF01706087 S2CID 28356747 Lothaire M 2005 Applied combinatorics on words Encyclopedia of Mathematics and Its Applications Vol 105 A collective work by Jean Berstel Dominique Perrin Maxime Crochemore Eric Laporte Mehryar Mohri Nadia Pisanti Marie France Sagot Gesine Reinert Sophie Schbath Michael Waterman Philippe Jacquet Wojciech Szpankowski Dominique Poulalhon Gilles Schaeffer Roman Kolpakov Gregory Koucherov Jean Paul Allouche and Valerie Berthe Cambridge Cambridge University Press ISBN 978 0 521 84802 2 Zbl 1133 68067 Pytheas Fogg N 2002 Substitutions in dynamics arithmetics and combinatorics Lecture Notes in Mathematics Vol 1794 Editors Berthe Valerie Ferenczi Sebastien Mauduit Christian Siegel A Berlin Springer Verlag ISBN 978 3 540 44141 0 Zbl 1014 11015 Further reading editBerthe Valerie Rigo Michel eds 2010 Combinatorics automata and number theory Encyclopedia of Mathematics and its Applications Vol 135 Cambridge Cambridge University Press ISBN 978 0 521 51597 9 Zbl 1197 68006 Loxton J H 1988 13 Automata and transcendence In Baker A ed New Advances in Transcendence Theory Cambridge University Press pp 215 228 ISBN 978 0 521 33545 4 Zbl 0656 10032 Rowland Eric 2015 What is an automatic sequence Notices of the American Mathematical Society 62 3 274 276 doi 10 1090 noti1218 Shallit Jeffrey 1999 Number theory and formal languages In Hejhal Dennis A Friedman Joel Gutzwiller Martin C Odlyzko Andrew M eds Emerging applications of number theory Based on the proceedings of the IMA summer program Minneapolis MN USA July 15 26 1996 The IMA volumes in mathematics and its applications Vol 109 Springer Verlag pp 547 570 ISBN 978 0 387 98824 5 Retrieved from https en wikipedia org w index php title Automatic sequence amp oldid 1204012743 Properties, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.