fbpx
Wikipedia

Cluster decomposition

In physics, the cluster decomposition property states that experiments carried out far from each other cannot influence each other. Usually applied to quantum field theory, it requires that vacuum expectation values of operators localized in bounded regions factorize whenever these regions becomes sufficiently distant from each other. First formulated by Eyvind Wichmann and James H. Crichton in 1963 in the context of the S-matrix,[1] it was conjectured by Steven Weinberg that in the low energy limit the cluster decomposition property, together with Lorentz invariance and quantum mechanics, inevitably lead to quantum field theory. String theory satisfies all three of the conditions and so provides a counter-example against this being true at all energy scales.[2]

Formulation edit

The S-matrix   describes the amplitude for a process with an initial state   evolving into a final state  . If the initial and final states consist of two clusters, with   and   close to each other but far from the pair   and  , then the cluster decomposition property requires the S-matrix to factorize

 

as the distance between the two clusters increases. The physical interpretation of this is that any two spatially well separated experiments   and   cannot influence each other.[3] This condition is fundamental to the ability to doing physics without having to know the state of the entire universe. By expanding the S-matrix into a sum of a product of connected S-matrix elements  , which at the perturbative level are equivalent to connected Feynman diagrams, the cluster decomposition property can be restated as demanding that connected S-matrix elements must vanish whenever some of its clusters of particles are far apart from each other.

This position space formulation can also be reformulated in terms of the momentum space S-matrix  .[4] Since its Fourier transformation gives the position space connected S-matrix, this only depends on position through the exponential terms. Therefore, performing a uniform translation in a direction   on a subset of particles will effectively change the momentum space S-matrix as

 

By translational invariance, a translation of all particles cannot change the S-matrix, therefore   must be proportional to a momentum conserving delta function   to ensure that the translation exponential factor vanishes. If there is an additional delta function of only a subset of momenta corresponding to some cluster of particles, then this cluster can be moved arbitrarily far through a translation without changing the S-matrix, which would violate cluster decomposition. This means that in momentum space the property requires that the S-matrix only has a single delta function.

Cluster decomposition can also be formulated in terms of correlation functions, where for any two operators   and   localized to some region, the vacuum expectation values factorize as the two operators become distantly separated

 

This formulation allows for the property to be applied to theories that lack an S-matrix such as conformal field theories. It is in terms of these Wightman functions that the property is usually formulated in axiomatic quantum field theory.[5] In some formulations, such as Euclidean constructive field theory, it is explicitly introduced as an axiom.[6]

Properties edit

If a theory is constructed from creation and annihilation operators, then the cluster decomposition property automatically holds. This can be seen by expanding out the S-matrix as a sum of Feynman diagrams which allows for the identification of connected S-matrix elements with connected Feynman diagrams. Vertices arise whenever creation and annihilation operators commute past each other leaving behind a single momentum delta function. In any connected diagram with V vertices, I internal lines and L loops, I-L of the delta functions go into fixing internal momenta, leaving V-(I-L) delta functions unfixed. A form of Euler's formula states that any graph with C disjoint connected components satisfies C = V-I+L. Since the connected S-matrix elements correspond to C=1 diagrams, these only have a single delta function and thus the cluster decomposition property, as formulated above in momentum space in terms of delta functions, holds.

Microcausality, the locality condition requiring commutation relations of local operators to vanish for spacelike separations, is a sufficient condition for the S-matrix to satisfy cluster decomposition. In this sense cluster decomposition serves a similar purpose for the S-matrix as microcausality does for fields, preventing causal influence from propagating between regions that are distantly separated.[7] However, cluster decomposition is weaker than having no superluminal causation since it can be formulated for classical theories as well.[8]

One key requirement for cluster decomposition is that it requires a unique vacuum state, with it failing if the vacuum state is a mixed state.[9] The rate at which the correlation functions factorize depends on the spectrum of the theory, where if it has mass gap of mass   then there is an exponential falloff   while if there are massless particles present then it can be as slow as  .[10]

References edit

  1. ^ Wichmann, E.H.; Crichton, J.H. (1963). "Cluster Decomposition Properties of the S Matrix". Phys. Rev. 132 (6). American Physical Society: 2788–2799. Bibcode:1963PhRv..132.2788W. doi:10.1103/PhysRev.132.2788.
  2. ^ Weinberg, S. (1996). What is quantum field theory, and what did we think it is?. Conference on Historical Examination and Philosophical Reflections on the Foundations of Quantum Field Theory. pp. 241–251. arXiv:hep-th/9702027.
  3. ^ Schwartz, M. D. (2014). "7". Quantum Field Theory and the Standard Model. Cambridge University Press. pp. 96–97. ISBN 9781107034730.
  4. ^ Weinberg, S. (1995). "4". The Quantum Theory of Fields: Foundations. Vol. 1. Cambridge University Press. pp. 177–188. ISBN 9780521670531.
  5. ^ Bogolubov, N.N.; Logunov, A.A.; Todorov, I.T. (1975). Introduction to Axiomatic Quantum Field Theory. Translated by Fulling, S.A.; Popova, L.G. (1 ed.). Benjamin. pp. 272–282. ISBN 9780805309829.
  6. ^ Iagolnitzer, D. (1993). "3". Scattering in Quantum Field Theories The Axiomatic and Constructive Approaches. Princeton University Press. pp. 155–156. ISBN 9780691633282.
  7. ^ Brown, L.S. (1992). "6". Quantum Field Theory. Cambridge: Cambridge University Press. pp. 311–313. doi:10.1017/CBO9780511622649. ISBN 978-0521469463.
  8. ^ Bain, J. (1998). "Weinberg on Qft: Demonstrative Induction and Underdetermination". Synthese. 117 (1): 7–8. doi:10.1023/A:1005025424031. JSTOR 20118095. S2CID 9049200.
  9. ^ Weinberg, S. (1995). "19". The Quantum Theory of Fields: Modern Applications. Vol. 2. Cambridge University Press. p. 167. ISBN 9780521670548.
  10. ^ Streater, R.F.; Wightman, A.S. (2000) [1964]. "3". PCT, Spin and Statistics, and All That. Princeton: Princeton University Press. p. 113. ISBN 978-0691070629.

cluster, decomposition, physics, cluster, decomposition, property, states, that, experiments, carried, from, each, other, cannot, influence, each, other, usually, applied, quantum, field, theory, requires, that, vacuum, expectation, values, operators, localize. In physics the cluster decomposition property states that experiments carried out far from each other cannot influence each other Usually applied to quantum field theory it requires that vacuum expectation values of operators localized in bounded regions factorize whenever these regions becomes sufficiently distant from each other First formulated by Eyvind Wichmann and James H Crichton in 1963 in the context of the S matrix 1 it was conjectured by Steven Weinberg that in the low energy limit the cluster decomposition property together with Lorentz invariance and quantum mechanics inevitably lead to quantum field theory String theory satisfies all three of the conditions and so provides a counter example against this being true at all energy scales 2 Formulation editThe S matrix S b a displaystyle S beta alpha nbsp describes the amplitude for a process with an initial state a displaystyle alpha nbsp evolving into a final state b displaystyle beta nbsp If the initial and final states consist of two clusters with a 1 displaystyle alpha 1 nbsp and b 1 displaystyle beta 1 nbsp close to each other but far from the pair a 2 displaystyle alpha 2 nbsp and b 2 displaystyle beta 2 nbsp then the cluster decomposition property requires the S matrix to factorize S b a S b 1 a 1 S b 2 a 2 displaystyle S beta alpha rightarrow S beta 1 alpha 1 S beta 2 alpha 2 nbsp as the distance between the two clusters increases The physical interpretation of this is that any two spatially well separated experiments a 1 b 1 displaystyle alpha 1 rightarrow beta 1 nbsp and a 2 b 2 displaystyle alpha 2 rightarrow beta 2 nbsp cannot influence each other 3 This condition is fundamental to the ability to doing physics without having to know the state of the entire universe By expanding the S matrix into a sum of a product of connected S matrix elements S b a c displaystyle S beta alpha c nbsp which at the perturbative level are equivalent to connected Feynman diagrams the cluster decomposition property can be restated as demanding that connected S matrix elements must vanish whenever some of its clusters of particles are far apart from each other This position space formulation can also be reformulated in terms of the momentum space S matrix S b a c displaystyle tilde S beta alpha c nbsp 4 Since its Fourier transformation gives the position space connected S matrix this only depends on position through the exponential terms Therefore performing a uniform translation in a direction a displaystyle boldsymbol a nbsp on a subset of particles will effectively change the momentum space S matrix as S b a c x i x i a e i a i p i S b a c displaystyle tilde S beta alpha c xrightarrow boldsymbol x i rightarrow boldsymbol x i boldsymbol a e i boldsymbol a cdot sum i boldsymbol p i tilde S beta alpha c nbsp By translational invariance a translation of all particles cannot change the S matrix therefore S b a displaystyle tilde S beta alpha nbsp must be proportional to a momentum conserving delta function d S p displaystyle delta Sigma boldsymbol p nbsp to ensure that the translation exponential factor vanishes If there is an additional delta function of only a subset of momenta corresponding to some cluster of particles then this cluster can be moved arbitrarily far through a translation without changing the S matrix which would violate cluster decomposition This means that in momentum space the property requires that the S matrix only has a single delta function Cluster decomposition can also be formulated in terms of correlation functions where for any two operators O 1 x displaystyle mathcal O 1 x nbsp and O 2 x displaystyle mathcal O 2 x nbsp localized to some region the vacuum expectation values factorize as the two operators become distantly separated lim x O 1 x O 2 0 O 1 O 2 displaystyle lim boldsymbol x rightarrow infty langle mathcal O 1 boldsymbol x mathcal O 2 0 rangle rightarrow langle mathcal O 1 rangle langle mathcal O 2 rangle nbsp This formulation allows for the property to be applied to theories that lack an S matrix such as conformal field theories It is in terms of these Wightman functions that the property is usually formulated in axiomatic quantum field theory 5 In some formulations such as Euclidean constructive field theory it is explicitly introduced as an axiom 6 Properties editIf a theory is constructed from creation and annihilation operators then the cluster decomposition property automatically holds This can be seen by expanding out the S matrix as a sum of Feynman diagrams which allows for the identification of connected S matrix elements with connected Feynman diagrams Vertices arise whenever creation and annihilation operators commute past each other leaving behind a single momentum delta function In any connected diagram with V vertices I internal lines and L loops I L of the delta functions go into fixing internal momenta leaving V I L delta functions unfixed A form of Euler s formula states that any graph with C disjoint connected components satisfies C V I L Since the connected S matrix elements correspond to C 1 diagrams these only have a single delta function and thus the cluster decomposition property as formulated above in momentum space in terms of delta functions holds Microcausality the locality condition requiring commutation relations of local operators to vanish for spacelike separations is a sufficient condition for the S matrix to satisfy cluster decomposition In this sense cluster decomposition serves a similar purpose for the S matrix as microcausality does for fields preventing causal influence from propagating between regions that are distantly separated 7 However cluster decomposition is weaker than having no superluminal causation since it can be formulated for classical theories as well 8 One key requirement for cluster decomposition is that it requires a unique vacuum state with it failing if the vacuum state is a mixed state 9 The rate at which the correlation functions factorize depends on the spectrum of the theory where if it has mass gap of mass m displaystyle m nbsp then there is an exponential falloff ϕ x ϕ 0 e m x displaystyle langle phi x phi 0 rangle sim e m x nbsp while if there are massless particles present then it can be as slow as 1 x 2 displaystyle 1 x 2 nbsp 10 References edit Wichmann E H Crichton J H 1963 Cluster Decomposition Properties of the S Matrix Phys Rev 132 6 American Physical Society 2788 2799 Bibcode 1963PhRv 132 2788W doi 10 1103 PhysRev 132 2788 Weinberg S 1996 What is quantum field theory and what did we think it is Conference on Historical Examination and Philosophical Reflections on the Foundations of Quantum Field Theory pp 241 251 arXiv hep th 9702027 Schwartz M D 2014 7 Quantum Field Theory and the Standard Model Cambridge University Press pp 96 97 ISBN 9781107034730 Weinberg S 1995 4 The Quantum Theory of Fields Foundations Vol 1 Cambridge University Press pp 177 188 ISBN 9780521670531 Bogolubov N N Logunov A A Todorov I T 1975 Introduction to Axiomatic Quantum Field Theory Translated by Fulling S A Popova L G 1 ed Benjamin pp 272 282 ISBN 9780805309829 Iagolnitzer D 1993 3 Scattering in Quantum Field Theories The Axiomatic and Constructive Approaches Princeton University Press pp 155 156 ISBN 9780691633282 Brown L S 1992 6 Quantum Field Theory Cambridge Cambridge University Press pp 311 313 doi 10 1017 CBO9780511622649 ISBN 978 0521469463 Bain J 1998 Weinberg on Qft Demonstrative Induction and Underdetermination Synthese 117 1 7 8 doi 10 1023 A 1005025424031 JSTOR 20118095 S2CID 9049200 Weinberg S 1995 19 The Quantum Theory of Fields Modern Applications Vol 2 Cambridge University Press p 167 ISBN 9780521670548 Streater R F Wightman A S 2000 1964 3 PCT Spin and Statistics and All That Princeton Princeton University Press p 113 ISBN 978 0691070629 Retrieved from https en wikipedia org w index php title Cluster decomposition amp oldid 1180572320, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.