fbpx
Wikipedia

CheiRank

The CheiRank is an eigenvector with a maximal real eigenvalue of the Google matrix constructed for a directed network with the inverted directions of links. It is similar to the PageRank vector, which ranks the network nodes in average proportionally to a number of incoming links being the maximal eigenvector of the Google matrix with a given initial direction of links. Due to inversion of link directions the CheiRank ranks the network nodes in average proportionally to a number of outgoing links. Since each node belongs both to CheiRank and PageRank vectors the ranking of information flow on a directed network becomes two-dimensional.

Nodes with links in the plane of PageRank and CheiRank

Definition

 
Fig1. Distribution of procedure calls of Linux Kernel network in the plane of PageRank probability   and CheiRank probability   for Linux version 2.6.32 with matrix size   at  , color shows the density of nodes with white for maximum and blue for minimum, black space has no nodes (from Chepelianskii)

For a given directed network the Google matrix is constructed in the way described in the article Google matrix. The PageRank vector is the eigenvector with the maximal real eigenvalue  . It was introduced in[1] and is discussed in the article PageRank. In a similar way the CheiRank is the eigenvector with the maximal real eigenvalue of the matrix   built in the same way as   but using inverted direction of links in the initially given adjacency matrix. Both matrices   and   belong to the class of Perron–Frobenius operators and according to the Perron–Frobenius theorem the CheiRank   and PageRank   eigenvectors have nonnegative components which can be interpreted as probabilities.[2][3] Thus all   nodes   of the network can be ordered in a decreasing probability order with ranks   for CheiRank and PageRank   respectively. In average the PageRank probability   is proportional to the number of ingoing links with  .[4][5][6] For the World Wide Web (WWW) network the exponent   where   is the exponent for ingoing links distribution.[4][5] In a similar way the CheiRank probability is in average proportional to the number of outgoing links with   with   where   is the exponent for outgoing links distribution of the WWW.[4][5] The CheiRank was introduced for the procedure call network of Linux Kernel software in,[7] the term itself was used in Zhirov.[8] While the PageRank highlights very well known and popular nodes, the CheiRank highlights very communicative nodes. Top PageRank and CheiRank nodes have certain analogy to authorities and hubs appearing in the HITS algorithm[9] but the HITS is query dependent while the rank probabilities   and   classify all nodes of the network. Since each node belongs both to CheiRank and PageRank we obtain a two-dimensional ranking of network nodes. There had been early studies of PageRank in networks with inverted direction of links[10][11] but the properties of two-dimensional ranking had not been analyzed in detail.

 
Fig2. Dependence of probability of PageRank   (red curve) and CheiRank   (blue curve) on the corresponding rank indexes   and  . The straight dashed lines show the power law dependence with the slope   respectively, corresponding to   (from Zhirov)

Examples

An example of nodes distribution in the plane of PageRank and CheiRank is shown in Fig.1 for the procedure call network of Linux Kernel software.[7]

 
Fig3. Density distribution of Wikipedia English articles (2009) in the plane of PageRank and CheiRank indexes   shown by color with blue for minimum and white for maximum (black for zero); green/red points show top 100 personalities from PageRank/CheiRank, yellow pluses show top 100 personalities from Hart's book, number of articles   (from Zhirov)

The dependence of   on   for the network of hyperlink network of Wikipedia English articles is shown in Fig.2 from Zhirov. The distribution of these articles in the plane of PageRank and CheiRank is shown in Fig.3 from Zhirov. The difference between PageRank and CheiRank is clearly seen from the names of Wikipedia articles (2009) with highest rank. At the top of PageRank we have 1.United States, 2.United Kingdom, 3.France while for CheiRank we find 1.Portal:Contents/Outline of knowledge/Geography and places, 2.List of state leaders by year, 3.Portal:Contents/Index/Geography and places. Clearly PageRank selects first articles on a broadly known subject with a large number of ingoing links while CheiRank selects first highly communicative articles with many outgoing links. Since the articles are distributed in 2D they can be ranked in various ways corresponding to projection of 2D set on a line. The horizontal and vertical lines correspond to PageRank and CheiRank, 2DRank combines properties of CheiRank and PageRank as it is discussed in Zhirov.[8] It gives top Wikipedia articles 1.India, 2.Singapore, 3.Pakistan.

The 2D ranking highlights the properties of Wikipedia articles in a new rich and fruitful manner. According to the PageRank the top 100 personalities described in Wikipedia articles have in 5 main category activities: 58 (politics), 10 (religion),17 (arts), 15 (science), 0 (sport) and thus the importance of politicians is strongly overestimated. The CheiRank gives respectively 15, 1, 52, 16, 16 while for 2DRank one finds 24, 5, 62, 7, 2. Such type of 2D ranking can find useful applications for various complex directed networks including the WWW.

CheiRank and PageRank naturally appear for the world trade network, or international trade, where they and linked with export and import flows for a given country respectively.[12]

Possibilities of development of two-dimensional search engines based on PageRank and CheiRank are considered.[13] Directed networks can be characterized by the correlator between PageRank and CheiRank vectors: in certain networks this correlator is close to zero (e.g. Linux Kernel network) while other networks have large correlator values (e.g. Wikipedia or university networks).[7][13]

Simple network example

 
Fig4. Example of directed network
 
Fig5. Related matrix  
 
Fig6. Related matrix  

A simple example of the construction of the Google matrices   and  , used for determination of the related PageRank and CheiRank vectors, is given below. The directed network example with 7 nodes is shown in Fig.4. The matrix  , built with the rules described in the article Google matrix, is shown in Fig.5; the related Google matrix is   and the PageRank vector is the right eigenvector of   with the unit eigenvalue ( ). In a similar way, to determine the CheiRank eigenvector all directions of links in Fig.4 are inverted, then the matrix   is built, according to the same rules applied for the network with inverted link directions, as shown in Fig.6. The related Google matrix is   and the CheiRank vector is the right eigenvector of   with the unit eigenvalue ( ). Here   is the damping factor taken at its usual value.

See also

References

  1. ^ Brin S.; Page L. (1998), "The anatomy of a large-scale hypertextual Web search engine", Computer Networks and ISDN Systems, 30 (1–7): 107, doi:10.1016/S0169-7552(98)00110-X
  2. ^ Langville, Amy N.; Carl Meyer (2006). Google's PageRank and Beyond. Princeton University Press. ISBN 0-691-12202-4.
  3. ^ Austin, David (2008). "How Google Finds Your Needle in the Web's Haystack". AMS Feature Columns.
  4. ^ a b c Donato D.; Laura L.; Leonardi S.; Millozzi S. (2004), "Large scale properties of the Webgraph", European Physical Journal B, 38 (2): 239, Bibcode:2004EPJB...38..239D, doi:10.1140/epjb/e2004-00056-6, S2CID 10640375
  5. ^ a b c Pandurangan G.; Ranghavan P.; Upfal E. (2005), "Using PageRank to Characterize Web Structure", Internet Math., 3: 1, doi:10.1080/15427951.2006.10129114
  6. ^ Litvak N.; Scheinhardt W.R.W.; Volkovich Y. (2008), Probabilistic Relation between In-Degree and PageRank, Lecture Notes in Computer Science, vol. 4936, p. 72
  7. ^ a b c Chepelianskii, Alexei D. (2010). "Towards physical laws for software architecture". arXiv:1003.5455 [cs.SE].
  8. ^ a b Zhirov A.O.; Zhirov O.V.; Shepelyansky D.L. (2010), "Two-dimensional ranking of Wikipedia articles", European Physical Journal B, 77 (4): 523, arXiv:1006.4270, Bibcode:2010EPJB...77..523Z, doi:10.1140/epjb/e2010-10500-7, S2CID 18014470
  9. ^ Kleinberg, Jon (1999). "Authoritative sources in a hyperlinked environment". Journal of the ACM. 46 (5): 604–632. doi:10.1145/324133.324140. S2CID 221584113.
  10. ^ Fogaras, D. (2003), Where to start browsing the web?, Lecture Notes in Computer Science, vol. 2877, p. 65
  11. ^ Hrisitidis V.; Hwang H.; Papakonstantinou Y. (2008), "Authority-based keyword search in databases", ACM Trans. Database Syst., 33: 1, doi:10.1145/1331904.1331905, S2CID 11978441
  12. ^ Ermann L.; Shepelyansky D.L. (2011). "Google matrix of the world trade network". Acta Physica Polonica A. 120 (6A): A. arXiv:1103.5027. Bibcode:2011AcPPA.120..158E. doi:10.12693/APhysPolA.120.A-158. S2CID 18315654.
  13. ^ a b Ermann L.; Chepelianskii A.D.; Shepelyansky D.L. (2011). "Towards two-dimensional search engines". Journal of Physics A: Mathematical and Theoretical. 45 (27): 275101. arXiv:1106.6215. Bibcode:2012JPhA...45A5101E. doi:10.1088/1751-8113/45/27/275101. S2CID 14827486.

External links

  • Two-dimensional ranking of Wikipedia articles
  • World trade: CheiRank versus PageRank
  • Towards two-dimensional search engines
  • Top people of Wikipedia

cheirank, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, pleas. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations March 2013 Learn how and when to remove this template message This article may require cleanup to meet Wikipedia s quality standards The specific problem is Should be using the lt ref gt tags an expert might need to check if the refs support the text Please help improve this article if you can March 2012 Learn how and when to remove this template message This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details May 2014 Learn how and when to remove this template message Learn how and when to remove this template message The CheiRank is an eigenvector with a maximal real eigenvalue of the Google matrix G displaystyle G constructed for a directed network with the inverted directions of links It is similar to the PageRank vector which ranks the network nodes in average proportionally to a number of incoming links being the maximal eigenvector of the Google matrix G displaystyle G with a given initial direction of links Due to inversion of link directions the CheiRank ranks the network nodes in average proportionally to a number of outgoing links Since each node belongs both to CheiRank and PageRank vectors the ranking of information flow on a directed network becomes two dimensional Nodes with links in the plane of PageRank and CheiRank Contents 1 Definition 2 Examples 3 Simple network example 4 See also 5 References 6 External linksDefinition Edit Fig1 Distribution of procedure calls of Linux Kernel network in the plane of PageRank probability x log 10 P i displaystyle x log 10 P i and CheiRank probability y log 10 P i displaystyle y log 10 P i for Linux version 2 6 32 with matrix size N 285509 displaystyle N 285509 at a 0 85 displaystyle alpha 0 85 color shows the density of nodes with white for maximum and blue for minimum black space has no nodes from Chepelianskii For a given directed network the Google matrix is constructed in the way described in the article Google matrix The PageRank vector is the eigenvector with the maximal real eigenvalue l 1 displaystyle lambda 1 It was introduced in 1 and is discussed in the article PageRank In a similar way the CheiRank is the eigenvector with the maximal real eigenvalue of the matrix G displaystyle G built in the same way as G displaystyle G but using inverted direction of links in the initially given adjacency matrix Both matrices G displaystyle G and G displaystyle G belong to the class of Perron Frobenius operators and according to the Perron Frobenius theorem the CheiRank P i displaystyle P i and PageRank P i displaystyle P i eigenvectors have nonnegative components which can be interpreted as probabilities 2 3 Thus all N displaystyle N nodes i displaystyle i of the network can be ordered in a decreasing probability order with ranks K i K i displaystyle K i K i for CheiRank and PageRank P i P i displaystyle P i P i respectively In average the PageRank probability P i displaystyle P i is proportional to the number of ingoing links with P i 1 K i b displaystyle P i propto 1 K i beta 4 5 6 For the World Wide Web WWW network the exponent b 1 n 1 0 9 displaystyle beta 1 nu 1 approx 0 9 where n 2 1 displaystyle nu approx 2 1 is the exponent for ingoing links distribution 4 5 In a similar way the CheiRank probability is in average proportional to the number of outgoing links with P i 1 K i b displaystyle P i propto 1 K i beta with b 1 n 1 0 6 displaystyle beta 1 nu 1 approx 0 6 where n 2 7 displaystyle nu approx 2 7 is the exponent for outgoing links distribution of the WWW 4 5 The CheiRank was introduced for the procedure call network of Linux Kernel software in 7 the term itself was used in Zhirov 8 While the PageRank highlights very well known and popular nodes the CheiRank highlights very communicative nodes Top PageRank and CheiRank nodes have certain analogy to authorities and hubs appearing in the HITS algorithm 9 but the HITS is query dependent while the rank probabilities P i displaystyle P i and P i displaystyle P i classify all nodes of the network Since each node belongs both to CheiRank and PageRank we obtain a two dimensional ranking of network nodes There had been early studies of PageRank in networks with inverted direction of links 10 11 but the properties of two dimensional ranking had not been analyzed in detail Fig2 Dependence of probability of PageRank P displaystyle P red curve and CheiRank P displaystyle P blue curve on the corresponding rank indexes K displaystyle K and K displaystyle K The straight dashed lines show the power law dependence with the slope b 0 92 0 57 displaystyle beta 0 92 0 57 respectively corresponding to b 1 n 1 displaystyle beta 1 nu 1 from Zhirov Examples EditAn example of nodes distribution in the plane of PageRank and CheiRank is shown in Fig 1 for the procedure call network of Linux Kernel software 7 Fig3 Density distribution of Wikipedia English articles 2009 in the plane of PageRank and CheiRank indexes 0 lt ln K ln K lt ln N displaystyle 0 lt ln K ln K lt ln N shown by color with blue for minimum and white for maximum black for zero green red points show top 100 personalities from PageRank CheiRank yellow pluses show top 100 personalities from Hart s book number of articles N 3282257 displaystyle N 3282257 from Zhirov The dependence of P P displaystyle P P on K K displaystyle K K for the network of hyperlink network of Wikipedia English articles is shown in Fig 2 from Zhirov The distribution of these articles in the plane of PageRank and CheiRank is shown in Fig 3 from Zhirov The difference between PageRank and CheiRank is clearly seen from the names of Wikipedia articles 2009 with highest rank At the top of PageRank we have 1 United States 2 United Kingdom 3 France while for CheiRank we find 1 Portal Contents Outline of knowledge Geography and places 2 List of state leaders by year 3 Portal Contents Index Geography and places Clearly PageRank selects first articles on a broadly known subject with a large number of ingoing links while CheiRank selects first highly communicative articles with many outgoing links Since the articles are distributed in 2D they can be ranked in various ways corresponding to projection of 2D set on a line The horizontal and vertical lines correspond to PageRank and CheiRank 2DRank combines properties of CheiRank and PageRank as it is discussed in Zhirov 8 It gives top Wikipedia articles 1 India 2 Singapore 3 Pakistan The 2D ranking highlights the properties of Wikipedia articles in a new rich and fruitful manner According to the PageRank the top 100 personalities described in Wikipedia articles have in 5 main category activities 58 politics 10 religion 17 arts 15 science 0 sport and thus the importance of politicians is strongly overestimated The CheiRank gives respectively 15 1 52 16 16 while for 2DRank one finds 24 5 62 7 2 Such type of 2D ranking can find useful applications for various complex directed networks including the WWW CheiRank and PageRank naturally appear for the world trade network or international trade where they and linked with export and import flows for a given country respectively 12 Possibilities of development of two dimensional search engines based on PageRank and CheiRank are considered 13 Directed networks can be characterized by the correlator between PageRank and CheiRank vectors in certain networks this correlator is close to zero e g Linux Kernel network while other networks have large correlator values e g Wikipedia or university networks 7 13 Simple network example Edit Fig4 Example of directed network Fig5 Related matrix S displaystyle S Fig6 Related matrix S displaystyle S A simple example of the construction of the Google matrices G displaystyle G and G displaystyle G used for determination of the related PageRank and CheiRank vectors is given below The directed network example with 7 nodes is shown in Fig 4 The matrix S displaystyle S built with the rules described in the article Google matrix is shown in Fig 5 the related Google matrix is G a S 1 a e e T N displaystyle G alpha S 1 alpha ee T N and the PageRank vector is the right eigenvector of G displaystyle G with the unit eigenvalue G P P displaystyle GP P In a similar way to determine the CheiRank eigenvector all directions of links in Fig 4 are inverted then the matrix S displaystyle S is built according to the same rules applied for the network with inverted link directions as shown in Fig 6 The related Google matrix is G a S 1 a e e T N displaystyle G alpha S 1 alpha ee T N and the CheiRank vector is the right eigenvector of G displaystyle G with the unit eigenvalue G P P displaystyle G P P Here a 0 85 displaystyle alpha approx 0 85 is the damping factor taken at its usual value See also EditPageRank HITS algorithm Google matrix Markov chains Transfer operator Perron Frobenius theorem Information retrieval Web search enginesReferences Edit Brin S Page L 1998 The anatomy of a large scale hypertextual Web search engine Computer Networks and ISDN Systems 30 1 7 107 doi 10 1016 S0169 7552 98 00110 X Langville Amy N Carl Meyer 2006 Google s PageRank and Beyond Princeton University Press ISBN 0 691 12202 4 Austin David 2008 How Google Finds Your Needle in the Web s Haystack AMS Feature Columns a b c Donato D Laura L Leonardi S Millozzi S 2004 Large scale properties of the Webgraph European Physical Journal B 38 2 239 Bibcode 2004EPJB 38 239D doi 10 1140 epjb e2004 00056 6 S2CID 10640375 a b c Pandurangan G Ranghavan P Upfal E 2005 Using PageRank to Characterize Web Structure Internet Math 3 1 doi 10 1080 15427951 2006 10129114 Litvak N Scheinhardt W R W Volkovich Y 2008 Probabilistic Relation between In Degree and PageRank Lecture Notes in Computer Science vol 4936 p 72 a b c Chepelianskii Alexei D 2010 Towards physical laws for software architecture arXiv 1003 5455 cs SE a b Zhirov A O Zhirov O V Shepelyansky D L 2010 Two dimensional ranking of Wikipedia articles European Physical Journal B 77 4 523 arXiv 1006 4270 Bibcode 2010EPJB 77 523Z doi 10 1140 epjb e2010 10500 7 S2CID 18014470 Kleinberg Jon 1999 Authoritative sources in a hyperlinked environment Journal of the ACM 46 5 604 632 doi 10 1145 324133 324140 S2CID 221584113 Fogaras D 2003 Where to start browsing the web Lecture Notes in Computer Science vol 2877 p 65 Hrisitidis V Hwang H Papakonstantinou Y 2008 Authority based keyword search in databases ACM Trans Database Syst 33 1 doi 10 1145 1331904 1331905 S2CID 11978441 Ermann L Shepelyansky D L 2011 Google matrix of the world trade network Acta Physica Polonica A 120 6A A arXiv 1103 5027 Bibcode 2011AcPPA 120 158E doi 10 12693 APhysPolA 120 A 158 S2CID 18315654 a b Ermann L Chepelianskii A D Shepelyansky D L 2011 Towards two dimensional search engines Journal of Physics A Mathematical and Theoretical 45 27 275101 arXiv 1106 6215 Bibcode 2012JPhA 45A5101E doi 10 1088 1751 8113 45 27 275101 S2CID 14827486 External links EditTwo dimensional ranking of Wikipedia articles World trade CheiRank versus PageRank Towards two dimensional search engines Top people of Wikipedia Retrieved from https en wikipedia org w index php title CheiRank amp oldid 1100496814, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.