fbpx
Wikipedia

Characteristic mode analysis

Characteristic modes (CM) form a set of functions which, under specific boundary conditions, diagonalizes operator relating field and induced sources. Under certain conditions, the set of the CM is unique and complete (at least theoretically) and thereby capable of describing the behavior of a studied object in full.

This article deals with characteristic mode decomposition in electromagnetics, a domain in which the CM theory has originally been proposed.

Background edit

CM decomposition was originally introduced as set of modes diagonalizing a scattering matrix.[1][2] The theory has, subsequently, been generalized by Harrington and Mautz for antennas.[3][4] Harrington, Mautz and their students also successively developed several other extensions of the theory.[5][6][7][8] Even though some precursors[9] were published back in the late 1940s, the full potential of CM has remained unrecognized for an additional 40 years. The capabilities of CM were revisited[10] in 2007 and, since then, interest in CM has dramatically increased. The subsequent boom of CM theory is reflected by the number of prominent publications and applications.

Definition edit

For simplicity, only the original form of the CM – formulated for perfectly electrically conducting (PEC) bodies in free space — will be treated in this article. The electromagnetic quantities will solely be represented as Fourier's images in frequency domain. Lorenz's gauge is used.

 
Example of a scatterer   composed of a perfect electric conductor.

The scattering of an electromagnetic wave on a PEC body is represented via a boundary condition on the PEC body, namely

 

with   representing unitary normal to the PEC surface,   representing incident electric field intensity, and   representing scattered electric field intensity defined as

 

with   being imaginary unit,   being angular frequency,   being vector potential

 

  being vacuum permeability,   being scalar potential

 

  being vacuum permittivity,   being scalar Green's function

 

and   being wavenumber. The integro-differential operator   is the one to be diagonalized via characteristic modes.

The governing equation of the CM decomposition is

 

with   and   being real and imaginary parts of impedance operator, respectively:   The operator,   is defined by

 

The outcome of (1) is a set of characteristic modes  ,  , accompanied by associated characteristic numbers  . Clearly, (1) is a generalized eigenvalue problem, which, however, cannot be analytically solved (except for a few canonical bodies[11]). Therefore, the numerical solution described in the following paragraph is commonly employed.

Matrix formulation edit

Discretization   of the body of the scatterer   into   subdomains as   and using a set of linearly independent piece-wise continuous functions  ,  , allows current density   to be represented as

 
Example of a scatterer's triangular (Delaunay) discretization  .
 

and by applying the Galerkin method, the impedance operator (2)

 

The eigenvalue problem (1) is then recast into its matrix form

 

which can easily be solved using, e.g., the generalized Schur decomposition or the implicitly restarted Arnoldi method yielding a finite set of expansion coefficients   and associated characteristic numbers  . The properties of the CM decomposition are investigated below.

 
The first (dominant) characteristic mode of a shape  .
 
The second characteristic mode of a shape  .

Properties edit

The properties of CM decomposition are demonstrated in its matrix form.

First, recall that the bilinear forms

 

and

 

where superscript   denotes the Hermitian transpose and where   represents an arbitrary surface current distribution, correspond to the radiated power and the reactive net power,[12] respectively. The following properties can then be easily distilled:

  • The weighting matrix   is theoretically positive definite and   is indefinite. The Rayleigh quotient
 

then spans the range of   and indicates whether the characteristic mode is capacitive ( ), inductive ( ), or in resonance ( ). In reality, the Rayleigh quotient is limited by the numerical dynamics of the machine precision used and the number of correctly found modes is limited.

  • The characteristic numbers evolve with frequency, i.e.,  , they can cross each other, or they can be the same (in case of degeneracies[13]). For this reason, the tracking of modes is often applied to get smooth curves  .[14][15][16][17][18] Unfortunately, this process is partly heuristic and the tracking algorithms are still far from perfection.[11]
  • The characteristic modes can be chosen as real-valued functions,  . In other words, characteristic modes form a set of equiphase currents.
  • The CM decomposition is invariant with respect to the amplitude of the characteristic modes. This fact is used to normalize the current so that they radiate unitary radiated power
 

This last relation presents the ability of characteristic modes to diagonalize the impedance operator (2) and demonstrates far field orthogonality, i.e.,

 

Modal quantities edit

The modal currents can be used to evaluate antenna parameters in their modal form, for example:

  • modal far-field   (  — polarization,   — direction),[3]
  • modal directivity  ,
  • modal radiation efficiency  ,[19]
  • modal quality factor  ,[20]
  • modal impedance  .

These quantities can be used for analysis, feeding synthesis, radiator's shape optimization, or antenna characterization.

Applications and further development edit

The number of potential applications is enormous and still growing:

The prospective topics include

  • electrically large structures calculated using MLFMA,[38]
  • dielectrics,[7][39]
  • use of Combined Field Integral Equation,[40]
  • periodic structures,
  • formulation for arrays.[41]

Software edit

CM decomposition has recently been implemented in major electromagnetic simulators, namely in FEKO,[42] CST-MWS,[43] and WIPL-D.[44] Other packages are about to support it soon, for example HFSS[45] and CEM One.[46] In addition, there is a plethora of in-house and academic packages which are capable of evaluating CM and many associated parameters.

Alternative bases edit

CM are useful to understand radiator's operation better. They have been used with great success for many practical purposes. However, it is important to stress that they are not perfect and it is often better to use other formulations such as energy modes,[47] radiation modes,[47] stored energy modes[32] or radiation efficiency modes.[48]

References edit

  1. ^ Garbacz, R.J. (1965). "Modal expansions for resonance scattering phenomena". Proceedings of the IEEE. 53 (8): 856–864. doi:10.1109/proc.1965.4064. ISSN 0018-9219.
  2. ^ Garbacz, R. J., "A Generalized Expansion for Radiated and Scattered Fields," PhD thesis, Department of Electrical Engineering, The Ohio State Univ., 1968.
  3. ^ a b Harrington, R.; Mautz, J. (1971). "Theory of characteristic modes for conducting bodies". IEEE Transactions on Antennas and Propagation. 19 (5): 622–628. Bibcode:1971ITAP...19..622H. doi:10.1109/tap.1971.1139999. ISSN 0096-1973.
  4. ^ Harrington, R.; Mautz, J. (1971). "Computation of characteristic modes for conducting bodies". IEEE Transactions on Antennas and Propagation. 19 (5): 629–639. Bibcode:1971ITAP...19..629H. doi:10.1109/tap.1971.1139990. ISSN 0096-1973.
  5. ^ Chang, Y.; Harrington, R. (1977). "A surface formulation for characteristic modes of material bodies". IEEE Transactions on Antennas and Propagation. 25 (6): 789–795. Bibcode:1977ITAP...25..789C. doi:10.1109/tap.1977.1141685. ISSN 0096-1973.
  6. ^ Harrington, R.F.; Mautz, J.R. (1985). "Characteristic Modes for Aperture Problems". IEEE Transactions on Microwave Theory and Techniques. 33 (6): 500–505. Bibcode:1985ITMTT..33..500H. doi:10.1109/tmtt.1985.1133105. ISSN 0018-9480.
  7. ^ a b Harrington, R. F.; Mautz, J.R.; Chang, Y. (March 1972). "Characteristic modes for dielectric and magnetic bodies". IEEE Transactions on Antennas and Propagation. 20 (2): 194–198. Bibcode:1972ITAP...20..194H. doi:10.1109/TAP.1972.1140154.
  8. ^ El-Hajj, A.; Kabalan, K.Y.; Harrington, R.F. (1993). "Characteristic mode analysis off electromagnetic coupling through multiple slots in a conducting plane". IEE Proceedings H - Microwaves, Antennas and Propagation. 140 (6): 421. doi:10.1049/ip-h-2.1993.0069. ISSN 0950-107X.
  9. ^ Montgomery, C. G.; Dicke, R.H.; Purcell, E. M., Principles of Microwave Circuits, Section 9.24, New York, United States: McGraw-Hill, 1948.
  10. ^ Cabedo-Fabres, Marta; Antonino-Daviu, Eva; Valero-Nogueira, Alejandro; Bataller, Miguel (2007). "The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications". IEEE Antennas and Propagation Magazine. 49 (5): 52–68. Bibcode:2007IAPM...49...52C. doi:10.1109/map.2007.4395295. ISSN 1045-9243. S2CID 32826951.
  11. ^ a b c Capek, Miloslav; Losenicky, Vit; Jelinek, Lukas; Gustafsson, Mats (2017). "Validating the Characteristic Modes Solvers". IEEE Transactions on Antennas and Propagation. 65 (8): 4134–4145. arXiv:1702.07037. Bibcode:2017ITAP...65.4134C. doi:10.1109/tap.2017.2708094. ISSN 0018-926X. S2CID 20773017.
  12. ^ Harrington, R. F., Field Computation by Moment Methods, Wiley -- IEEE Press, 1993.
  13. ^ Schab, K. R.; Bernhard, J. T. (2017). "A Group Theory Rule for Predicting Eigenvalue Crossings in Characteristic Mode Analyses". IEEE Antennas and Wireless Propagation Letters. 16: 944–947. Bibcode:2017IAWPL..16..944S. doi:10.1109/lawp.2016.2615041. ISSN 1536-1225. S2CID 29709098.
  14. ^ Capek, Miloslav; Hazdra, Pavel; Hamouz, Pavel; Eichler, Jan (2011). "A method for tracking characteristic numbers and vectors". Progress in Electromagnetics Research B. 33: 115–134. doi:10.2528/pierb11060209. ISSN 1937-6472.
  15. ^ Raines, Bryan D.; Rojas, Roberto G. (2012). "Wideband Characteristic Mode Tracking". IEEE Transactions on Antennas and Propagation. 60 (7): 3537–3541. Bibcode:2012ITAP...60.3537R. doi:10.1109/tap.2012.2196914. ISSN 0018-926X. S2CID 22449106.
  16. ^ Ludick, D.J.; Jakobus, U.; Vogel, M. (2014). A tracking algorithm for the eigenvectors calculated with characteristic mode analysis. Proceedings of the 8th European Conference on Antennas and Propagation. IEEE. pp. 569–572. doi:10.1109/eucap.2014.6901820. ISBN 978-88-907018-4-9.
  17. ^ Miers, Zachary; Lau, Buon Kiong (2015). "Wideband Characteristic Mode Tracking Utilizing Far-Field Patterns". IEEE Antennas and Wireless Propagation Letters. 14: 1658–1661. Bibcode:2015IAWPL..14.1658M. doi:10.1109/lawp.2015.2417351. ISSN 1536-1225. S2CID 113730.
  18. ^ Safin, Eugen; Manteuffel, Dirk (2016). "Advanced Eigenvalue Tracking of Characteristic Modes". IEEE Transactions on Antennas and Propagation. 64 (7): 2628–2636. Bibcode:2016ITAP...64.2628S. doi:10.1109/tap.2016.2556698. ISSN 0018-926X. S2CID 5243996.
  19. ^ Capek, Miloslav; Hazdra, Pavel; Eichler, Jan (9 January 2015). "Evaluating radiation efficiency from characteristic currents". IET Microwaves, Antennas & Propagation. 9 (1): 10–15. doi:10.1049/iet-map.2013.0473. ISSN 1751-8725. S2CID 108505219.
  20. ^ Capek, Miloslav; Hazdra, Pavel; Eichler, Jan (2012). "A Method for the Evaluation of Radiation Q Based on Modal Approach". IEEE Transactions on Antennas and Propagation. 60 (10): 4556–4567. Bibcode:2012ITAP...60.4556C. doi:10.1109/tap.2012.2207329. ISSN 0018-926X. S2CID 38814430.
  21. ^ Wu, Qi; Su, Donglin (2013). "A Broadband Model of the Characteristic Currents for Rectangular Plates". IEEE Transactions on Electromagnetic Compatibility. 55 (4): 725–732. doi:10.1109/temc.2012.2221718. ISSN 0018-9375. S2CID 25382863.
  22. ^ Vogel, Martin; Gampala, Gopinath; Ludick, Danie; Reddy, C.J. (2015). "Characteristic Mode Analysis: Putting Physics back into Simulation". IEEE Antennas and Propagation Magazine. 57 (2): 307–317. Bibcode:2015IAPM...57..307V. doi:10.1109/map.2015.2414670. ISSN 1045-9243. S2CID 40055108.
  23. ^ Yang, Binbin; Adams, Jacob J. (2016). "Computing and Visualizing the Input Parameters of Arbitrary Planar Antennas via Eigenfunctions". IEEE Transactions on Antennas and Propagation. 64 (7): 2707–2718. Bibcode:2016ITAP...64.2707Y. doi:10.1109/tap.2016.2554604. ISSN 0018-926X. S2CID 8934250.
  24. ^ Li, Hui; Miers, Zachary Thomas; Lau, Buon Kiong (2014). "Design of Orthogonal MIMO Handset Antennas Based on Characteristic Mode Manipulation at Frequency Bands Below 1 GHz" (PDF). IEEE Transactions on Antennas and Propagation. 62 (5): 2756–2766. Bibcode:2014ITAP...62.2756L. doi:10.1109/tap.2014.2308530. ISSN 0018-926X. S2CID 4799078.
  25. ^ Deng, Changjiang; Feng, Zhenghe; Hum, Sean Victor (2016). "MIMO Mobile Handset Antenna Merging Characteristic Modes for Increased Bandwidth". IEEE Transactions on Antennas and Propagation. 64 (7): 2660–2667. Bibcode:2016ITAP...64.2660D. doi:10.1109/tap.2016.2537358. ISSN 0018-926X. S2CID 24079958.
  26. ^ Yang, Binbin; Adams, Jacob J. (2016). "Systematic Shape Optimization of Symmetric MIMO Antennas Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 64 (7): 2668–2678. Bibcode:2016ITAP...64.2668Y. doi:10.1109/tap.2015.2473703. ISSN 0018-926X. S2CID 46283754.
  27. ^ Eichler, J.; Hazdra, P.; Capek, M.; Korinek, T.; Hamouz, P. (2011). "Design of a Dual-Band Orthogonally Polarized L-Probe-Fed Fractal Patch Antenna Using Modal Methods". IEEE Antennas and Wireless Propagation Letters. 10: 1389–1392. Bibcode:2011IAWPL..10.1389E. doi:10.1109/lawp.2011.2178811. ISSN 1536-1225. S2CID 35839331.
  28. ^ Rezaiesarlak, Reza; Manteghi, Majid (2015). "Design of Chipless RFID Tags Based on Characteristic Mode Theory (CMT)". IEEE Transactions on Antennas and Propagation. 63 (2): 711–718. Bibcode:2015ITAP...63..711R. doi:10.1109/tap.2014.2382640. ISSN 0018-926X. S2CID 25302365.
  29. ^ Bohannon, Nicole L.; Bernhard, Jennifer T. (2015). "Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs". IEEE Transactions on Antennas and Propagation. 63 (2): 459–465. Bibcode:2015ITAP...63..459B. doi:10.1109/tap.2014.2374213. ISSN 0018-926X. S2CID 25557684.
  30. ^ Chen, Yikai; Wang, Chao-Fu (2014). "Electrically Small UAV Antenna Design Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 62 (2): 535–545. Bibcode:2014ITAP...62..535C. doi:10.1109/tap.2013.2289999. ISSN 0018-926X. S2CID 24095192.
  31. ^ Austin, B.A.; Murray, K.P. (1998). "The application of characteristic-mode techniques to vehicle-mounted NVIS antennas". IEEE Antennas and Propagation Magazine. 40 (1): 7–21. Bibcode:1998IAPM...40....7A. doi:10.1109/74.667319. ISSN 1045-9243.
  32. ^ a b Gustafsson, M.; Tayli, D.; Ehrenborg, C.; Cismasu, M.; Norbedo, S. (May–June 2016). "Antenna current optimization using MATLAB and CVX". FERMAT. 15: 1–29.
  33. ^ Adams, Jacob J.; Bernhard, Jennifer T. (2013). "Broadband Equivalent Circuit Models for Antenna Impedances and Fields Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 61 (8): 3985–3994. Bibcode:2013ITAP...61.3985A. doi:10.1109/tap.2013.2261852. ISSN 0018-926X. S2CID 36450355.
  34. ^ Safin, Eugen; Manteuffel, Dirk (2015). "Manipulation of Characteristic Wave Modes by Impedance Loading". IEEE Transactions on Antennas and Propagation. 63 (4): 1756–1764. Bibcode:2015ITAP...63.1756S. doi:10.1109/tap.2015.2401586. ISSN 0018-926X. S2CID 43837433.
  35. ^ Hassan, Ahmed M.; Vargas-Lara, Fernando; Douglas, Jack F.; Garboczi, Edward J. (2016). "Electromagnetic Resonances of Individual Single-Walled Carbon Nanotubes With Realistic Shapes: A Characteristic Modes Approach". IEEE Transactions on Antennas and Propagation. 64 (7): 2743–2757. Bibcode:2016ITAP...64.2743H. doi:10.1109/tap.2016.2526046. ISSN 0018-926X. S2CID 22633919.
  36. ^ Rabah, M. Hassanein; Seetharamdoo, Divitha; Berbineau, Marion (2016). "Analysis of Miniature Metamaterial and Magnetodielectric Arbitrary-Shaped Patch Antennas Using Characteristic Modes: Evaluation of the $Q$ Factor". IEEE Transactions on Antennas and Propagation. 64 (7): 2719–2731. Bibcode:2016ITAP...64.2719R. doi:10.1109/tap.2016.2571723. ISSN 0018-926X. S2CID 23639874.
  37. ^ Rabah, M. Hassanein; Seetharamdoo, Divitha; Berbineau, Marion; De Lustrac, Andre (2016). "New Metrics for Artificial Magnetism From Metal-Dielectric Metamaterial Based on the Theory of Characteristic Modes". IEEE Antennas and Wireless Propagation Letters. 15: 460–463. Bibcode:2016IAWPL..15..460R. doi:10.1109/lawp.2015.2452269. ISSN 1536-1225. S2CID 21297328.
  38. ^ Dai, Qi I.; Wu, Junwei; Gan, Hui; Liu, Qin S.; Chew, Weng Cho; Sha, Wei E. I. (2016). "Large-Scale Characteristic Mode Analysis With Fast Multipole Algorithms". IEEE Transactions on Antennas and Propagation. 64 (7): 2608–2616. Bibcode:2016ITAP...64.2608D. doi:10.1109/tap.2016.2526083. ISSN 0018-926X.
  39. ^ Guo, Liwen; Chen, Yikai; Yang, Shiwen (2017). "Characteristic Mode Formulation for Dielectric Coated Conducting Bodies". IEEE Transactions on Antennas and Propagation. 65 (3): 1248–1258. Bibcode:2017ITAP...65.1248G. doi:10.1109/tap.2016.2647687. ISSN 0018-926X. S2CID 22204106.
  40. ^ Dai, Qi I.; Liu, Qin S.; Gan, Hui U. I.; Chew, Weng Cho (2015). "Combined Field Integral Equation-Based Theory of Characteristic Mode". IEEE Transactions on Antennas and Propagation. 63 (9): 3973–3981. arXiv:1503.01449. Bibcode:2015ITAP...63.3973D. doi:10.1109/tap.2015.2452938. ISSN 0018-926X. S2CID 5981282.
  41. ^ Tzanidis, Ioannis; Sertel, Kubilay; Volakis, John L. (2012). "Characteristic Excitation Taper for Ultrawideband Tightly Coupled Antenna Arrays". IEEE Transactions on Antennas and Propagation. 60 (4): 1777–1784. Bibcode:2012ITAP...60.1777T. doi:10.1109/tap.2012.2186269. ISSN 0018-926X. S2CID 6695379.
  42. ^ Altair, FEKO, 2017. 2017-08-04 at the Wayback Machine
  43. ^ Dassault Systemes, CST Computer Simulation Technology, [Online: CST-MWS, 2017.
  44. ^ WIPL-D d.o.o., [Online: WIPL-D, 2017.
  45. ^ ANSYS, [Online: HFSS, 2017.
  46. ^ ESI Group, [Online: CEM One, 2017.
  47. ^ a b Schab, Kurt R.; Bernhard, Jennifer T. (2015). "Radiation and Energy Storage Current Modes on Conducting Structures". IEEE Transactions on Antennas and Propagation. 63 (12): 5601–5611. Bibcode:2015ITAP...63.5601S. doi:10.1109/tap.2015.2490664. ISSN 0018-926X. S2CID 32795820.
  48. ^ Jelinek, Lukas; Capek, Miloslav (2017). "Optimal Currents on Arbitrarily Shaped Surfaces". IEEE Transactions on Antennas and Propagation. 65 (1): 329–341. arXiv:1602.05520. Bibcode:2017ITAP...65..329J. doi:10.1109/tap.2016.2624735. ISSN 0018-926X. S2CID 27699901.

characteristic, mode, analysis, characteristic, modes, form, functions, which, under, specific, boundary, conditions, diagonalizes, operator, relating, field, induced, sources, under, certain, conditions, unique, complete, least, theoretically, thereby, capabl. Characteristic modes CM form a set of functions which under specific boundary conditions diagonalizes operator relating field and induced sources Under certain conditions the set of the CM is unique and complete at least theoretically and thereby capable of describing the behavior of a studied object in full This article deals with characteristic mode decomposition in electromagnetics a domain in which the CM theory has originally been proposed Contents 1 Background 2 Definition 3 Matrix formulation 4 Properties 5 Modal quantities 6 Applications and further development 7 Software 8 Alternative bases 9 ReferencesBackground editCM decomposition was originally introduced as set of modes diagonalizing a scattering matrix 1 2 The theory has subsequently been generalized by Harrington and Mautz for antennas 3 4 Harrington Mautz and their students also successively developed several other extensions of the theory 5 6 7 8 Even though some precursors 9 were published back in the late 1940s the full potential of CM has remained unrecognized for an additional 40 years The capabilities of CM were revisited 10 in 2007 and since then interest in CM has dramatically increased The subsequent boom of CM theory is reflected by the number of prominent publications and applications Definition editFor simplicity only the original form of the CM formulated for perfectly electrically conducting PEC bodies in free space will be treated in this article The electromagnetic quantities will solely be represented as Fourier s images in frequency domain Lorenz s gauge is used nbsp Example of a scatterer W displaystyle Omega nbsp composed of a perfect electric conductor The scattering of an electromagnetic wave on a PEC body is represented via a boundary condition on the PEC body namely n Ei n Es displaystyle boldsymbol hat n times boldsymbol E mathrm i boldsymbol hat n times boldsymbol E mathrm s nbsp with n displaystyle boldsymbol hat n nbsp representing unitary normal to the PEC surface Ei displaystyle boldsymbol E mathrm i nbsp representing incident electric field intensity and Es displaystyle boldsymbol E mathrm s nbsp representing scattered electric field intensity defined as Es jwA f displaystyle boldsymbol E mathrm s mathrm j omega boldsymbol A nabla varphi nbsp with j displaystyle mathrm j nbsp being imaginary unit w displaystyle omega nbsp being angular frequency A displaystyle boldsymbol A nbsp being vector potential A r m0 WJ r G r r dS displaystyle boldsymbol A left boldsymbol r right mu 0 int limits Omega boldsymbol J left boldsymbol r right G left boldsymbol r boldsymbol r right mathrm d S nbsp m0 displaystyle mu 0 nbsp being vacuum permeability f displaystyle varphi nbsp being scalar potential f r 1jwϵ0 W J r G r r dS displaystyle varphi left boldsymbol r right frac 1 mathrm j omega epsilon 0 int limits Omega nabla cdot boldsymbol J left boldsymbol r right G left boldsymbol r boldsymbol r right mathrm d S nbsp ϵ0 displaystyle epsilon 0 nbsp being vacuum permittivity G r r displaystyle G left boldsymbol r boldsymbol r right nbsp being scalar Green s function G r r e jk r r 4p r r displaystyle G left boldsymbol r boldsymbol r right frac mathrm e mathrm j k left boldsymbol r boldsymbol r right 4 pi left boldsymbol r boldsymbol r right nbsp and k displaystyle k nbsp being wavenumber The integro differential operator n Es J displaystyle boldsymbol hat n times boldsymbol E mathrm s left boldsymbol J right nbsp is the one to be diagonalized via characteristic modes The governing equation of the CM decomposition is X Jn lnR Jn 1 displaystyle mathcal X left boldsymbol J n right lambda n mathcal R left boldsymbol J n right qquad mathrm 1 nbsp with R displaystyle mathcal R nbsp and X displaystyle mathcal X nbsp being real and imaginary parts of impedance operator respectively Z R jX displaystyle mathcal Z cdot mathcal R cdot mathrm j mathcal X cdot nbsp The operator Z displaystyle mathcal Z nbsp is defined by Z J n n Es J 2 displaystyle mathcal Z left boldsymbol J right boldsymbol hat n times boldsymbol hat n times boldsymbol E mathrm s left boldsymbol J right qquad mathrm 2 nbsp The outcome of 1 is a set of characteristic modes Jn displaystyle left boldsymbol J n right nbsp n 1 2 displaystyle n in left 1 2 dots right nbsp accompanied by associated characteristic numbers ln displaystyle left lambda n right nbsp Clearly 1 is a generalized eigenvalue problem which however cannot be analytically solved except for a few canonical bodies 11 Therefore the numerical solution described in the following paragraph is commonly employed Matrix formulation editDiscretization D displaystyle mathcal D nbsp of the body of the scatterer W displaystyle Omega nbsp into M displaystyle M nbsp subdomains as WM D W displaystyle Omega M mathcal D left Omega right nbsp and using a set of linearly independent piece wise continuous functions psn displaystyle left boldsymbol psi n right nbsp n 1 N displaystyle n in left 1 dots N right nbsp allows current density J displaystyle boldsymbol J nbsp to be represented as nbsp Example of a scatterer s triangular Delaunay discretization WM displaystyle Omega M nbsp J r n 1NInpsn r displaystyle boldsymbol J left boldsymbol r right approx sum limits n 1 N I n boldsymbol psi n left boldsymbol r right nbsp and by applying the Galerkin method the impedance operator 2 Z R jX Zuv Wpsu Z psv dS displaystyle mathbf Z mathbf R mathrm j mathbf X left Z uv right left int limits Omega boldsymbol psi u ast cdot mathcal Z left boldsymbol psi v right mathrm d S right nbsp The eigenvalue problem 1 is then recast into its matrix form XIn lnRIn displaystyle mathbf X mathbf I n lambda n mathbf R mathbf I n nbsp which can easily be solved using e g the generalized Schur decomposition or the implicitly restarted Arnoldi method yielding a finite set of expansion coefficients In displaystyle left mathbf I n right nbsp and associated characteristic numbers ln displaystyle left lambda n right nbsp The properties of the CM decomposition are investigated below nbsp The first dominant characteristic mode of a shape WM displaystyle Omega M nbsp nbsp The second characteristic mode of a shape WM displaystyle Omega M nbsp Properties editThe properties of CM decomposition are demonstrated in its matrix form First recall that the bilinear forms Pr 12IHRI 0 displaystyle P mathrm r approx frac 1 2 mathbf I mathrm H mathbf R mathbf I geq 0 nbsp and 2w Wm We 12IHXI displaystyle 2 omega left W mathrm m W mathrm e right approx frac 1 2 mathbf I mathrm H mathbf X mathbf I nbsp where superscript H displaystyle mathrm H nbsp denotes the Hermitian transpose and where I displaystyle mathbf I nbsp represents an arbitrary surface current distribution correspond to the radiated power and the reactive net power 12 respectively The following properties can then be easily distilled The weighting matrix R displaystyle mathbf R nbsp is theoretically positive definite and X displaystyle mathbf X nbsp is indefinite The Rayleigh quotientln InHXInInHRIn displaystyle lambda n approx frac mathbf I n mathrm H mathbf X mathbf I n mathbf I n mathrm H mathbf R mathbf I n nbsp then spans the range of ln displaystyle infty leq lambda n leq infty nbsp and indicates whether the characteristic mode is capacitive ln lt 0 displaystyle lambda n lt 0 nbsp inductive ln gt 0 displaystyle lambda n gt 0 nbsp or in resonance ln 0 displaystyle lambda n 0 nbsp In reality the Rayleigh quotient is limited by the numerical dynamics of the machine precision used and the number of correctly found modes is limited The characteristic numbers evolve with frequency i e ln ln w displaystyle lambda n lambda n left omega right nbsp they can cross each other or they can be the same in case of degeneracies 13 For this reason the tracking of modes is often applied to get smooth curves ln w displaystyle lambda n left omega right nbsp 14 15 16 17 18 Unfortunately this process is partly heuristic and the tracking algorithms are still far from perfection 11 The characteristic modes can be chosen as real valued functions In RN 1 displaystyle mathbf I n in mathbb R N times 1 nbsp In other words characteristic modes form a set of equiphase currents The CM decomposition is invariant with respect to the amplitude of the characteristic modes This fact is used to normalize the current so that they radiate unitary radiated power12ImHZIn 1 jln dmn displaystyle frac 1 2 mathbf I m mathrm H mathbf Z mathbf I n approx left 1 mathrm j lambda n right delta mn nbsp This last relation presents the ability of characteristic modes to diagonalize the impedance operator 2 and demonstrates far field orthogonality i e 12e0m0 02p 0pFm Fnsin ϑdϑdf dmn displaystyle frac 1 2 sqrt frac varepsilon 0 mu 0 int limits 0 2 pi int limits 0 pi boldsymbol F m ast cdot boldsymbol F n sin vartheta mathrm d vartheta mathrm d varphi delta mn nbsp Modal quantities editThe modal currents can be used to evaluate antenna parameters in their modal form for example modal far field Fn e r displaystyle boldsymbol F n left boldsymbol hat e boldsymbol hat r right nbsp e displaystyle boldsymbol hat e nbsp polarization r displaystyle boldsymbol hat r nbsp direction 3 modal directivity Dn e r displaystyle boldsymbol D n left boldsymbol hat e boldsymbol hat r right nbsp modal radiation efficiency hn displaystyle eta n nbsp 19 modal quality factor Qn displaystyle Q n nbsp 20 modal impedance Zn displaystyle Z n nbsp These quantities can be used for analysis feeding synthesis radiator s shape optimization or antenna characterization Applications and further development editThe number of potential applications is enormous and still growing antenna analysis and synthesis 21 22 23 design of MIMO antennas 24 25 26 27 compact antenna design RFID Wi Fi 28 29 UAV antennas 30 selective excitation of chassis and platforms 31 model order reduction 32 bandwidth enhancement 33 34 nanotubes 35 and metamaterials 36 37 validation of computational electromagnetics codes 11 The prospective topics include electrically large structures calculated using MLFMA 38 dielectrics 7 39 use of Combined Field Integral Equation 40 periodic structures formulation for arrays 41 Software editCM decomposition has recently been implemented in major electromagnetic simulators namely in FEKO 42 CST MWS 43 and WIPL D 44 Other packages are about to support it soon for example HFSS 45 and CEM One 46 In addition there is a plethora of in house and academic packages which are capable of evaluating CM and many associated parameters Alternative bases editCM are useful to understand radiator s operation better They have been used with great success for many practical purposes However it is important to stress that they are not perfect and it is often better to use other formulations such as energy modes 47 radiation modes 47 stored energy modes 32 or radiation efficiency modes 48 References edit Garbacz R J 1965 Modal expansions for resonance scattering phenomena Proceedings of the IEEE 53 8 856 864 doi 10 1109 proc 1965 4064 ISSN 0018 9219 Garbacz R J A Generalized Expansion for Radiated and Scattered Fields PhD thesis Department of Electrical Engineering The Ohio State Univ 1968 a b Harrington R Mautz J 1971 Theory of characteristic modes for conducting bodies IEEE Transactions on Antennas and Propagation 19 5 622 628 Bibcode 1971ITAP 19 622H doi 10 1109 tap 1971 1139999 ISSN 0096 1973 Harrington R Mautz J 1971 Computation of characteristic modes for conducting bodies IEEE Transactions on Antennas and Propagation 19 5 629 639 Bibcode 1971ITAP 19 629H doi 10 1109 tap 1971 1139990 ISSN 0096 1973 Chang Y Harrington R 1977 A surface formulation for characteristic modes of material bodies IEEE Transactions on Antennas and Propagation 25 6 789 795 Bibcode 1977ITAP 25 789C doi 10 1109 tap 1977 1141685 ISSN 0096 1973 Harrington R F Mautz J R 1985 Characteristic Modes for Aperture Problems IEEE Transactions on Microwave Theory and Techniques 33 6 500 505 Bibcode 1985ITMTT 33 500H doi 10 1109 tmtt 1985 1133105 ISSN 0018 9480 a b Harrington R F Mautz J R Chang Y March 1972 Characteristic modes for dielectric and magnetic bodies IEEE Transactions on Antennas and Propagation 20 2 194 198 Bibcode 1972ITAP 20 194H doi 10 1109 TAP 1972 1140154 El Hajj A Kabalan K Y Harrington R F 1993 Characteristic mode analysis off electromagnetic coupling through multiple slots in a conducting plane IEE Proceedings H Microwaves Antennas and Propagation 140 6 421 doi 10 1049 ip h 2 1993 0069 ISSN 0950 107X Montgomery C G Dicke R H Purcell E M Principles of Microwave Circuits Section 9 24 New York United States McGraw Hill 1948 Cabedo Fabres Marta Antonino Daviu Eva Valero Nogueira Alejandro Bataller Miguel 2007 The Theory of Characteristic Modes Revisited A Contribution to the Design of Antennas for Modern Applications IEEE Antennas and Propagation Magazine 49 5 52 68 Bibcode 2007IAPM 49 52C doi 10 1109 map 2007 4395295 ISSN 1045 9243 S2CID 32826951 a b c Capek Miloslav Losenicky Vit Jelinek Lukas Gustafsson Mats 2017 Validating the Characteristic Modes Solvers IEEE Transactions on Antennas and Propagation 65 8 4134 4145 arXiv 1702 07037 Bibcode 2017ITAP 65 4134C doi 10 1109 tap 2017 2708094 ISSN 0018 926X S2CID 20773017 Harrington R F Field Computation by Moment Methods Wiley IEEE Press 1993 Schab K R Bernhard J T 2017 A Group Theory Rule for Predicting Eigenvalue Crossings in Characteristic Mode Analyses IEEE Antennas and Wireless Propagation Letters 16 944 947 Bibcode 2017IAWPL 16 944S doi 10 1109 lawp 2016 2615041 ISSN 1536 1225 S2CID 29709098 Capek Miloslav Hazdra Pavel Hamouz Pavel Eichler Jan 2011 A method for tracking characteristic numbers and vectors Progress in Electromagnetics Research B 33 115 134 doi 10 2528 pierb11060209 ISSN 1937 6472 Raines Bryan D Rojas Roberto G 2012 Wideband Characteristic Mode Tracking IEEE Transactions on Antennas and Propagation 60 7 3537 3541 Bibcode 2012ITAP 60 3537R doi 10 1109 tap 2012 2196914 ISSN 0018 926X S2CID 22449106 Ludick D J Jakobus U Vogel M 2014 A tracking algorithm for the eigenvectors calculated with characteristic mode analysis Proceedings of the 8th European Conference on Antennas and Propagation IEEE pp 569 572 doi 10 1109 eucap 2014 6901820 ISBN 978 88 907018 4 9 Miers Zachary Lau Buon Kiong 2015 Wideband Characteristic Mode Tracking Utilizing Far Field Patterns IEEE Antennas and Wireless Propagation Letters 14 1658 1661 Bibcode 2015IAWPL 14 1658M doi 10 1109 lawp 2015 2417351 ISSN 1536 1225 S2CID 113730 Safin Eugen Manteuffel Dirk 2016 Advanced Eigenvalue Tracking of Characteristic Modes IEEE Transactions on Antennas and Propagation 64 7 2628 2636 Bibcode 2016ITAP 64 2628S doi 10 1109 tap 2016 2556698 ISSN 0018 926X S2CID 5243996 Capek Miloslav Hazdra Pavel Eichler Jan 9 January 2015 Evaluating radiation efficiency from characteristic currents IET Microwaves Antennas amp Propagation 9 1 10 15 doi 10 1049 iet map 2013 0473 ISSN 1751 8725 S2CID 108505219 Capek Miloslav Hazdra Pavel Eichler Jan 2012 A Method for the Evaluation of Radiation Q Based on Modal Approach IEEE Transactions on Antennas and Propagation 60 10 4556 4567 Bibcode 2012ITAP 60 4556C doi 10 1109 tap 2012 2207329 ISSN 0018 926X S2CID 38814430 Wu Qi Su Donglin 2013 A Broadband Model of the Characteristic Currents for Rectangular Plates IEEE Transactions on Electromagnetic Compatibility 55 4 725 732 doi 10 1109 temc 2012 2221718 ISSN 0018 9375 S2CID 25382863 Vogel Martin Gampala Gopinath Ludick Danie Reddy C J 2015 Characteristic Mode Analysis Putting Physics back into Simulation IEEE Antennas and Propagation Magazine 57 2 307 317 Bibcode 2015IAPM 57 307V doi 10 1109 map 2015 2414670 ISSN 1045 9243 S2CID 40055108 Yang Binbin Adams Jacob J 2016 Computing and Visualizing the Input Parameters of Arbitrary Planar Antennas via Eigenfunctions IEEE Transactions on Antennas and Propagation 64 7 2707 2718 Bibcode 2016ITAP 64 2707Y doi 10 1109 tap 2016 2554604 ISSN 0018 926X S2CID 8934250 Li Hui Miers Zachary Thomas Lau Buon Kiong 2014 Design of Orthogonal MIMO Handset Antennas Based on Characteristic Mode Manipulation at Frequency Bands Below 1 GHz PDF IEEE Transactions on Antennas and Propagation 62 5 2756 2766 Bibcode 2014ITAP 62 2756L doi 10 1109 tap 2014 2308530 ISSN 0018 926X S2CID 4799078 Deng Changjiang Feng Zhenghe Hum Sean Victor 2016 MIMO Mobile Handset Antenna Merging Characteristic Modes for Increased Bandwidth IEEE Transactions on Antennas and Propagation 64 7 2660 2667 Bibcode 2016ITAP 64 2660D doi 10 1109 tap 2016 2537358 ISSN 0018 926X S2CID 24079958 Yang Binbin Adams Jacob J 2016 Systematic Shape Optimization of Symmetric MIMO Antennas Using Characteristic Modes IEEE Transactions on Antennas and Propagation 64 7 2668 2678 Bibcode 2016ITAP 64 2668Y doi 10 1109 tap 2015 2473703 ISSN 0018 926X S2CID 46283754 Eichler J Hazdra P Capek M Korinek T Hamouz P 2011 Design of a Dual Band Orthogonally Polarized L Probe Fed Fractal Patch Antenna Using Modal Methods IEEE Antennas and Wireless Propagation Letters 10 1389 1392 Bibcode 2011IAWPL 10 1389E doi 10 1109 lawp 2011 2178811 ISSN 1536 1225 S2CID 35839331 Rezaiesarlak Reza Manteghi Majid 2015 Design of Chipless RFID Tags Based on Characteristic Mode Theory CMT IEEE Transactions on Antennas and Propagation 63 2 711 718 Bibcode 2015ITAP 63 711R doi 10 1109 tap 2014 2382640 ISSN 0018 926X S2CID 25302365 Bohannon Nicole L Bernhard Jennifer T 2015 Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs IEEE Transactions on Antennas and Propagation 63 2 459 465 Bibcode 2015ITAP 63 459B doi 10 1109 tap 2014 2374213 ISSN 0018 926X S2CID 25557684 Chen Yikai Wang Chao Fu 2014 Electrically Small UAV Antenna Design Using Characteristic Modes IEEE Transactions on Antennas and Propagation 62 2 535 545 Bibcode 2014ITAP 62 535C doi 10 1109 tap 2013 2289999 ISSN 0018 926X S2CID 24095192 Austin B A Murray K P 1998 The application of characteristic mode techniques to vehicle mounted NVIS antennas IEEE Antennas and Propagation Magazine 40 1 7 21 Bibcode 1998IAPM 40 7A doi 10 1109 74 667319 ISSN 1045 9243 a b Gustafsson M Tayli D Ehrenborg C Cismasu M Norbedo S May June 2016 Antenna current optimization using MATLAB and CVX FERMAT 15 1 29 Adams Jacob J Bernhard Jennifer T 2013 Broadband Equivalent Circuit Models for Antenna Impedances and Fields Using Characteristic Modes IEEE Transactions on Antennas and Propagation 61 8 3985 3994 Bibcode 2013ITAP 61 3985A doi 10 1109 tap 2013 2261852 ISSN 0018 926X S2CID 36450355 Safin Eugen Manteuffel Dirk 2015 Manipulation of Characteristic Wave Modes by Impedance Loading IEEE Transactions on Antennas and Propagation 63 4 1756 1764 Bibcode 2015ITAP 63 1756S doi 10 1109 tap 2015 2401586 ISSN 0018 926X S2CID 43837433 Hassan Ahmed M Vargas Lara Fernando Douglas Jack F Garboczi Edward J 2016 Electromagnetic Resonances of Individual Single Walled Carbon Nanotubes With Realistic Shapes A Characteristic Modes Approach IEEE Transactions on Antennas and Propagation 64 7 2743 2757 Bibcode 2016ITAP 64 2743H doi 10 1109 tap 2016 2526046 ISSN 0018 926X S2CID 22633919 Rabah M Hassanein Seetharamdoo Divitha Berbineau Marion 2016 Analysis of Miniature Metamaterial and Magnetodielectric Arbitrary Shaped Patch Antennas Using Characteristic Modes Evaluation of the Q Factor IEEE Transactions on Antennas and Propagation 64 7 2719 2731 Bibcode 2016ITAP 64 2719R doi 10 1109 tap 2016 2571723 ISSN 0018 926X S2CID 23639874 Rabah M Hassanein Seetharamdoo Divitha Berbineau Marion De Lustrac Andre 2016 New Metrics for Artificial Magnetism From Metal Dielectric Metamaterial Based on the Theory of Characteristic Modes IEEE Antennas and Wireless Propagation Letters 15 460 463 Bibcode 2016IAWPL 15 460R doi 10 1109 lawp 2015 2452269 ISSN 1536 1225 S2CID 21297328 Dai Qi I Wu Junwei Gan Hui Liu Qin S Chew Weng Cho Sha Wei E I 2016 Large Scale Characteristic Mode Analysis With Fast Multipole Algorithms IEEE Transactions on Antennas and Propagation 64 7 2608 2616 Bibcode 2016ITAP 64 2608D doi 10 1109 tap 2016 2526083 ISSN 0018 926X Guo Liwen Chen Yikai Yang Shiwen 2017 Characteristic Mode Formulation for Dielectric Coated Conducting Bodies IEEE Transactions on Antennas and Propagation 65 3 1248 1258 Bibcode 2017ITAP 65 1248G doi 10 1109 tap 2016 2647687 ISSN 0018 926X S2CID 22204106 Dai Qi I Liu Qin S Gan Hui U I Chew Weng Cho 2015 Combined Field Integral Equation Based Theory of Characteristic Mode IEEE Transactions on Antennas and Propagation 63 9 3973 3981 arXiv 1503 01449 Bibcode 2015ITAP 63 3973D doi 10 1109 tap 2015 2452938 ISSN 0018 926X S2CID 5981282 Tzanidis Ioannis Sertel Kubilay Volakis John L 2012 Characteristic Excitation Taper for Ultrawideband Tightly Coupled Antenna Arrays IEEE Transactions on Antennas and Propagation 60 4 1777 1784 Bibcode 2012ITAP 60 1777T doi 10 1109 tap 2012 2186269 ISSN 0018 926X S2CID 6695379 Altair FEKO 2017 Archived 2017 08 04 at the Wayback Machine Dassault Systemes CST Computer Simulation Technology Online CST MWS 2017 WIPL D d o o Online WIPL D 2017 ANSYS Online HFSS 2017 ESI Group Online CEM One 2017 a b Schab Kurt R Bernhard Jennifer T 2015 Radiation and Energy Storage Current Modes on Conducting Structures IEEE Transactions on Antennas and Propagation 63 12 5601 5611 Bibcode 2015ITAP 63 5601S doi 10 1109 tap 2015 2490664 ISSN 0018 926X S2CID 32795820 Jelinek Lukas Capek Miloslav 2017 Optimal Currents on Arbitrarily Shaped Surfaces IEEE Transactions on Antennas and Propagation 65 1 329 341 arXiv 1602 05520 Bibcode 2017ITAP 65 329J doi 10 1109 tap 2016 2624735 ISSN 0018 926X S2CID 27699901 Retrieved from https en wikipedia org w index php title Characteristic mode analysis amp oldid 1185856254, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.