fbpx
Wikipedia

Cyclin-dependent kinase 1

Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation.[5] It has been highly studied in the budding yeast S. cerevisiae, and the fission yeast S. pombe, where it is encoded by genes cdc28 and cdc2, respectively.[6] With its cyclin partners, Cdk1 forms complexes that phosphorylate a variety of target substrates (over 75 have been identified in budding yeast); phosphorylation of these proteins leads to cell cycle progression.[7]

CDK1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCDK1, CDC2, CDC28A, P34CDC2, cyclin-dependent kinase 1, cyclin dependent kinase 1
External IDsOMIM: 116940 MGI: 88351 HomoloGene: 68203 GeneCards: CDK1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_007659

RefSeq (protein)

NP_001163877
NP_001163878
NP_001307847
NP_001777
NP_203698

NP_031685

Location (UCSC)Chr 10: 60.78 – 60.79 MbChr 10: 69.17 – 69.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

 
Crystal Structure of the human Cdk1 homolog, Cdk2

Cdk1 is a small protein (approximately 34 kilodaltons), and is highly conserved. The human homolog of Cdk1, CDK1, shares approximately 63% amino-acid identity with its yeast homolog. Furthermore, human CDK1 is capable of rescuing fission yeast carrying a cdc2 mutation.[8][9] Cdk1 is comprised mostly by the bare protein kinase motif, which other protein kinases share. Cdk1, like other kinases, contains a cleft in which ATP fits. Substrates of Cdk1 bind near the mouth of the cleft, and Cdk1 residues catalyze the covalent bonding of the γ-phosphate to the oxygen of the hydroxyl serine/threonine of the substrate.

In addition to this catalytic core, Cdk1, like other cyclin-dependent kinases, contains a T-loop, which, in the absence of an interacting cyclin, prevents substrate binding to the Cdk1 active site. Cdk1 also contains a PSTAIRE helix, which, upon cyclin binding, moves and rearranges the active site, facilitating Cdk1 kinase activities.[10]

Function edit

 
Fig. 1 The diagram shows the role of Cdk1 in progression through the S. cerevisiae cell cycle. Cln3-Cdk1 leads to Cln1,2-Cdk1 activity, eventually resulting in Clb5,6-Cdk1 activity and then Clb1-4-Cdk1 activity.[5]

When bound to its cyclin partners, Cdk1 phosphorylation leads to cell cycle progression. Cdk1 activity is best understood in S. cerevisiae, so Cdk1 S. cerevisiae activity is described here.

In the budding yeast, initial cell cycle entry is controlled by two regulatory complexes, SBF (SCB-binding factor) and MBF (MCB-binding factor). These two complexes control G1/S gene transcription; however, they are normally inactive. SBF is inhibited by the protein Whi5; however, when phosphorylated by Cln3-Cdk1, Whi5 is ejected from the nucleus, allowing for transcription of the G1/S regulon, which includes the G1/S cyclins Cln1,2.[11] G1/S cyclin-Cdk1 activity leads to preparation for S phase entry (e.g., duplication of centromeres or the spindle pole body), and a rise in the S cyclins (Clb5,6 in S. cerevisiae). Clb5,6-Cdk1 complexes directly lead to replication origin initiation;[12] however, they are inhibited by Sic1, preventing premature S phase initiation.

Cln1,2 and/or Clb5,6-Cdk1 complex activity leads to a sudden drop in Sic1 levels, allowing for coherent S phase entry. Finally, phosphorylation by M cyclins (e.g., Clb1, 2, 3 and 4) in complex with Cdk1 leads to spindle assembly and sister chromatid alignment. Cdk1 phosphorylation also leads to the activation of the ubiquitin-protein ligase APCCdc20, an activation which allows for chromatid segregation and, furthermore, degradation of M-phase cyclins. This destruction of M cyclins leads to the final events of mitosis (e.g., spindle disassembly, mitotic exit).

Regulation edit

Given its essential role in cell cycle progression, Cdk1 is highly regulated. Most obviously, Cdk1 is regulated by its binding with its cyclin partners. Cyclin binding alters access to the active site of Cdk1, allowing for Cdk1 activity; furthermore, cyclins impart specificity to Cdk1 activity. At least some cyclins contain a hydrophobic patch which may directly interact with substrates, conferring target specificity.[13] Furthermore, cyclins can target Cdk1 to particular subcellular locations.

In addition to regulation by cyclins, Cdk1 is regulated by phosphorylation. A conserved tyrosine (Tyr15 in humans) leads to inhibition of Cdk1; this phosphorylation is thought to alter ATP orientation, preventing efficient kinase activity. In S. pombe, for example, incomplete DNA synthesis may lead to stabilization of this phosphorylation, preventing mitotic progression.[14] Wee1, conserved among all eukaryotes phosphorylates Tyr15, whereas members of the Cdc25 family are phosphatases, counteracting this activity. The balance between the two is thought to help govern cell cycle progression. Wee1 is controlled upstream by Cdr1, Cdr2, and Pom1.

Cdk1-cyclin complexes are also governed by direct binding of Cdk inhibitor proteins (CKIs). One such protein, already discussed, is Sic1. Sic1 is a stoichiometric inhibitor that binds directly to Clb5,6-Cdk1 complexes. Multisite phosphorylation, by Cdk1-Cln1/2, of Sic1 is thought to time Sic1 ubiquitination and destruction, and by extension, the timing of S-phase entry. Only until Sic1 inhibition is overcome can Clb5,6 activity occur and S phase initiation may begin.

Interactions edit

Cdk1 has been shown to interact with:

See also edit

Mastl

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000170312 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000019942 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Morgan, David L. (2007). The cell cycle: principles of control. London: New Science Press. pp. 30–31. ISBN 978-0-19-920610-0.
  6. ^ Nasmyth K (April 1993). "Control of the yeast cell cycle by the Cdc28 protein kinase". Curr. Opin. Cell Biol. 5 (2): 166–179. doi:10.1016/0955-0674(93)90099-C. PMID 8507488.
  7. ^ Enserink JM, Kolodner RD (May 2010). "An overview of Cdk1-controlled targets and processes". Cell Division. 5 (11): 11. doi:10.1186/1747-1028-5-11. PMC 2876151. PMID 20465793.
  8. ^ Lee, Melanie; Nurse, Paul (Jun 1987). "Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2". Nature. 327 (6117): 31–35. Bibcode:1987Natur.327...31L. doi:10.1038/327031a0. PMID 3553962. S2CID 4300190.
  9. ^ De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (June 1993). "Crystal structure of cyclin-dependent kinase 2". Nature. 363 (6430): 595–602. Bibcode:1993Natur.363..595D. doi:10.1038/363595a0. PMID 8510751. S2CID 4354370.
  10. ^ Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP (July 1995). "Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex". Nature. 376 (6538): 313–320. Bibcode:1995Natur.376..313J. doi:10.1038/376313a0. PMID 7630397. S2CID 4361179.
  11. ^ Skotheim JM, Di Talia S, Siggia ED, Cross FR (July 2008). "Positive feedback of G1 cyclins ensures coherent cell cycle entry". Nature. 454 (7202): 291–296. Bibcode:2008Natur.454..291S. doi:10.1038/nature07118. PMC 2606905. PMID 18633409.
  12. ^ Cross FR, Yuste-Rojas M, Gray S, Jacobson MD (July 1999). "Specialization and targeting of B-type cyclins". Mol Cell. 4 (1): 11–19. doi:10.1016/S1097-2765(00)80183-5. PMID 10445023.
  13. ^ Brown NR, Noble ME, Endicott JA, Johnson LN (November 1999). "The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases". Nat. Cell Biol. 1 (7): 438–443. doi:10.1038/15674. PMID 10559988. S2CID 17988582.
  14. ^ Elledge SJ (December 1996). "Cell cycle checkpoints: preventing an identity crisis". Science. 274 (5293): 1664–1672. Bibcode:1996Sci...274.1664E. doi:10.1126/science.274.5293.1664. PMID 8939848. S2CID 39235426.
  15. ^ Pathan N, Aime-Sempe C, Kitada S, Basu A, Haldar S, Reed JC (2001). "Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1". Neoplasia. 3 (6): 550–9. doi:10.1038/sj.neo.7900213. PMC 1506558. PMID 11774038.
  16. ^ Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC (2001). "Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1". Neoplasia. 3 (1): 70–9. doi:10.1038/sj.neo.7900131. PMC 1505024. PMID 11326318.
  17. ^ a b Shanahan F, Seghezzi W, Parry D, Mahony D, Lees E (February 1999). "Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest". Mol. Cell. Biol. 19 (2): 1460–9. doi:10.1128/mcb.19.2.1460. PMC 116074. PMID 9891079.
  18. ^ Pines J, Hunter T (September 1989). "Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2". Cell. 58 (5): 833–846. doi:10.1016/0092-8674(89)90936-7. PMID 2570636. S2CID 20336733.
  19. ^ Kong M, Barnes EA, Ollendorff V, Donoghue DJ (March 2000). "Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction". EMBO J. 19 (6): 1378–1388. doi:10.1093/emboj/19.6.1378. PMC 305678. PMID 10716937.
  20. ^ Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM (September 1992). "Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle". Science. 257 (5077): 1689–1694. Bibcode:1992Sci...257.1689K. doi:10.1126/science.1388288. PMID 1388288.
  21. ^ Hannon GJ, Casso D, Beach D (March 1994). "KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases". Proc. Natl. Acad. Sci. U.S.A. 91 (5): 1731–1735. Bibcode:1994PNAS...91.1731H. doi:10.1073/pnas.91.5.1731. PMC 43237. PMID 8127873.
  22. ^ Gyuris J, Golemis E, Chertkov H, Brent R (November 1993). "Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2". Cell. 75 (4): 791–803. doi:10.1016/0092-8674(93)90498-F. PMID 8242750.
  23. ^ He J, Xu J, Xu XX, Hall RA (July 2003). "Cell cycle-dependent phosphorylation of Disabled-2 by cdc2". Oncogene. 22 (29): 4524–4530. doi:10.1038/sj.onc.1206767. PMID 12881709.
  24. ^ Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG, Huber PA (October 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Exp. Cell Res. 289 (2): 211–221. doi:10.1016/S0014-4827(03)00261-1. PMID 14499622.
  25. ^ Kupfer GM, Yamashita T, Naf D, Suliman A, Asano S, D'Andrea AD (August 1997). "The Fanconi anemia polypeptide, FAC, binds to the cyclin-dependent kinase, cdc2". Blood. 90 (3): 1047–54. doi:10.1182/blood.V90.3.1047. PMID 9242535.
  26. ^ Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJ (May 1999). "Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45". Oncogene. 18 (18): 2892–2900. doi:10.1038/sj.onc.1202667. PMID 10362260.
  27. ^ Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ, Zhan Q (June 2000). "The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression". J. Biol. Chem. 275 (22): 16602–16608. doi:10.1074/jbc.M000284200. PMID 10747892.
  28. ^ Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW (November 2000). "Identification of a functional domain in a GADD45-mediated G2/M checkpoint". J. Biol. Chem. 275 (47): 36892–36898. doi:10.1074/jbc.M005319200. PMID 10973963.
  29. ^ Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (September 2002). "GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress". J. Cell. Physiol. 192 (3): 327–338. doi:10.1002/jcp.10140. PMID 12124778. S2CID 19138273.
  30. ^ Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MA, Chen W, Xu T (February 1999). "Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity". Nat. Genet. 21 (2): 177–181. doi:10.1038/5960. PMID 9988268. S2CID 32090556.
  31. ^ Kharbanda S, Yuan ZM, Rubin E, Weichselbaum R, Kufe D (August 1994). "Activation of Src-like p56/p53lyn tyrosine kinase by ionizing radiation". J. Biol. Chem. 269 (32): 20739–43. doi:10.1016/S0021-9258(17)32054-9. PMID 8051175.
  32. ^ Pathan NI, Geahlen RL, Harrison ML (November 1996). "The protein-tyrosine kinase Lck associates with and is phosphorylated by Cdc2". J. Biol. Chem. 271 (44): 27517–27523. doi:10.1074/jbc.271.44.27517. PMID 8910336.
  33. ^ Luciani MG, Hutchins JR, Zheleva D, Hupp TR (July 2000). "The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A". J. Mol. Biol. 300 (3): 503–518. doi:10.1006/jmbi.2000.3830. PMID 10884347.
  34. ^ Ababneh M, Götz C, Montenarh M (May 2001). "Downregulation of the cdc2/cyclin B protein kinase activity by binding of p53 to p34(cdc2)". Biochem. Biophys. Res. Commun. 283 (2): 507–512. doi:10.1006/bbrc.2001.4792. PMID 11327730.
  35. ^ Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X (July 2008). "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics. 8 (14): 2885–2896. doi:10.1002/pmic.200700887. PMID 18655026. S2CID 25586938.

Further reading edit

  • Draetta G, Eckstein J (1997). "Cdc25 protein phosphatases in cell proliferation". Biochim. Biophys. Acta. 1332 (2): M53–63. doi:10.1016/S0304-419X(96)00049-2. PMID 9141461.
  • Kino T, Pavlakis GN (2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1". DNA Cell Biol. 23 (4): 193–205. doi:10.1089/104454904773819789. PMID 15142377.
  • Kino T, Chrousos GP (2004). "Human immunodeficiency virus type-1 accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?". Ann. N. Y. Acad. Sci. 1024 (1): 153–167. Bibcode:2004NYASA1024..153K. doi:10.1196/annals.1321.013. PMID 15265780. S2CID 23655886.
  • Zhao LJ, Zhu H (2005). "Structure and function of HIV-1 auxiliary regulatory protein Vpr: novel clues to drug design". Curr. Drug Targets Immune Endocr. Metabol. Disord. 4 (4): 265–275. doi:10.2174/1568008043339668. PMID 15578977.
  • Le Rouzic E, Benichou S (2006). "The Vpr protein from HIV-1: distinct roles along the viral life cycle". Retrovirology. 2: 11. doi:10.1186/1742-4690-2-11. PMC 554975. PMID 15725353.
  • Zhao RY, Elder RT (2005). "Viral infections and cell cycle G2/M regulation". Cell Res. 15 (3): 143–149. doi:10.1038/sj.cr.7290279. PMID 15780175.
  • Zhao RY, Bukrinsky M, Elder RT (2005). "HIV-1 viral protein R (Vpr) & host cellular responses". Indian J. Med. Res. 121 (4): 270–86. PMID 15817944.
  • Kaldis P, Aleem E (2007). "Cell cycle sibling rivalry: Cdc2 vs. Cdk2". Cell Cycle. 4 (11): 1491–1494. doi:10.4161/cc.4.11.2124. PMID 16258277.
  • Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Res. 15 (11–12): 923–934. doi:10.1038/sj.cr.7290370. PMID 16354571.
  • Rietbrock N, Keller F (1977). "[Biologic availability and "1st pass" effect of drugs]". Fortschr. Med. 95 (28): 1765–6, 1774–80. PMID 914146.
  • Azzi L, Meijer L, Reed SI, Pidikiti R, Tung HY (1992). "Interaction between the cell-cycle-control proteins p34cdc2 and p9CKShs2. Evidence for two cooperative binding domains in p9CKShs2". Eur. J. Biochem. 203 (3): 353–360. doi:10.1111/j.1432-1033.1992.tb16557.x. PMID 1310466.
  • Dutta A, Stillman B (1992). "cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication". EMBO J. 11 (6): 2189–99. doi:10.1002/j.1460-2075.1992.tb05278.x. PMC 556686. PMID 1318195.
  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM (1992). "Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle". Science. 257 (5077): 1689–1694. Bibcode:1992Sci...257.1689K. doi:10.1126/science.1388288. PMID 1388288.
  • Russo GL, Vandenberg MT, Yu IJ, Bae YS, Franza BR, Marshak DR (1992). "Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle". J. Biol. Chem. 267 (28): 20317–25. doi:10.1016/S0021-9258(19)88704-5. PMID 1400350.
  • Rubinfeld B, Crosier WJ, Albert I, Conroy L, Clark R, McCormick F, Polakis P (1992). "Localization of the rap1GAP catalytic domain and sites of phosphorylation by mutational analysis". Mol. Cell. Biol. 12 (10): 4634–42. doi:10.1128/MCB.12.10.4634. PMC 360390. PMID 1406653.
  • van der Sluijs P, Hull M, Huber LA, Mâle P, Goud B, Mellman I (1992). "Reversible phosphorylation--dephosphorylation determines the localization of rab4 during the cell cycle". EMBO J. 11 (12): 4379–89. doi:10.1002/j.1460-2075.1992.tb05538.x. PMC 557012. PMID 1425574.
  • Seth A, Alvarez E, Gupta S, Davis RJ (1992). "A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression". J. Biol. Chem. 266 (35): 23521–4. doi:10.1016/S0021-9258(18)54312-X. PMID 1748630.
  • Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E (1992). "The retinoblastoma protein is phosphorylated on multiple sites by human cdc2". EMBO J. 10 (13): 4279–90. doi:10.1002/j.1460-2075.1991.tb05006.x. PMC 453181. PMID 1756735.
  • Nazarenko SA, Ostroverhova NV, Spurr NK (1991). "Regional assignment of the human cell cycle control gene CDC2 to chromosome 10q21 by in situ hybridization". Hum. Genet. 87 (5): 621–2. doi:10.1007/BF00209025. PMID 1916766. S2CID 25673088.
  • Nissen MS, Langan TA, Reeves R (1991). "Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein". J. Biol. Chem. 266 (30): 19945–52. doi:10.1016/S0021-9258(18)54874-2. PMID 1939057.

External links edit

  • Overview of all the structural information available in the PDB for UniProt: P06493 (Cyclin-dependent kinase 1) at the PDBe-KB.

cyclin, dependent, kinase, also, known, cdk1, cell, division, cycle, protein, homolog, highly, conserved, protein, that, functions, serine, threonine, protein, kinase, player, cell, cycle, regulation, been, highly, studied, budding, yeast, cerevisiae, fission,. Cyclin dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine threonine protein kinase and is a key player in cell cycle regulation 5 It has been highly studied in the budding yeast S cerevisiae and the fission yeast S pombe where it is encoded by genes cdc28 and cdc2 respectively 6 With its cyclin partners Cdk1 forms complexes that phosphorylate a variety of target substrates over 75 have been identified in budding yeast phosphorylation of these proteins leads to cell cycle progression 7 CDK1Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes4YC6 4Y72 5HQ0 4YC3IdentifiersAliasesCDK1 CDC2 CDC28A P34CDC2 cyclin dependent kinase 1 cyclin dependent kinase 1External IDsOMIM 116940 MGI 88351 HomoloGene 68203 GeneCards CDK1Gene location Human Chr Chromosome 10 human 1 Band10q21 2Start60 778 331 bp 1 End60 794 852 bp 1 Gene location Mouse Chr Chromosome 10 mouse 2 Band10 B5 3 10 36 07 cMStart69 170 976 bp 2 End69 188 768 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inganglionic eminencespongy bonesecondary oocyterectumbone marrowtibiaappendixstromal cell of endometriumbone marrow cellscavity of mouthTop expressed inmaxillary prominencemorulamedial ganglionic eminenceabdominal wallsomiteotic placodedermisprimitive streakhandyolk sacMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functiontransferase activity nucleotide binding protein kinase activity histone kinase activity kinase activity Hsp70 protein binding protein binding RNA polymerase II CTD heptapeptide repeat kinase activity ATP binding protein serine threonine kinase activity chromatin binding cyclin binding cyclin dependent protein kinase activity cyclin dependent protein serine threonine kinase activity virus receptor activityCellular componentcentrosome membrane spindle nucleoplasm microtubule organizing center midbody spindle microtubule mitochondrion mitotic spindle extracellular exosome cytoskeleton nucleus cyclin dependent protein kinase holoenzyme complex cytoplasm cytosol mitochondrial matrix endoplasmic reticulum membrane cyclin B1 CDK1 complexBiological processpositive regulation of protein localization to nucleus centrosome cycle regulation of embryonic development response to cadmium ion epithelial cell differentiation response to organic cyclic compound phosphorylation response to copper ion positive regulation of mitotic cell cycle negative regulation of apoptotic process pronuclear fusion response to activity regulation of Schwann cell differentiation cell division positive regulation of DNA replication DNA replication mitotic nuclear membrane disassembly positive regulation of gene expression positive regulation of cardiac muscle cell proliferation chromosome condensation G2 M transition of mitotic cell cycle response to axon injury peptidyl serine phosphorylation animal organ regeneration response to organonitrogen compound response to amine DNA repair cell cycle anaphase promoting complex dependent catabolic process microtubule cytoskeleton organization response to ethanol mitotic G2 DNA damage checkpoint signaling Golgi disassembly peptidyl threonine phosphorylation cell migration ventricular cardiac muscle cell development response to toxic substance response to hydrogen peroxide cellular response to hydrogen peroxide protein localization to kinetochore apoptotic process cell population proliferation proteasome mediated ubiquitin dependent protein catabolic process mitotic cell cycle DNA damage response signal transduction by p53 class mediator resulting in cell cycle arrest regulation of gene expression regulation of meiotic cell cycle ciliary basal body plasma membrane docking protein phosphorylation positive regulation of G2 M transition of mitotic cell cycle protein deubiquitination mitotic cell cycle phase transition positive regulation of mitochondrial ATP synthesis coupled electron transport viral entry into host cell regulation of G2 M transition of mitotic cell cycle transcription initiation from RNA polymerase II promoter protein containing complex assembly regulation of mitotic cell cycle phase transition regulation of circadian rhythmSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez98312534EnsemblENSG00000170312ENSMUSG00000019942UniProtP06493P11440RefSeq mRNA NM 001130829NM 001170406NM 001170407NM 001786NM 033379NM 001320918NM 007659RefSeq protein NP 001163877NP 001163878NP 001307847NP 001777NP 203698NP 031685Location UCSC Chr 10 60 78 60 79 MbChr 10 69 17 69 19 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 2 Function 3 Regulation 4 Interactions 5 See also 6 References 7 Further reading 8 External linksStructure edit nbsp Crystal Structure of the human Cdk1 homolog Cdk2Cdk1 is a small protein approximately 34 kilodaltons and is highly conserved The human homolog of Cdk1 CDK1 shares approximately 63 amino acid identity with its yeast homolog Furthermore human CDK1 is capable of rescuing fission yeast carrying a cdc2 mutation 8 9 Cdk1 is comprised mostly by the bare protein kinase motif which other protein kinases share Cdk1 like other kinases contains a cleft in which ATP fits Substrates of Cdk1 bind near the mouth of the cleft and Cdk1 residues catalyze the covalent bonding of the g phosphate to the oxygen of the hydroxyl serine threonine of the substrate In addition to this catalytic core Cdk1 like other cyclin dependent kinases contains a T loop which in the absence of an interacting cyclin prevents substrate binding to the Cdk1 active site Cdk1 also contains a PSTAIRE helix which upon cyclin binding moves and rearranges the active site facilitating Cdk1 kinase activities 10 Function edit nbsp Fig 1 The diagram shows the role of Cdk1 in progression through the S cerevisiae cell cycle Cln3 Cdk1 leads to Cln1 2 Cdk1 activity eventually resulting in Clb5 6 Cdk1 activity and then Clb1 4 Cdk1 activity 5 When bound to its cyclin partners Cdk1 phosphorylation leads to cell cycle progression Cdk1 activity is best understood in S cerevisiae so Cdk1 S cerevisiae activity is described here In the budding yeast initial cell cycle entry is controlled by two regulatory complexes SBF SCB binding factor and MBF MCB binding factor These two complexes control G1 S gene transcription however they are normally inactive SBF is inhibited by the protein Whi5 however when phosphorylated by Cln3 Cdk1 Whi5 is ejected from the nucleus allowing for transcription of the G1 S regulon which includes the G1 S cyclins Cln1 2 11 G1 S cyclin Cdk1 activity leads to preparation for S phase entry e g duplication of centromeres or the spindle pole body and a rise in the S cyclins Clb5 6 in S cerevisiae Clb5 6 Cdk1 complexes directly lead to replication origin initiation 12 however they are inhibited by Sic1 preventing premature S phase initiation Cln1 2 and or Clb5 6 Cdk1 complex activity leads to a sudden drop in Sic1 levels allowing for coherent S phase entry Finally phosphorylation by M cyclins e g Clb1 2 3 and 4 in complex with Cdk1 leads to spindle assembly and sister chromatid alignment Cdk1 phosphorylation also leads to the activation of the ubiquitin protein ligase APCCdc20 an activation which allows for chromatid segregation and furthermore degradation of M phase cyclins This destruction of M cyclins leads to the final events of mitosis e g spindle disassembly mitotic exit Regulation editGiven its essential role in cell cycle progression Cdk1 is highly regulated Most obviously Cdk1 is regulated by its binding with its cyclin partners Cyclin binding alters access to the active site of Cdk1 allowing for Cdk1 activity furthermore cyclins impart specificity to Cdk1 activity At least some cyclins contain a hydrophobic patch which may directly interact with substrates conferring target specificity 13 Furthermore cyclins can target Cdk1 to particular subcellular locations In addition to regulation by cyclins Cdk1 is regulated by phosphorylation A conserved tyrosine Tyr15 in humans leads to inhibition of Cdk1 this phosphorylation is thought to alter ATP orientation preventing efficient kinase activity In S pombe for example incomplete DNA synthesis may lead to stabilization of this phosphorylation preventing mitotic progression 14 Wee1 conserved among all eukaryotes phosphorylates Tyr15 whereas members of the Cdc25 family are phosphatases counteracting this activity The balance between the two is thought to help govern cell cycle progression Wee1 is controlled upstream by Cdr1 Cdr2 and Pom1 Cdk1 cyclin complexes are also governed by direct binding of Cdk inhibitor proteins CKIs One such protein already discussed is Sic1 Sic1 is a stoichiometric inhibitor that binds directly to Clb5 6 Cdk1 complexes Multisite phosphorylation by Cdk1 Cln1 2 of Sic1 is thought to time Sic1 ubiquitination and destruction and by extension the timing of S phase entry Only until Sic1 inhibition is overcome can Clb5 6 activity occur and S phase initiation may begin Interactions editCdk1 has been shown to interact with BCL2 15 16 CCNB1 17 18 19 CCNE1 17 20 CDKN3 21 22 DAB2 23 FANCC 24 25 GADD45A 26 27 28 29 LATS1 30 LYN 31 32 P53 33 34 and UBC 35 See also edit nbsp Biology portalE2F E2F 2FpRb complexes Hyperphosphorylation cdc25 Maturation promoting factor CDK cyclin A cyclin B cyclin D cyclin E Wee cell cycle MastlReferences edit a b c GRCh38 Ensembl release 89 ENSG00000170312 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000019942 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine a b Morgan David L 2007 The cell cycle principles of control London New Science Press pp 30 31 ISBN 978 0 19 920610 0 Nasmyth K April 1993 Control of the yeast cell cycle by the Cdc28 protein kinase Curr Opin Cell Biol 5 2 166 179 doi 10 1016 0955 0674 93 90099 C PMID 8507488 Enserink JM Kolodner RD May 2010 An overview of Cdk1 controlled targets and processes Cell Division 5 11 11 doi 10 1186 1747 1028 5 11 PMC 2876151 PMID 20465793 Lee Melanie Nurse Paul Jun 1987 Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2 Nature 327 6117 31 35 Bibcode 1987Natur 327 31L doi 10 1038 327031a0 PMID 3553962 S2CID 4300190 De Bondt HL Rosenblatt J Jancarik J Jones HD Morgan DO Kim SH June 1993 Crystal structure of cyclin dependent kinase 2 Nature 363 6430 595 602 Bibcode 1993Natur 363 595D doi 10 1038 363595a0 PMID 8510751 S2CID 4354370 Jeffrey PD Russo AA Polyak K Gibbs E Hurwitz J Massague J Pavletich NP July 1995 Mechanism of CDK activation revealed by the structure of a cyclinA CDK2 complex Nature 376 6538 313 320 Bibcode 1995Natur 376 313J doi 10 1038 376313a0 PMID 7630397 S2CID 4361179 Skotheim JM Di Talia S Siggia ED Cross FR July 2008 Positive feedback of G1 cyclins ensures coherent cell cycle entry Nature 454 7202 291 296 Bibcode 2008Natur 454 291S doi 10 1038 nature07118 PMC 2606905 PMID 18633409 Cross FR Yuste Rojas M Gray S Jacobson MD July 1999 Specialization and targeting of B type cyclins Mol Cell 4 1 11 19 doi 10 1016 S1097 2765 00 80183 5 PMID 10445023 Brown NR Noble ME Endicott JA Johnson LN November 1999 The structural basis for specificity of substrate and recruitment peptides for cyclin dependent kinases Nat Cell Biol 1 7 438 443 doi 10 1038 15674 PMID 10559988 S2CID 17988582 Elledge SJ December 1996 Cell cycle checkpoints preventing an identity crisis Science 274 5293 1664 1672 Bibcode 1996Sci 274 1664E doi 10 1126 science 274 5293 1664 PMID 8939848 S2CID 39235426 Pathan N Aime Sempe C Kitada S Basu A Haldar S Reed JC 2001 Microtubule targeting drugs induce bcl 2 phosphorylation and association with Pin1 Neoplasia 3 6 550 9 doi 10 1038 sj neo 7900213 PMC 1506558 PMID 11774038 Pathan N Aime Sempe C Kitada S Haldar S Reed JC 2001 Microtubule targeting drugs induce Bcl 2 phosphorylation and association with Pin1 Neoplasia 3 1 70 9 doi 10 1038 sj neo 7900131 PMC 1505024 PMID 11326318 a b Shanahan F Seghezzi W Parry D Mahony D Lees E February 1999 Cyclin E associates with BAF155 and BRG1 components of the mammalian SWI SNF complex and alters the ability of BRG1 to induce growth arrest Mol Cell Biol 19 2 1460 9 doi 10 1128 mcb 19 2 1460 PMC 116074 PMID 9891079 Pines J Hunter T September 1989 Isolation of a human cyclin cDNA evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2 Cell 58 5 833 846 doi 10 1016 0092 8674 89 90936 7 PMID 2570636 S2CID 20336733 Kong M Barnes EA Ollendorff V Donoghue DJ March 2000 Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin cyclin interaction EMBO J 19 6 1378 1388 doi 10 1093 emboj 19 6 1378 PMC 305678 PMID 10716937 Koff A Giordano A Desai D Yamashita K Harper JW Elledge S Nishimoto T Morgan DO Franza BR Roberts JM September 1992 Formation and activation of a cyclin E cdk2 complex during the G1 phase of the human cell cycle Science 257 5077 1689 1694 Bibcode 1992Sci 257 1689K doi 10 1126 science 1388288 PMID 1388288 Hannon GJ Casso D Beach D March 1994 KAP a dual specificity phosphatase that interacts with cyclin dependent kinases Proc Natl Acad Sci U S A 91 5 1731 1735 Bibcode 1994PNAS 91 1731H doi 10 1073 pnas 91 5 1731 PMC 43237 PMID 8127873 Gyuris J Golemis E Chertkov H Brent R November 1993 Cdi1 a human G1 and S phase protein phosphatase that associates with Cdk2 Cell 75 4 791 803 doi 10 1016 0092 8674 93 90498 F PMID 8242750 He J Xu J Xu XX Hall RA July 2003 Cell cycle dependent phosphorylation of Disabled 2 by cdc2 Oncogene 22 29 4524 4530 doi 10 1038 sj onc 1206767 PMID 12881709 Reuter TY Medhurst AL Waisfisz Q Zhi Y Herterich S Hoehn H Gross HJ Joenje H Hoatlin ME Mathew CG Huber PA October 2003 Yeast two hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation cell signaling oxidative metabolism and cellular transport Exp Cell Res 289 2 211 221 doi 10 1016 S0014 4827 03 00261 1 PMID 14499622 Kupfer GM Yamashita T Naf D Suliman A Asano S D Andrea AD August 1997 The Fanconi anemia polypeptide FAC binds to the cyclin dependent kinase cdc2 Blood 90 3 1047 54 doi 10 1182 blood V90 3 1047 PMID 9242535 Zhan Q Antinore MJ Wang XW Carrier F Smith ML Harris CC Fornace AJ May 1999 Association with Cdc2 and inhibition of Cdc2 Cyclin B1 kinase activity by the p53 regulated protein Gadd45 Oncogene 18 18 2892 2900 doi 10 1038 sj onc 1202667 PMID 10362260 Jin S Antinore MJ Lung FD Dong X Zhao H Fan F Colchagie AB Blanck P Roller PP Fornace AJ Zhan Q June 2000 The GADD45 inhibition of Cdc2 kinase correlates with GADD45 mediated growth suppression J Biol Chem 275 22 16602 16608 doi 10 1074 jbc M000284200 PMID 10747892 Yang Q Manicone A Coursen JD Linke SP Nagashima M Forgues M Wang XW November 2000 Identification of a functional domain in a GADD45 mediated G2 M checkpoint J Biol Chem 275 47 36892 36898 doi 10 1074 jbc M005319200 PMID 10973963 Vairapandi M Balliet AG Hoffman B Liebermann DA September 2002 GADD45b and GADD45g are cdc2 cyclinB1 kinase inhibitors with a role in S and G2 M cell cycle checkpoints induced by genotoxic stress J Cell Physiol 192 3 327 338 doi 10 1002 jcp 10140 PMID 12124778 S2CID 19138273 Tao W Zhang S Turenchalk GS Stewart RA St John MA Chen W Xu T February 1999 Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity Nat Genet 21 2 177 181 doi 10 1038 5960 PMID 9988268 S2CID 32090556 Kharbanda S Yuan ZM Rubin E Weichselbaum R Kufe D August 1994 Activation of Src like p56 p53lyn tyrosine kinase by ionizing radiation J Biol Chem 269 32 20739 43 doi 10 1016 S0021 9258 17 32054 9 PMID 8051175 Pathan NI Geahlen RL Harrison ML November 1996 The protein tyrosine kinase Lck associates with and is phosphorylated by Cdc2 J Biol Chem 271 44 27517 27523 doi 10 1074 jbc 271 44 27517 PMID 8910336 Luciani MG Hutchins JR Zheleva D Hupp TR July 2000 The C terminal regulatory domain of p53 contains a functional docking site for cyclin A J Mol Biol 300 3 503 518 doi 10 1006 jmbi 2000 3830 PMID 10884347 Ababneh M Gotz C Montenarh M May 2001 Downregulation of the cdc2 cyclin B protein kinase activity by binding of p53 to p34 cdc2 Biochem Biophys Res Commun 283 2 507 512 doi 10 1006 bbrc 2001 4792 PMID 11327730 Tan F Lu L Cai Y Wang J Xie Y Wang L Gong Y Xu BE Wu J Luo Y Qiang B Yuan J Sun X Peng X July 2008 Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells Proteomics 8 14 2885 2896 doi 10 1002 pmic 200700887 PMID 18655026 S2CID 25586938 Further reading editDraetta G Eckstein J 1997 Cdc25 protein phosphatases in cell proliferation Biochim Biophys Acta 1332 2 M53 63 doi 10 1016 S0304 419X 96 00049 2 PMID 9141461 Kino T Pavlakis GN 2004 Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1 DNA Cell Biol 23 4 193 205 doi 10 1089 104454904773819789 PMID 15142377 Kino T Chrousos GP 2004 Human immunodeficiency virus type 1 accessory protein Vpr a causative agent of the AIDS related insulin resistance lipodystrophy syndrome Ann N Y Acad Sci 1024 1 153 167 Bibcode 2004NYASA1024 153K doi 10 1196 annals 1321 013 PMID 15265780 S2CID 23655886 Zhao LJ Zhu H 2005 Structure and function of HIV 1 auxiliary regulatory protein Vpr novel clues to drug design Curr Drug Targets Immune Endocr Metabol Disord 4 4 265 275 doi 10 2174 1568008043339668 PMID 15578977 Le Rouzic E Benichou S 2006 The Vpr protein from HIV 1 distinct roles along the viral life cycle Retrovirology 2 11 doi 10 1186 1742 4690 2 11 PMC 554975 PMID 15725353 Zhao RY Elder RT 2005 Viral infections and cell cycle G2 M regulation Cell Res 15 3 143 149 doi 10 1038 sj cr 7290279 PMID 15780175 Zhao RY Bukrinsky M Elder RT 2005 HIV 1 viral protein R Vpr amp host cellular responses Indian J Med Res 121 4 270 86 PMID 15817944 Kaldis P Aleem E 2007 Cell cycle sibling rivalry Cdc2 vs Cdk2 Cell Cycle 4 11 1491 1494 doi 10 4161 cc 4 11 2124 PMID 16258277 Li L Li HS Pauza CD Bukrinsky M Zhao RY 2006 Roles of HIV 1 auxiliary proteins in viral pathogenesis and host pathogen interactions Cell Res 15 11 12 923 934 doi 10 1038 sj cr 7290370 PMID 16354571 Rietbrock N Keller F 1977 Biologic availability and 1st pass effect of drugs Fortschr Med 95 28 1765 6 1774 80 PMID 914146 Azzi L Meijer L Reed SI Pidikiti R Tung HY 1992 Interaction between the cell cycle control proteins p34cdc2 and p9CKShs2 Evidence for two cooperative binding domains in p9CKShs2 Eur J Biochem 203 3 353 360 doi 10 1111 j 1432 1033 1992 tb16557 x PMID 1310466 Dutta A Stillman B 1992 cdc2 family kinases phosphorylate a human cell DNA replication factor RPA and activate DNA replication EMBO J 11 6 2189 99 doi 10 1002 j 1460 2075 1992 tb05278 x PMC 556686 PMID 1318195 Koff A Giordano A Desai D Yamashita K Harper JW Elledge S Nishimoto T Morgan DO Franza BR Roberts JM 1992 Formation and activation of a cyclin E cdk2 complex during the G1 phase of the human cell cycle Science 257 5077 1689 1694 Bibcode 1992Sci 257 1689K doi 10 1126 science 1388288 PMID 1388288 Russo GL Vandenberg MT Yu IJ Bae YS Franza BR Marshak DR 1992 Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle J Biol Chem 267 28 20317 25 doi 10 1016 S0021 9258 19 88704 5 PMID 1400350 Rubinfeld B Crosier WJ Albert I Conroy L Clark R McCormick F Polakis P 1992 Localization of the rap1GAP catalytic domain and sites of phosphorylation by mutational analysis Mol Cell Biol 12 10 4634 42 doi 10 1128 MCB 12 10 4634 PMC 360390 PMID 1406653 van der Sluijs P Hull M Huber LA Male P Goud B Mellman I 1992 Reversible phosphorylation dephosphorylation determines the localization of rab4 during the cell cycle EMBO J 11 12 4379 89 doi 10 1002 j 1460 2075 1992 tb05538 x PMC 557012 PMID 1425574 Seth A Alvarez E Gupta S Davis RJ 1992 A phosphorylation site located in the NH2 terminal domain of c Myc increases transactivation of gene expression J Biol Chem 266 35 23521 4 doi 10 1016 S0021 9258 18 54312 X PMID 1748630 Lees JA Buchkovich KJ Marshak DR Anderson CW Harlow E 1992 The retinoblastoma protein is phosphorylated on multiple sites by human cdc2 EMBO J 10 13 4279 90 doi 10 1002 j 1460 2075 1991 tb05006 x PMC 453181 PMID 1756735 Nazarenko SA Ostroverhova NV Spurr NK 1991 Regional assignment of the human cell cycle control gene CDC2 to chromosome 10q21 by in situ hybridization Hum Genet 87 5 621 2 doi 10 1007 BF00209025 PMID 1916766 S2CID 25673088 Nissen MS Langan TA Reeves R 1991 Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein J Biol Chem 266 30 19945 52 doi 10 1016 S0021 9258 18 54874 2 PMID 1939057 External links editOverview of all the structural information available in the PDB for UniProt P06493 Cyclin dependent kinase 1 at the PDBe KB Retrieved from https en wikipedia org w index php title Cyclin dependent kinase 1 amp oldid 1188207580, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.