fbpx
Wikipedia

Catalan's conjecture

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.[1][2] The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that

Catalan's conjecture — the only solution in the natural numbers of

for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3.

History Edit

The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (x, y) was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case b = 2.[3]

In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a, b to give an effective upper bound for x,y,a,b. Michel Langevin computed a value of   for the bound,[4] resolving Catalan's conjecture for all but a finite number of cases.

Catalan's conjecture was proven by Preda Mihăilescu in April 2002. The proof was published in the Journal für die reine und angewandte Mathematik, 2004. It makes extensive use of the theory of cyclotomic fields and Galois modules. An exposition of the proof was given by Yuri Bilu in the Séminaire Bourbaki.[5] In 2005, Mihăilescu published a simplified proof.[6]

Pillai's conjecture Edit

Unsolved problem in mathematics:

Does each positive integer occur only finitely many times as a difference of perfect powers?

Pillai's conjecture concerns a general difference of perfect powers (sequence A001597 in the OEIS): it is an open problem initially proposed by S. S. Pillai, who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers A, B, C the equation   has only finitely many solutions (xymn) with (mn) ≠ (2, 2). Pillai proved that the difference   for any λ less than 1, uniformly in m and n.[7]

The general conjecture would follow from the ABC conjecture.[7][8]

Paul Erdős conjectured[citation needed] that the ascending sequence   of perfect powers satisfies   for some positive constant c and all sufficiently large n.

Pillai's conjecture means that for every natural number n, there are only finitely many pairs of perfect powers with difference n. The list below shows, for n ≤ 64, all solutions for perfect powers less than 1018, as OEISA076427. See also OEISA103953 for the smallest solution (> 0).

n solution
count
numbers k such that k and k + n
are both perfect powers
n solution
count
numbers k such that k and k + n
are both perfect powers
1 1 8 33 2 16, 256
2 1 25 34 0 none
3 2 1, 125 35 3 1, 289, 1296
4 3 4, 32, 121 36 2 64, 1728
5 2 4, 27 37 3 27, 324, 14348907
6 0 none 38 1 1331
7 5 1, 9, 25, 121, 32761 39 4 25, 361, 961, 10609
8 3 1, 8, 97336 40 4 9, 81, 216, 2704
9 4 16, 27, 216, 64000 41 3 8, 128, 400
10 1 2187 42 0 none
11 4 16, 25, 3125, 3364 43 1 441
12 2 4, 2197 44 3 81, 100, 125
13 3 36, 243, 4900 45 4 4, 36, 484, 9216
14 0 none 46 1 243
15 3 1, 49, 1295029 47 6 81, 169, 196, 529, 1681, 250000
16 3 9, 16, 128 48 4 1, 16, 121, 21904
17 7 8, 32, 64, 512, 79507, 140608, 143384152904 49 3 32, 576, 274576
18 3 9, 225, 343 50 0 none
19 5 8, 81, 125, 324, 503284356 51 2 49, 625
20 2 16, 196 52 1 144
21 2 4, 100 53 2 676, 24336
22 2 27, 2187 54 2 27, 289
23 4 4, 9, 121, 2025 55 3 9, 729, 175561
24 5 1, 8, 25, 1000, 542939080312 56 4 8, 25, 169, 5776
25 2 100, 144 57 3 64, 343, 784
26 3 1, 42849, 6436343 58 0 none
27 3 9, 169, 216 59 1 841
28 7 4, 8, 36, 100, 484, 50625, 131044 60 4 4, 196, 2515396, 2535525316
29 1 196 61 2 64, 900
30 1 6859 62 0 none
31 2 1, 225 63 4 1, 81, 961, 183250369
32 4 4, 32, 49, 7744 64 4 36, 64, 225, 512

See also Edit

Notes Edit

  1. ^ Weisstein, Eric W., Catalan's conjecture, MathWorld
  2. ^ Mihăilescu 2004
  3. ^ Victor-Amédée Lebesgue (1850), "Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1", Nouvelles annales de mathématiques, 1re série, 9: 178–181
  4. ^ Ribenboim, Paulo (1979), 13 Lectures on Fermat's Last Theorem, Springer-Verlag, p. 236, ISBN 0-387-90432-8, Zbl 0456.10006
  5. ^ Bilu, Yuri (2004), "Catalan's conjecture", Séminaire Bourbaki vol. 2003/04 Exposés 909-923, Astérisque, vol. 294, pp. 1–26
  6. ^ Mihăilescu 2005
  7. ^ a b Narkiewicz, Wladyslaw (2011), Rational Number Theory in the 20th Century: From PNT to FLT, Springer Monographs in Mathematics, Springer-Verlag, pp. 253–254, ISBN 978-0-857-29531-6
  8. ^ Schmidt, Wolfgang M. (1996), Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, vol. 1467 (2nd ed.), Springer-Verlag, p. 207, ISBN 3-540-54058-X, Zbl 0754.11020

References Edit

  • Bilu, Yuri (2004), "Catalan's conjecture (after Mihăilescu)", Astérisque, 294: vii, 1–26, MR 2111637
  • Catalan, Eugene (1844), "Note extraite d'une lettre adressée à l'éditeur", J. Reine Angew. Math. (in French), 27: 192, doi:10.1515/crll.1844.27.192, MR 1578392
  • Cohen, Henri (2005). Démonstration de la conjecture de Catalan [A proof of the Catalan conjecture]. Théorie algorithmique des nombres et équations diophantiennes (in French). Palaiseau: Éditions de l'École Polytechnique. pp. 1–83. ISBN 2-7302-1293-0. MR 0222434.
  • Metsänkylä, Tauno (2004), "Catalan's conjecture: another old Diophantine problem solved" (PDF), Bulletin of the American Mathematical Society, 41 (1): 43–57, doi:10.1090/S0273-0979-03-00993-5, MR 2015449
  • Mihăilescu, Preda (2004), "Primary Cyclotomic Units and a Proof of Catalan's Conjecture", J. Reine Angew. Math., 2004 (572): 167–195, doi:10.1515/crll.2004.048, MR 2076124
  • Mihăilescu, Preda (2005), (PDF), European Congress of Mathematics, Zurich: Eur. Math. Soc.: 325–340, MR 2185753, archived from the original (PDF) on 2022-06-26
  • Ribenboim, Paulo (1994), Catalan's Conjecture, Boston, MA: Academic Press, Inc., ISBN 0-12-587170-8, MR 1259738 Predates Mihăilescu's proof.
  • Tijdeman, Robert (1976), "On the equation of Catalan" (PDF), Acta Arith., 29 (2): 197–209, doi:10.4064/aa-29-2-197-209, MR 0404137

External links Edit

catalan, conjecture, catalan, aliquot, sequence, conjecture, aliquot, sequence, catalan, dickson, conjecture, catalan, mersenne, number, conjecture, double, mersenne, number, catalan, mersenne, number, conjecture, mihăilescu, theorem, theorem, number, theory, . For Catalan s aliquot sequence conjecture see Aliquot sequence Catalan Dickson conjecture For Catalan s Mersenne number conjecture see Double Mersenne number Catalan Mersenne number conjecture Catalan s conjecture or Mihăilescu s theorem is a theorem in number theory that was conjectured by the mathematician Eugene Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University 1 2 The integers 23 and 32 are two perfect powers that is powers of exponent higher than one of natural numbers whose values 8 and 9 respectively are consecutive The theorem states that this is the only case of two consecutive perfect powers That is to say thatCatalan s conjecture the only solution in the natural numbers of x a y b 1 displaystyle x a y b 1 for a b gt 1 x y gt 0 is x 3 a 2 y 2 b 3 Contents 1 History 2 Pillai s conjecture 3 See also 4 Notes 5 References 6 External linksHistory EditThe history of the problem dates back at least to Gersonides who proved a special case of the conjecture in 1343 where x y was restricted to be 2 3 or 3 2 The first significant progress after Catalan made his conjecture came in 1850 when Victor Amedee Lebesgue dealt with the case b 2 3 In 1976 Robert Tijdeman applied Baker s method in transcendence theory to establish a bound on a b and used existing results bounding x y in terms of a b to give an effective upper bound for x y a b Michel Langevin computed a value of exp exp exp exp 730 10 10 10 10 317 displaystyle exp exp exp exp 730 approx 10 10 10 10 317 nbsp for the bound 4 resolving Catalan s conjecture for all but a finite number of cases Catalan s conjecture was proven by Preda Mihăilescu in April 2002 The proof was published in the Journal fur die reine und angewandte Mathematik 2004 It makes extensive use of the theory of cyclotomic fields and Galois modules An exposition of the proof was given by Yuri Bilu in the Seminaire Bourbaki 5 In 2005 Mihăilescu published a simplified proof 6 Pillai s conjecture EditUnsolved problem in mathematics Does each positive integer occur only finitely many times as a difference of perfect powers more unsolved problems in mathematics Pillai s conjecture concerns a general difference of perfect powers sequence A001597 in the OEIS it is an open problem initially proposed by S S Pillai who conjectured that the gaps in the sequence of perfect powers tend to infinity This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers more generally in 1931 Pillai conjectured that for fixed positive integers A B C the equation A x n B y m C displaystyle Ax n By m C nbsp has only finitely many solutions x y m n with m n 2 2 Pillai proved that the difference A x n B y m x l n displaystyle Ax n By m gg x lambda n nbsp for any l less than 1 uniformly in m and n 7 The general conjecture would follow from the ABC conjecture 7 8 Paul Erdos conjectured citation needed that the ascending sequence a n n N displaystyle a n n in mathbb N nbsp of perfect powers satisfies a n 1 a n gt n c displaystyle a n 1 a n gt n c nbsp for some positive constant c and all sufficiently large n Pillai s conjecture means that for every natural number n there are only finitely many pairs of perfect powers with difference n The list below shows for n 64 all solutions for perfect powers less than 1018 as OEIS A076427 See also OEIS A103953 for the smallest solution gt 0 n solutioncount numbers k such that k and k nare both perfect powers n solutioncount numbers k such that k and k nare both perfect powers1 1 8 33 2 16 2562 1 25 34 0 none3 2 1 125 35 3 1 289 12964 3 4 32 121 36 2 64 17285 2 4 27 37 3 27 324 14348 9076 0 none 38 1 13317 5 1 9 25 121 32761 39 4 25 361 961 106098 3 1 8 97336 40 4 9 81 216 27049 4 16 27 216 64000 41 3 8 128 40010 1 2187 42 0 none11 4 16 25 3125 3364 43 1 44112 2 4 2197 44 3 81 100 12513 3 36 243 4900 45 4 4 36 484 921614 0 none 46 1 24315 3 1 49 1295 029 47 6 81 169 196 529 1681 25000016 3 9 16 128 48 4 1 16 121 2190417 7 8 32 64 512 79507 140608 143384 152 904 49 3 32 576 27457618 3 9 225 343 50 0 none19 5 8 81 125 324 503284 356 51 2 49 62520 2 16 196 52 1 14421 2 4 100 53 2 676 2433622 2 27 2187 54 2 27 28923 4 4 9 121 2025 55 3 9 729 17556124 5 1 8 25 1000 542939 080 312 56 4 8 25 169 577625 2 100 144 57 3 64 343 78426 3 1 42849 6436 343 58 0 none27 3 9 169 216 59 1 84128 7 4 8 36 100 484 50625 131044 60 4 4 196 2515 396 2535 525 31629 1 196 61 2 64 90030 1 6859 62 0 none31 2 1 225 63 4 1 81 961 183250 36932 4 4 32 49 7744 64 4 36 64 225 512See also EditBeal s conjecture Equation xy yx Fermat Catalan conjecture Mordell curve Ramanujan Nagell equation Stormer s theorem Tijdeman s theorem Thaine s theoremNotes Edit Weisstein Eric W Catalan s conjecture MathWorld Mihăilescu 2004 Victor Amedee Lebesgue 1850 Sur l impossibilite en nombres entiers de l equation xm y2 1 Nouvelles annales de mathematiques 1re serie 9 178 181 Ribenboim Paulo 1979 13 Lectures on Fermat s Last Theorem Springer Verlag p 236 ISBN 0 387 90432 8 Zbl 0456 10006 Bilu Yuri 2004 Catalan s conjecture Seminaire Bourbaki vol 2003 04 Exposes 909 923 Asterisque vol 294 pp 1 26 Mihăilescu 2005 a b Narkiewicz Wladyslaw 2011 Rational Number Theory in the 20th Century From PNT to FLT Springer Monographs in Mathematics Springer Verlag pp 253 254 ISBN 978 0 857 29531 6 Schmidt Wolfgang M 1996 Diophantine approximations and Diophantine equations Lecture Notes in Mathematics vol 1467 2nd ed Springer Verlag p 207 ISBN 3 540 54058 X Zbl 0754 11020References EditBilu Yuri 2004 Catalan s conjecture after Mihăilescu Asterisque 294 vii 1 26 MR 2111637 Catalan Eugene 1844 Note extraite d une lettre adressee a l editeur J Reine Angew Math in French 27 192 doi 10 1515 crll 1844 27 192 MR 1578392 Cohen Henri 2005 Demonstration de la conjecture de Catalan A proof of the Catalan conjecture Theorie algorithmique des nombres et equations diophantiennes in French Palaiseau Editions de l Ecole Polytechnique pp 1 83 ISBN 2 7302 1293 0 MR 0222434 Metsankyla Tauno 2004 Catalan s conjecture another old Diophantine problem solved PDF Bulletin of the American Mathematical Society 41 1 43 57 doi 10 1090 S0273 0979 03 00993 5 MR 2015449 Mihăilescu Preda 2004 Primary Cyclotomic Units and a Proof of Catalan s Conjecture J Reine Angew Math 2004 572 167 195 doi 10 1515 crll 2004 048 MR 2076124 Mihăilescu Preda 2005 Reflection Bernoulli numbers and the proof of Catalan s conjecture PDF European Congress of Mathematics Zurich Eur Math Soc 325 340 MR 2185753 archived from the original PDF on 2022 06 26 Ribenboim Paulo 1994 Catalan s Conjecture Boston MA Academic Press Inc ISBN 0 12 587170 8 MR 1259738 Predates Mihăilescu s proof Tijdeman Robert 1976 On the equation of Catalan PDF Acta Arith 29 2 197 209 doi 10 4064 aa 29 2 197 209 MR 0404137External links EditWeisstein Eric W Catalan s conjecture MathWorld Ivars Peterson s MathTrek On difference of perfect powers Jeanine Daems A Cyclotomic Proof of Catalan s Conjecture Retrieved from https en wikipedia org w index php title Catalan 27s conjecture amp oldid 1167767951, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.