fbpx
Wikipedia

CLPB

Caseinolytic peptidase B protein homolog (CLPB), also known as Skd3, is a mitochondrial AAA ATPase chaperone that in humans is encoded by the gene CLPB,[5][6][7] which encodes an adenosine triphosphate-(ATP) dependent chaperone. Skd3 is localized in mitochondria and widely expressed in human tissues. High expression in adult brain and low expression in granulocyte is found.[8][9] It is a potent protein disaggregase that chaperones the mitochondrial intermembrane space.[10] Mutations in the CLPB gene could cause autosomal recessive metabolic disorder with intellectual disability/developmental delay, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.[8][11] Recently, heterozygous, dominant negative mutations in CLPB have been identified as a cause of severe congenital neutropenia (SCN).[12]

CLPB
Identifiers
AliasesCLPB, HSP78, SKD3, ANKCLB, MEGCANN, MGCA7, ClpB homolog, mitochondrial AAA ATPase chaperonin, caseinolytic mitochondrial matrix peptidase chaperone subunit B, SCN9, MGCA7A
External IDsOMIM: 616254 MGI: 1100517 HomoloGene: 32067 GeneCards: CLPB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001258392
NM_001258393
NM_001258394
NM_030813

NM_009191
NM_001363991

RefSeq (protein)

NP_001245321
NP_001245322
NP_001245323
NP_110440

NP_033217
NP_001350920

Location (UCSC)Chr 11: 72.29 – 72.43 MbChr 7: 101.31 – 101.44 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

Gene edit

The CLPB gene has 19 exons and is located at the chromosome band 11q13.4.[7]

Protein edit

Skd3 has five isoforms due to alternative splicing. Isoform 1 is considered to have the 'canonical' sequence. The protein is 78.7 kDa in size and composed of 707 amino acids. It contains an N-terminal mitochondrial targeting sequence (1-92 amino acids).[10] After processing, the mature mitochondrial protein has a theoretical pI of 7.53.[13] Skd3 is further processed by the mitochondrial rhomboid protease PARL at amino acid 127.[10][14] Skd3 has a specific C-terminal D2 domain and proteins with this domain form the sub-family of Caseinolytic peptidase (Clp) proteins, also called HSP100.[15] The domain composition of human Skd3 is different from that of microbial or plant orthologs.[10][16] Notably, the presence of ankyrin repeats replaced the first of two ATPase domains found in bacteria and fungi.[17][18]

Function edit

Skd3 belongs to the HCLR clade of the large AAA+ superfamily.[10][19] The unifying characteristic of this family is the hydrolysis of ATP through the AAA+ domain to produce energy required to catalyze protein unfolding, disassembly and disaggregation.[20][21] Skd3 does not cooperate with HSP70, unlike its bacterial orthologue.[10] The in vitro ATPase activity of Skd3 has been confirmed.[8][10][22] Skd3 is a potent disaggregase in vitro and is activated by PARL to increase disaggregation activity by over 10-fold.[10] Indeed, PARL-activated Skd3 is capable of disassembling alpha-synuclein fibrils in vitro.[10] Even though the bacterial orthologue, ClpB, contributes to the thermotolerance of cells, it is yet unclear if Skd3 plays a similar role within mitochondria.[20][23] The interaction with protein like HAX1 suggests that human Skd3 may be involved in apoptosis.[8] Indeed, Skd3 solubilizes HAX1 in cells and the deletion of the CLPB gene in human cells has been shown to sensitize cells to apoptotic signals.[10][24] In humans, the presence of ankyrin repeats replaced the first of two ATPase domains found in bacteria and fungi, which might have evolved to ensure more elaborate substrate recognition or to support a putative chaperone function.[17][18] Either the ankyrin repeats alone or the AAA+ domain were found to be insufficient to support disaggregation activity.[10] With only one ATPase domain, Skd3 is postulated competent in the use of ATP hydrolysis energy for threading unfolded polypeptide through the central channel of the hexamer ring.[25][26][27] />

Clinical significance edit

Neonatal encephalopathy is a kind of severe neurological impairment in the newborn with no specific clinical sign at the early stage of life, and its diagnosis remains a challenge. This neonatal encephalopathy includes a heterogeneous group of 3-methylglutaconic aciduria syndromes and loss of Skd3 function is reported to be one of the causes. Knocking down the clpB gene in the zebrafish induced reduction of growth and increment of motor activity, which is similar to the signs observed in patients.[20] Its loss may lead to a broad phenotypic spectrum encompassing intellectual disability/developmental delay, congenital neutropenia, progressive brain atrophy, movement disorder, and bilateral cataracts, with 3-methylglutaconic aciduria.[8][11][28] Further investigation into Skd3 may shed a new light on the diagnosis of this disease.

Interactions edit

This protein is known to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000162129 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000001829 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Böcher M, Blöcker H, Bauersachs S, Blum H, Lauber J, Düsterhöft A, Beyer A, Köhrer K, Strack N, Mewes HW, Ottenwälder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M, Poustka A (March 2001). "Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs". Genome Research. 11 (3): 422–35. doi:10.1101/gr.GR1547R. PMC 311072. PMID 11230166.
  6. ^ Périer F, Radeke CM, Raab-Graham KF, Vandenberg CA (January 1995). "Expression of a putative ATPase suppresses the growth defect of a yeast potassium transport mutant: identification of a mammalian member of the Clp/HSP104 family". Gene. 152 (2): 157–63. doi:10.1016/0378-1119(94)00697-Q. PMID 7835694.
  7. ^ a b "Entrez Gene: CLPB ClpB caseinolytic peptidase B homolog (E. coli)".
  8. ^ a b c d e f Wortmann SB, Ziętkiewicz S, Kousi M, Szklarczyk R, Haack TB, Gersting SW, et al. (February 2015). "CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder". American Journal of Human Genetics. 96 (2): 245–57. doi:10.1016/j.ajhg.2014.12.013. PMC 4320260. PMID 25597510.
  9. ^ Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E (February 2015). "CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria". American Journal of Human Genetics. 96 (2): 258–65. doi:10.1016/j.ajhg.2014.12.020. PMC 4320254. PMID 25597511.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Cupo, Ryan R; Shorter, James (2020-06-23). Berger, James M (ed.). "Skd3 (human CLPB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations". eLife. 9: e55279. doi:10.7554/eLife.55279. ISSN 2050-084X. PMC 7343390. PMID 32573439.
  11. ^ a b Kiykim A, Garncarz W, Karakoc-Aydiner E, Ozen A, Kiykim E, Yesil G, Boztug K, Baris S (April 2016). "Novel CLPB mutation in a patient with 3-methylglutaconic aciduria causing severe neurological involvement and congenital neutropenia". Clinical Immunology. 165: 1–3. doi:10.1016/j.clim.2016.02.008. PMID 26916670.
  12. ^ Warren, Julia T; Cupo, Ryan R; Wattanasirakul, Peeradol; Spencer, David; Locke, Adam E; Makaryan, Vahagn; Bolyard, Audrey Anna; Kelley, Meredith L; Kingston, Natalie L; Shorter, James; Bellanné-Chantelot, Christine (2021-06-11). "Heterozygous Variants of CLPB are a Cause of Severe Congenital Neutropenia". Blood. 139 (blood.2021010762): 779–791. doi:10.1182/blood.2021010762. ISSN 0006-4971. PMC 8814677. PMID 34115842.
  13. ^ "Q9H078 - CLPB_HUMAN". Uniprot.
  14. ^ a b Saita, Shotaro; Nolte, Hendrik; Fiedler, Kai Uwe; Kashkar, Hamid; Venne, A. Saskia; Zahedi, René P.; Krüger, Marcus; Langer, Thomas (April 2017). "PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis". Nature Cell Biology. 19 (4): 318–328. doi:10.1038/ncb3488. ISSN 1476-4679. PMID 28288130. S2CID 3744933.
  15. ^ Zolkiewski M (September 2006). "A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases". Molecular Microbiology. 61 (5): 1094–100. doi:10.1111/j.1365-2958.2006.05309.x. PMC 1852505. PMID 16879409.
  16. ^ Erives, Albert J.; Fassler, Jan S. (2015-02-24). "Metabolic and Chaperone Gene Loss Marks the Origin of Animals: Evidence for Hsp104 and Hsp78 Chaperones Sharing Mitochondrial Enzymes as Clients". PLOS ONE. 10 (2): e0117192. Bibcode:2015PLoSO..1017192E. doi:10.1371/journal.pone.0117192. ISSN 1932-6203. PMC 4339202. PMID 25710177.
  17. ^ a b Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (June 2004). "The ankyrin repeat as molecular architecture for protein recognition". Protein Science. 13 (6): 1435–48. doi:10.1110/ps.03554604. PMC 2279977. PMID 15152081.
  18. ^ a b Li J, Mahajan A, Tsai MD (December 2006). "Ankyrin repeat: a unique motif mediating protein-protein interactions". Biochemistry. 45 (51): 15168–78. CiteSeerX 10.1.1.502.2771. doi:10.1021/bi062188q. PMID 17176038.
  19. ^ Erzberger, Jan P.; Berger, James M. (2006-05-11). "Evolutionary relationships and structural mechanisms of aaa+ proteins". Annual Review of Biophysics and Biomolecular Structure. 35 (1): 93–114. doi:10.1146/annurev.biophys.35.040405.101933. ISSN 1056-8700. PMID 16689629.
  20. ^ a b c Capo-Chichi JM, Boissel S, Brustein E, Pickles S, Fallet-Bianco C, Nassif C, Patry L, Dobrzeniecka S, Liao M, Labuda D, Samuels ME, Hamdan FF, Vande Velde C, Rouleau GA, Drapeau P, Michaud JL (May 2015). "Disruption of CLPB is associated with congenital microcephaly, severe encephalopathy and 3-methylglutaconic aciduria". Journal of Medical Genetics. 52 (5): 303–11. doi:10.1136/jmedgenet-2014-102952. PMID 25650066. S2CID 36062854.
  21. ^ Snider J, Thibault G, Houry WA (30 April 2008). "The AAA+ superfamily of functionally diverse proteins". Genome Biology. 9 (4): 216. doi:10.1186/gb-2008-9-4-216. PMC 2643927. PMID 18466635.
  22. ^ Mróz, Dagmara; Wyszkowski, Hubert; Szablewski, Tomasz; Zawieracz, Katarzyna; Dutkiewicz, Rafał; Bury, Katarzyna; Wortmann, Saskia B.; Wevers, Ron A.; Ziętkiewicz, Szymon (April 2020). "CLPB (caseinolytic peptidase B homolog), the first mitochondrial protein refoldase associated with human disease". Biochimica et Biophysica Acta (BBA) - General Subjects. 1864 (4): 129512. doi:10.1016/j.bbagen.2020.129512. PMID 31917998.
  23. ^ Thomas JG, Baneyx F (October 1998). "Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG In vivo". Journal of Bacteriology. 180 (19): 5165–72. doi:10.1128/JB.180.19.5165-5172.1998. PMC 107554. PMID 9748451.
  24. ^ a b c Chen, Xufeng; Glytsou, Christina; Zhou, Hua; Narang, Sonali; Reyna, Denis E.; Lopez, Andrea; Sakellaropoulos, Theodore; Gong, Yixiao; Kloetgen, Andreas; Yap, Yoon Sing; Wang, Eric (July 2019). "Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment". Cancer Discovery. 9 (7): 890–909. doi:10.1158/2159-8290.CD-19-0117. ISSN 2159-8274. PMC 6606342. PMID 31048321.
  25. ^ Horwich AL (November 2004). "Chaperoned protein disaggregation--the ClpB ring uses its central channel". Cell. 119 (5): 579–81. doi:10.1016/j.cell.2004.11.018. PMID 15550237.
  26. ^ Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FT, Mogk A, Bukau B (November 2004). "Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB". Cell. 119 (5): 653–65. doi:10.1016/j.cell.2004.11.027. PMID 15550247.
  27. ^ Nakazaki Y, Watanabe YH (December 2014). "ClpB chaperone passively threads soluble denatured proteins through its central pore". Genes to Cells. 19 (12): 891–900. doi:10.1111/gtc.12188. PMID 25288401. S2CID 7170147.
  28. ^ Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R (12 June 2016). "New perspective in diagnostics of mitochondrial disorders: two years' experience with whole-exome sequencing at a national paediatric centre". Journal of Translational Medicine. 14 (1): 174. doi:10.1186/s12967-016-0930-9. PMC 4903158. PMID 27290639.
  29. ^ Yoshinaka, Takahiro; Kosako, Hidetaka; Yoshizumi, Takuma; Furukawa, Ryo; Hirano, Yu; Kuge, Osamu; Tamada, Taro; Koshiba, Takumi (2019-09-27). "Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a Role of the Coiled-Coil Region". iScience. 19: 1065–1078. Bibcode:2019iSci...19.1065Y. doi:10.1016/j.isci.2019.08.056. ISSN 2589-0042. PMC 6745515. PMID 31522117.

External links edit

Further reading edit

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  • Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (July 2004). "Functional proteomics mapping of a human signaling pathway". Genome Research. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748.
  • Leonard D, Ajuh P, Lamond AI, Legerski RJ (September 2003). "hLodestar/HuF2 interacts with CDC5L and is involved in pre-mRNA splicing". Biochemical and Biophysical Research Communications. 308 (4): 793–801. CiteSeerX 10.1.1.539.8359. doi:10.1016/S0006-291X(03)01486-4. PMID 12927788.

clpb, caseinolytic, peptidase, protein, homolog, also, known, skd3, mitochondrial, atpase, chaperone, that, humans, encoded, gene, which, encodes, adenosine, triphosphate, dependent, chaperone, skd3, localized, mitochondria, widely, expressed, human, tissues, . Caseinolytic peptidase B protein homolog CLPB also known as Skd3 is a mitochondrial AAA ATPase chaperone that in humans is encoded by the gene CLPB 5 6 7 which encodes an adenosine triphosphate ATP dependent chaperone Skd3 is localized in mitochondria and widely expressed in human tissues High expression in adult brain and low expression in granulocyte is found 8 9 It is a potent protein disaggregase that chaperones the mitochondrial intermembrane space 10 Mutations in the CLPB gene could cause autosomal recessive metabolic disorder with intellectual disability developmental delay congenital neutropenia progressive brain atrophy movement disorder cataracts and 3 methylglutaconic aciduria 8 11 Recently heterozygous dominant negative mutations in CLPB have been identified as a cause of severe congenital neutropenia SCN 12 CLPBIdentifiersAliasesCLPB HSP78 SKD3 ANKCLB MEGCANN MGCA7 ClpB homolog mitochondrial AAA ATPase chaperonin caseinolytic mitochondrial matrix peptidase chaperone subunit B SCN9 MGCA7AExternal IDsOMIM 616254 MGI 1100517 HomoloGene 32067 GeneCards CLPBGene location Human Chr Chromosome 11 human 1 Band11q13 4Start72 285 495 bp 1 End72 434 680 bp 1 Gene location Mouse Chr Chromosome 7 mouse 2 Band7 7 E2Start101 312 840 bp 2 End101 444 713 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inspermright adrenal glandislet of Langerhansright lobe of liverstromal cell of endometriumleft adrenal glandmonocytesural nervegastrocnemius muscleprefrontal cortexTop expressed inspermatidseminiferous tubulespermatocyteotic placodesacculemyocardium of ventriclebrown adipose tissueright ventricleproximal tubulesoleus muscleMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionnucleotide binding ATPase activity protein binding hydrolase activity ATP binding molecular functionCellular componentmitochondrion cellular componentBiological processcellular response to heatSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez8157020480EnsemblENSG00000162129ENSMUSG00000001829UniProtQ9H078Q60649RefSeq mRNA NM 001258392NM 001258393NM 001258394NM 030813NM 009191NM 001363991RefSeq protein NP 001245321NP 001245322NP 001245323NP 110440NP 033217NP 001350920Location UCSC Chr 11 72 29 72 43 MbChr 7 101 31 101 44 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 1 1 Gene 1 2 Protein 2 Function 3 Clinical significance 4 Interactions 5 References 6 External links 7 Further readingStructure editGene edit The CLPB gene has 19 exons and is located at the chromosome band 11q13 4 7 Protein edit Skd3 has five isoforms due to alternative splicing Isoform 1 is considered to have the canonical sequence The protein is 78 7 kDa in size and composed of 707 amino acids It contains an N terminal mitochondrial targeting sequence 1 92 amino acids 10 After processing the mature mitochondrial protein has a theoretical pI of 7 53 13 Skd3 is further processed by the mitochondrial rhomboid protease PARL at amino acid 127 10 14 Skd3 has a specific C terminal D2 domain and proteins with this domain form the sub family of Caseinolytic peptidase Clp proteins also called HSP100 15 The domain composition of human Skd3 is different from that of microbial or plant orthologs 10 16 Notably the presence of ankyrin repeats replaced the first of two ATPase domains found in bacteria and fungi 17 18 Function editSkd3 belongs to the HCLR clade of the large AAA superfamily 10 19 The unifying characteristic of this family is the hydrolysis of ATP through the AAA domain to produce energy required to catalyze protein unfolding disassembly and disaggregation 20 21 Skd3 does not cooperate with HSP70 unlike its bacterial orthologue 10 The in vitro ATPase activity of Skd3 has been confirmed 8 10 22 Skd3 is a potent disaggregase in vitro and is activated by PARL to increase disaggregation activity by over 10 fold 10 Indeed PARL activated Skd3 is capable of disassembling alpha synuclein fibrils in vitro 10 Even though the bacterial orthologue ClpB contributes to the thermotolerance of cells it is yet unclear if Skd3 plays a similar role within mitochondria 20 23 The interaction with protein like HAX1 suggests that human Skd3 may be involved in apoptosis 8 Indeed Skd3 solubilizes HAX1 in cells and the deletion of the CLPB gene in human cells has been shown to sensitize cells to apoptotic signals 10 24 In humans the presence of ankyrin repeats replaced the first of two ATPase domains found in bacteria and fungi which might have evolved to ensure more elaborate substrate recognition or to support a putative chaperone function 17 18 Either the ankyrin repeats alone or the AAA domain were found to be insufficient to support disaggregation activity 10 With only one ATPase domain Skd3 is postulated competent in the use of ATP hydrolysis energy for threading unfolded polypeptide through the central channel of the hexamer ring 25 26 27 gt Clinical significance editNeonatal encephalopathy is a kind of severe neurological impairment in the newborn with no specific clinical sign at the early stage of life and its diagnosis remains a challenge This neonatal encephalopathy includes a heterogeneous group of 3 methylglutaconic aciduria syndromes and loss of Skd3 function is reported to be one of the causes Knocking down the clpB gene in the zebrafish induced reduction of growth and increment of motor activity which is similar to the signs observed in patients 20 Its loss may lead to a broad phenotypic spectrum encompassing intellectual disability developmental delay congenital neutropenia progressive brain atrophy movement disorder and bilateral cataracts with 3 methylglutaconic aciduria 8 11 28 Further investigation into Skd3 may shed a new light on the diagnosis of this disease Interactions editThis protein is known to interact with HAX1 8 10 24 PARL 10 14 HTRA2 10 SMAC DIABLO 10 OPA1 10 OPA3 24 PHB2 10 29 MICU1 10 MICU2 10 SLC25A25 10 SLC25A13 10 TIMM8A 10 TIMM8B 10 TIMM13 10 TIMM21 10 TIMM22 10 TIMM23 10 TIMM50 10 NDUFA8 10 NDUFA11 10 NDUFA13 10 NDUFB7 10 NDUFB10 10 TTC19 10 COX11 10 CYC1 10 References edit a b c GRCh38 Ensembl release 89 ENSG00000162129 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000001829 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Wiemann S Weil B Wellenreuther R Gassenhuber J Glassl S Ansorge W Bocher M Blocker H Bauersachs S Blum H Lauber J Dusterhoft A Beyer A Kohrer K Strack N Mewes HW Ottenwalder B Obermaier B Tampe J Heubner D Wambutt R Korn B Klein M Poustka A March 2001 Toward a catalog of human genes and proteins sequencing and analysis of 500 novel complete protein coding human cDNAs Genome Research 11 3 422 35 doi 10 1101 gr GR1547R PMC 311072 PMID 11230166 Perier F Radeke CM Raab Graham KF Vandenberg CA January 1995 Expression of a putative ATPase suppresses the growth defect of a yeast potassium transport mutant identification of a mammalian member of the Clp HSP104 family Gene 152 2 157 63 doi 10 1016 0378 1119 94 00697 Q PMID 7835694 a b Entrez Gene CLPB ClpB caseinolytic peptidase B homolog E coli a b c d e f Wortmann SB Zietkiewicz S Kousi M Szklarczyk R Haack TB Gersting SW et al February 2015 CLPB mutations cause 3 methylglutaconic aciduria progressive brain atrophy intellectual disability congenital neutropenia cataracts movement disorder American Journal of Human Genetics 96 2 245 57 doi 10 1016 j ajhg 2014 12 013 PMC 4320260 PMID 25597510 Saunders C Smith L Wibrand F Ravn K Bross P Thiffault I Christensen M Atherton A Farrow E Miller N Kingsmore SF Ostergaard E February 2015 CLPB variants associated with autosomal recessive mitochondrial disorder with cataract neutropenia epilepsy and methylglutaconic aciduria American Journal of Human Genetics 96 2 258 65 doi 10 1016 j ajhg 2014 12 020 PMC 4320254 PMID 25597511 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Cupo Ryan R Shorter James 2020 06 23 Berger James M ed Skd3 human CLPB is a potent mitochondrial protein disaggregase that is inactivated by 3 methylglutaconic aciduria linked mutations eLife 9 e55279 doi 10 7554 eLife 55279 ISSN 2050 084X PMC 7343390 PMID 32573439 a b Kiykim A Garncarz W Karakoc Aydiner E Ozen A Kiykim E Yesil G Boztug K Baris S April 2016 Novel CLPB mutation in a patient with 3 methylglutaconic aciduria causing severe neurological involvement and congenital neutropenia Clinical Immunology 165 1 3 doi 10 1016 j clim 2016 02 008 PMID 26916670 Warren Julia T Cupo Ryan R Wattanasirakul Peeradol Spencer David Locke Adam E Makaryan Vahagn Bolyard Audrey Anna Kelley Meredith L Kingston Natalie L Shorter James Bellanne Chantelot Christine 2021 06 11 Heterozygous Variants of CLPB are a Cause of Severe Congenital Neutropenia Blood 139 blood 2021010762 779 791 doi 10 1182 blood 2021010762 ISSN 0006 4971 PMC 8814677 PMID 34115842 Q9H078 CLPB HUMAN Uniprot a b Saita Shotaro Nolte Hendrik Fiedler Kai Uwe Kashkar Hamid Venne A Saskia Zahedi Rene P Kruger Marcus Langer Thomas April 2017 PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis Nature Cell Biology 19 4 318 328 doi 10 1038 ncb3488 ISSN 1476 4679 PMID 28288130 S2CID 3744933 Zolkiewski M September 2006 A camel passes through the eye of a needle protein unfolding activity of Clp ATPases Molecular Microbiology 61 5 1094 100 doi 10 1111 j 1365 2958 2006 05309 x PMC 1852505 PMID 16879409 Erives Albert J Fassler Jan S 2015 02 24 Metabolic and Chaperone Gene Loss Marks the Origin of Animals Evidence for Hsp104 and Hsp78 Chaperones Sharing Mitochondrial Enzymes as Clients PLOS ONE 10 2 e0117192 Bibcode 2015PLoSO 1017192E doi 10 1371 journal pone 0117192 ISSN 1932 6203 PMC 4339202 PMID 25710177 a b Mosavi LK Cammett TJ Desrosiers DC Peng ZY June 2004 The ankyrin repeat as molecular architecture for protein recognition Protein Science 13 6 1435 48 doi 10 1110 ps 03554604 PMC 2279977 PMID 15152081 a b Li J Mahajan A Tsai MD December 2006 Ankyrin repeat a unique motif mediating protein protein interactions Biochemistry 45 51 15168 78 CiteSeerX 10 1 1 502 2771 doi 10 1021 bi062188q PMID 17176038 Erzberger Jan P Berger James M 2006 05 11 Evolutionary relationships and structural mechanisms of aaa proteins Annual Review of Biophysics and Biomolecular Structure 35 1 93 114 doi 10 1146 annurev biophys 35 040405 101933 ISSN 1056 8700 PMID 16689629 a b c Capo Chichi JM Boissel S Brustein E Pickles S Fallet Bianco C Nassif C Patry L Dobrzeniecka S Liao M Labuda D Samuels ME Hamdan FF Vande Velde C Rouleau GA Drapeau P Michaud JL May 2015 Disruption of CLPB is associated with congenital microcephaly severe encephalopathy and 3 methylglutaconic aciduria Journal of Medical Genetics 52 5 303 11 doi 10 1136 jmedgenet 2014 102952 PMID 25650066 S2CID 36062854 Snider J Thibault G Houry WA 30 April 2008 The AAA superfamily of functionally diverse proteins Genome Biology 9 4 216 doi 10 1186 gb 2008 9 4 216 PMC 2643927 PMID 18466635 Mroz Dagmara Wyszkowski Hubert Szablewski Tomasz Zawieracz Katarzyna Dutkiewicz Rafal Bury Katarzyna Wortmann Saskia B Wevers Ron A Zietkiewicz Szymon April 2020 CLPB caseinolytic peptidase B homolog the first mitochondrial protein refoldase associated with human disease Biochimica et Biophysica Acta BBA General Subjects 1864 4 129512 doi 10 1016 j bbagen 2020 129512 PMID 31917998 Thomas JG Baneyx F October 1998 Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management comparison with ClpA ClpB and HtpG In vivo Journal of Bacteriology 180 19 5165 72 doi 10 1128 JB 180 19 5165 5172 1998 PMC 107554 PMID 9748451 a b c Chen Xufeng Glytsou Christina Zhou Hua Narang Sonali Reyna Denis E Lopez Andrea Sakellaropoulos Theodore Gong Yixiao Kloetgen Andreas Yap Yoon Sing Wang Eric July 2019 Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment Cancer Discovery 9 7 890 909 doi 10 1158 2159 8290 CD 19 0117 ISSN 2159 8274 PMC 6606342 PMID 31048321 Horwich AL November 2004 Chaperoned protein disaggregation the ClpB ring uses its central channel Cell 119 5 579 81 doi 10 1016 j cell 2004 11 018 PMID 15550237 Weibezahn J Tessarz P Schlieker C Zahn R Maglica Z Lee S Zentgraf H Weber Ban EU Dougan DA Tsai FT Mogk A Bukau B November 2004 Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB Cell 119 5 653 65 doi 10 1016 j cell 2004 11 027 PMID 15550247 Nakazaki Y Watanabe YH December 2014 ClpB chaperone passively threads soluble denatured proteins through its central pore Genes to Cells 19 12 891 900 doi 10 1111 gtc 12188 PMID 25288401 S2CID 7170147 Pronicka E Piekutowska Abramczuk D Ciara E Trubicka J Rokicki D Karkucinska Wieckowska A Pajdowska M Jurkiewicz E Halat P Kosinska J Pollak A Rydzanicz M Stawinski P Pronicki M Krajewska Walasek M Ploski R 12 June 2016 New perspective in diagnostics of mitochondrial disorders two years experience with whole exome sequencing at a national paediatric centre Journal of Translational Medicine 14 1 174 doi 10 1186 s12967 016 0930 9 PMC 4903158 PMID 27290639 Yoshinaka Takahiro Kosako Hidetaka Yoshizumi Takuma Furukawa Ryo Hirano Yu Kuge Osamu Tamada Taro Koshiba Takumi 2019 09 27 Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes Insight into a Role of the Coiled Coil Region iScience 19 1065 1078 Bibcode 2019iSci 19 1065Y doi 10 1016 j isci 2019 08 056 ISSN 2589 0042 PMC 6745515 PMID 31522117 External links editHuman clpB genome location and clpB gene details page in the UCSC Genome Browser Further reading editRual JF Venkatesan K Hao T Hirozane Kishikawa T Dricot A Li N Berriz GF Gibbons FD Dreze M Ayivi Guedehoussou N Klitgord N Simon C Boxem M Milstein S Rosenberg J Goldberg DS Zhang LV Wong SL Franklin G Li S Albala JS Lim J Fraughton C Llamosas E Cevik S Bex C Lamesch P Sikorski RS Vandenhaute J Zoghbi HY Smolyar A Bosak S Sequerra R Doucette Stamm L Cusick ME Hill DE Roth FP Vidal M October 2005 Towards a proteome scale map of the human protein protein interaction network Nature 437 7062 1173 8 Bibcode 2005Natur 437 1173R doi 10 1038 nature04209 PMID 16189514 S2CID 4427026 Colland F Jacq X Trouplin V Mougin C Groizeleau C Hamburger A Meil A Wojcik J Legrain P Gauthier JM July 2004 Functional proteomics mapping of a human signaling pathway Genome Research 14 7 1324 32 doi 10 1101 gr 2334104 PMC 442148 PMID 15231748 Leonard D Ajuh P Lamond AI Legerski RJ September 2003 hLodestar HuF2 interacts with CDC5L and is involved in pre mRNA splicing Biochemical and Biophysical Research Communications 308 4 793 801 CiteSeerX 10 1 1 539 8359 doi 10 1016 S0006 291X 03 01486 4 PMID 12927788 Retrieved from https en wikipedia org w index php title CLPB amp oldid 1184015641, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.