fbpx
Wikipedia

Cyclin-dependent kinase 9

Cyclin-dependent kinase 9 or CDK9 is a cyclin-dependent kinase associated with P-TEFb.

CDK9
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCDK9, C-2k, CDC2L4, CTK1, PITALRE, TAK, cyclin-dependent kinase 9, cyclin dependent kinase 9
External IDsOMIM: 603251 MGI: 1328368 HomoloGene: 55566 GeneCards: CDK9
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001261

NM_130860

RefSeq (protein)

NP_001252
NP_001252.1

NP_570930

Location (UCSC)Chr 9: 127.79 – 127.79 MbChr 2: 32.6 – 32.6 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

The protein encoded by this gene is a member of the cyclin-dependent kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS.[5]

CDK9 is also known to associate with other proteins such as TRAF2, and be involved in differentiation of skeletal muscle.[6]

Inhibitors edit

Based on molecular docking results, Ligands-3, 5, 14, and 16 were screened among 17 different Pyrrolone-fused benzosuberene compounds as potent and specific inhibitors without any cross-reactivity against different CDK isoforms. Analysis of MD simulations and MM-PBSA studies, revealed the binding energy profiles of all the selected complexes. Selected ligands performed better than the experimental drug candidate (Roscovitine). Ligands-5 and 16 show specificity for CDK9. These ligands are expected to possess lower risk of side effects due to their natural origin. [7]

Interactions edit

CDK9 has been shown to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000136807 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000009555 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)".
  6. ^ MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A (1998). "Binding of CDK9 to TRAF2". J. Cell. Biochem. 71 (4): 467–78. doi:10.1002/(SICI)1097-4644(19981215)71:4<467::AID-JCB2>3.0.CO;2-G. PMID 9827693. S2CID 25858837.
  7. ^ Singh R, Bhardwaj VK, Das P, Purohit R (November 2019). "Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: a computational perspective". Journal of Biomolecular Structure and Dynamics. 38 (17): 5126–5135. doi:10.1080/07391102.2019.1696709. PMID 3176087. S2CID 208276454.
  8. ^ Lee DK, Duan HO, Chang C (March 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". J. Biol. Chem. 276 (13): 9978–84. doi:10.1074/jbc.M002285200. PMID 11266437.
  9. ^ a b c Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbé JC, Lorca T, Nakayama Ki K, Benkirane M (December 2001). "Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome". Mol. Cell. Biol. 21 (23): 7956–70. doi:10.1128/MCB.21.23.7956-7970.2001. PMC 99964. PMID 11689688.
  10. ^ a b Fu TJ, Peng J, Lee G, Price DH, Flores O (December 1999). "Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription". J. Biol. Chem. 274 (49): 34527–30. doi:10.1074/jbc.274.49.34527. PMID 10574912.
  11. ^ a b Peng J, Zhu Y, Milton JT, Price DH (March 1998). "Identification of multiple cyclin subunits of human P-TEFb". Genes Dev. 12 (5): 755–62. doi:10.1101/gad.12.5.755. PMC 316581. PMID 9499409.
  12. ^ Cabart P, Chew HK, Murphy S (July 2004). "BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II". Oncogene. 23 (31): 5316–29. doi:10.1038/sj.onc.1207684. PMID 15107825.
  13. ^ Young TM, Wang Q, Pe'ery T, Mathews MB (September 2003). "The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (18): 6373–84. doi:10.1128/MCB.23.18.6373-6384.2003. PMC 193714. PMID 12944466.
  14. ^ Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O (July 2003). "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Mol. Cell. Biol. 23 (14): 4859–69. doi:10.1128/MCB.23.14.4859-4869.2003. PMC 162212. PMID 12832472.
  15. ^ Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T (March 2003). "The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (5): 1688–702. doi:10.1128/MCB.23.5.1688-1702.2003. PMC 151712. PMID 12588988.
  16. ^ a b De Falco G, Bagella L, Claudio PP, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A (January 2000). "Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation". Oncogene. 19 (3): 373–9. doi:10.1038/sj.onc.1203305. PMID 10656684.
  17. ^ a b Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA (September 2000). "CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA". Mol. Cell. Biol. 20 (18): 6958–69. doi:10.1128/MCB.20.18.6958-6969.2000. PMC 88771. PMID 10958691.
  18. ^ Amini S, Clavo A, Nadraga Y, Giordano A, Khalili K, Sawaya BE (August 2002). "Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells". Oncogene. 21 (37): 5797–803. doi:10.1038/sj.onc.1205754. PMID 12173051.
  19. ^ Simone C, Bagella L, Bellan C, Giordano A (June 2002). "Physical interaction between pRb and cdk9/cyclinT2 complex". Oncogene. 21 (26): 4158–65. doi:10.1038/sj.onc.1205511. PMID 12037672.
  20. ^ Kim YK, Bourgeois CF, Isel C, Churcher MJ, Karn J (July 2002). "Phosphorylation of the RNA Polymerase II Carboxyl-Terminal Domain by CDK9 Is Directly Responsible for Human Immunodeficiency Virus Type 1 Tat-Activated Transcriptional Elongation". Mol Cell Biol. 22 (13): 4622–4637. doi:10.1128/MCB.22.13.4622-4637.2002. PMC 133925. PMID 12052871.

Further reading edit

  • Jeang KT (1998). "Tat, Tat-associated kinase, and transcription". J. Biomed. Sci. 5 (1): 24–7. doi:10.1007/BF02253352. PMID 9570510.
  • Yankulov K, Bentley D (1998). "Transcriptional control: Tat cofactors and transcriptional elongation". Curr. Biol. 8 (13): R447–9. Bibcode:1998CBio....8.R447Y. doi:10.1016/S0960-9822(98)70289-1. PMID 9651670. S2CID 15480646.
  • Romano G, Kasten M, De Falco G, et al. (2000). "Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression". J. Cell. Biochem. 75 (3): 357–68. doi:10.1002/(SICI)1097-4644(19991201)75:3<357::AID-JCB1>3.0.CO;2-K. PMID 10536359. S2CID 43685090.
  • Marcello A, Zoppé M, Giacca M (2002). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator". IUBMB Life. 51 (3): 175–81. doi:10.1080/152165401753544241. PMID 11547919. S2CID 10931640.
  • Huigen MC, Kamp W, Nottet HS (2004). "Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection". Eur. J. Clin. Invest. 34 (1): 57–66. doi:10.1111/j.1365-2362.2004.01282.x. PMID 14984439. S2CID 29713968.
  • Rice AP, Herrmann CH (2004). "Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages". Curr. HIV Res. 1 (4): 395–404. doi:10.2174/1570162033485159. PMID 15049426.
  • Minghetti L, Visentin S, Patrizio M, et al. (2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions". Neurochem. Res. 29 (5): 965–78. doi:10.1023/B:NERE.0000021241.90133.89. PMID 15139295. S2CID 25323034.
  • Liou LY, Herrmann CH, Rice AP (2005). "HIV-1 infection and regulation of Tat function in macrophages". Int. J. Biochem. Cell Biol. 36 (9): 1767–75. doi:10.1016/j.biocel.2004.02.018. PMID 15183343.
  • Pugliese A, Vidotto V, Beltramo T, et al. (2005). "A review of HIV-1 Tat protein biological effects". Cell Biochem. Funct. 23 (4): 223–7. doi:10.1002/cbf.1147. PMID 15473004. S2CID 8408278.
  • Bannwarth S, Gatignol A (2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host". Curr. HIV Res. 3 (1): 61–71. doi:10.2174/1570162052772924. PMID 15638724.
  • Gibellini D, Vitone F, Schiavone P, Re MC (2005). "HIV-1 tat protein and cell proliferation and survival: a brief review". New Microbiol. 28 (2): 95–109. PMID 16035254.
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis". Front. Biosci. 11: 708–17. doi:10.2741/1829. PMID 16146763.

See also edit

External links edit


cyclin, dependent, kinase, cdk9, cyclin, dependent, kinase, associated, with, tefb, cdk9available, structurespdbortholog, search, pdbe, rcsblist, codes3blh, 3blq, 3blr, 3lq5, 3mi9, 3mia, 3my1, 3tn8, 3tnh, 3tni, 4bcf, 4bcg, 4bch, 4bci, 4bcj, 4ec8, 4ec9, 4imy, 4. Cyclin dependent kinase 9 or CDK9 is a cyclin dependent kinase associated with P TEFb CDK9Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes3BLH 3BLQ 3BLR 3LQ5 3MI9 3MIA 3MY1 3TN8 3TNH 3TNI 4BCF 4BCG 4BCH 4BCI 4BCJ 4EC8 4EC9 4IMY 4OGR 4OR5IdentifiersAliasesCDK9 C 2k CDC2L4 CTK1 PITALRE TAK cyclin dependent kinase 9 cyclin dependent kinase 9External IDsOMIM 603251 MGI 1328368 HomoloGene 55566 GeneCards CDK9Gene location Human Chr Chromosome 9 human 1 Band9q34 11Start127 785 679 bp 1 End127 790 792 bp 1 Gene location Mouse Chr Chromosome 2 mouse 2 Band2 2 BStart32 595 796 bp 2 End32 603 088 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inright uterine tubesural nerveleft uterine tubegastric mucosaanterior pituitarycanal of the cervixright lunggallbladderright lobe of thyroid glandright coronary arteryTop expressed insuperior frontal gyrusthymusdermisspleenabdominal wallmedial ganglionic eminenceprimitive streakspermatocytelipyolk sacMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionnucleotide binding transferase activity protein kinase activity 7SK snRNA binding transcription coactivator binding snRNA binding ATP binding RNA polymerase II core promoter sequence specific DNA binding DNA binding transcription factor binding protein binding protein serine threonine kinase activity chromatin binding kinase activity cyclin dependent protein serine threonine kinase activity RNA polymerase II CTD heptapeptide repeat kinase activity protein kinase binding cyclin binding RNA polymerase II cis regulatory region sequence specific DNA bindingCellular componentcytoplasm nucleus membrane nucleoplasm transcription elongation factor complex cyclin CDK positive transcription elongation factor complex PML body chromosome cytoplasmic ribonucleoprotein granule cyclin dependent protein kinase holoenzyme complexBiological processpositive regulation of cardiac muscle hypertrophy positive regulation of mRNA 3 UTR binding regulation of muscle cell differentiation negative regulation of mRNA polyadenylation DNA repair cellular response to cytokine stimulus positive regulation of viral transcription replication fork processing protein phosphorylation regulation of histone modification regulation of mitotic cell cycle cellular response to DNA damage stimulus transcription initiation from RNA polymerase II promoter regulation of DNA repair regulation of transcription DNA templated cell population proliferation transcription by RNA polymerase II phosphorylation positive regulation of histone H2B ubiquitination positive regulation of transcription by RNA polymerase II transcription DNA templated snRNA transcription by RNA polymerase II transcription elongation from RNA polymerase II promoter phosphorylation of RNA polymerase II C terminal domain positive regulation of transcription elongation from RNA polymerase II promoterSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez1025107951EnsemblENSG00000136807ENSMUSG00000009555UniProtP50750Q99J95RefSeq mRNA NM 001261NM 130860RefSeq protein NP 001252NP 001252 1NP 570930Location UCSC Chr 9 127 79 127 79 MbChr 2 32 6 32 6 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Function 2 Inhibitors 3 Interactions 4 References 5 Further reading 6 See also 7 External linksFunction editThe protein encoded by this gene is a member of the cyclin dependent kinase CDK family CDK family members are highly similar to the gene products of S cerevisiae cdc28 and S pombe cdc2 and known as important cell cycle regulators This kinase was found to be a component of the multiprotein complex TAK P TEFb which is an elongation factor for RNA polymerase II directed transcription and functions by phosphorylating the C terminal domain of the largest subunit of RNA polymerase II This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K HIV 1 Tat protein was found to interact with this protein and cyclin T which suggested a possible involvement of this protein in AIDS 5 CDK9 is also known to associate with other proteins such as TRAF2 and be involved in differentiation of skeletal muscle 6 Inhibitors editBased on molecular docking results Ligands 3 5 14 and 16 were screened among 17 different Pyrrolone fused benzosuberene compounds as potent and specific inhibitors without any cross reactivity against different CDK isoforms Analysis of MD simulations and MM PBSA studies revealed the binding energy profiles of all the selected complexes Selected ligands performed better than the experimental drug candidate Roscovitine Ligands 5 and 16 show specificity for CDK9 These ligands are expected to possess lower risk of side effects due to their natural origin 7 Interactions editCDK9 has been shown to interact with Androgen receptor 8 CDC34 9 and CCNK 10 CCNT1 10 11 12 13 14 15 9 16 17 CCNT2 11 MYBL2 16 RELA 18 RB1 19 SKP1A 9 SUPT5H 17 and RNAP II 20 References edit a b c GRCh38 Ensembl release 89 ENSG00000136807 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000009555 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Entrez Gene CDK9 cyclin dependent kinase 9 CDC2 related kinase MacLachlan TK Sang N De Luca A Puri PL Levrero M Giordano A 1998 Binding of CDK9 to TRAF2 J Cell Biochem 71 4 467 78 doi 10 1002 SICI 1097 4644 19981215 71 4 lt 467 AID JCB2 gt 3 0 CO 2 G PMID 9827693 S2CID 25858837 Singh R Bhardwaj VK Das P Purohit R November 2019 Natural analogues inhibiting selective cyclin dependent kinase protein isoforms a computational perspective Journal of Biomolecular Structure and Dynamics 38 17 5126 5135 doi 10 1080 07391102 2019 1696709 PMID 3176087 S2CID 208276454 Lee DK Duan HO Chang C March 2001 Androgen receptor interacts with the positive elongation factor P TEFb and enhances the efficiency of transcriptional elongation J Biol Chem 276 13 9978 84 doi 10 1074 jbc M002285200 PMID 11266437 a b c Kiernan RE Emiliani S Nakayama K Castro A Labbe JC Lorca T Nakayama Ki K Benkirane M December 2001 Interaction between cyclin T1 and SCF SKP2 targets CDK9 for ubiquitination and degradation by the proteasome Mol Cell Biol 21 23 7956 70 doi 10 1128 MCB 21 23 7956 7970 2001 PMC 99964 PMID 11689688 a b Fu TJ Peng J Lee G Price DH Flores O December 1999 Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription J Biol Chem 274 49 34527 30 doi 10 1074 jbc 274 49 34527 PMID 10574912 a b Peng J Zhu Y Milton JT Price DH March 1998 Identification of multiple cyclin subunits of human P TEFb Genes Dev 12 5 755 62 doi 10 1101 gad 12 5 755 PMC 316581 PMID 9499409 Cabart P Chew HK Murphy S July 2004 BRCA1 cooperates with NUFIP and P TEFb to activate transcription by RNA polymerase II Oncogene 23 31 5316 29 doi 10 1038 sj onc 1207684 PMID 15107825 Young TM Wang Q Pe ery T Mathews MB September 2003 The human I mfa domain containing protein HIC interacts with cyclin T1 and modulates P TEFb dependent transcription Mol Cell Biol 23 18 6373 84 doi 10 1128 MCB 23 18 6373 6384 2003 PMC 193714 PMID 12944466 Michels AA Nguyen VT Fraldi A Labas V Edwards M Bonnet F Lania L Bensaude O July 2003 MAQ1 and 7SK RNA interact with CDK9 cyclin T complexes in a transcription dependent manner Mol Cell Biol 23 14 4859 69 doi 10 1128 MCB 23 14 4859 4869 2003 PMC 162212 PMID 12832472 Hoque M Young TM Lee CG Serrero G Mathews MB Pe ery T March 2003 The growth factor granulin interacts with cyclin T1 and modulates P TEFb dependent transcription Mol Cell Biol 23 5 1688 702 doi 10 1128 MCB 23 5 1688 1702 2003 PMC 151712 PMID 12588988 a b De Falco G Bagella L Claudio PP De Luca A Fu Y Calabretta B Sala A Giordano A January 2000 Physical interaction between CDK9 and B Myb results in suppression of B Myb gene autoregulation Oncogene 19 3 373 9 doi 10 1038 sj onc 1203305 PMID 10656684 a b Garber ME Mayall TP Suess EM Meisenhelder J Thompson NE Jones KA September 2000 CDK9 autophosphorylation regulates high affinity binding of the human immunodeficiency virus type 1 tat P TEFb complex to TAR RNA Mol Cell Biol 20 18 6958 69 doi 10 1128 MCB 20 18 6958 6969 2000 PMC 88771 PMID 10958691 Amini S Clavo A Nadraga Y Giordano A Khalili K Sawaya BE August 2002 Interplay between cdk9 and NF kappaB factors determines the level of HIV 1 gene transcription in astrocytic cells Oncogene 21 37 5797 803 doi 10 1038 sj onc 1205754 PMID 12173051 Simone C Bagella L Bellan C Giordano A June 2002 Physical interaction between pRb and cdk9 cyclinT2 complex Oncogene 21 26 4158 65 doi 10 1038 sj onc 1205511 PMID 12037672 Kim YK Bourgeois CF Isel C Churcher MJ Karn J July 2002 Phosphorylation of the RNA Polymerase II Carboxyl Terminal Domain by CDK9 Is Directly Responsible for Human Immunodeficiency Virus Type 1 Tat Activated Transcriptional Elongation Mol Cell Biol 22 13 4622 4637 doi 10 1128 MCB 22 13 4622 4637 2002 PMC 133925 PMID 12052871 Further reading editJeang KT 1998 Tat Tat associated kinase and transcription J Biomed Sci 5 1 24 7 doi 10 1007 BF02253352 PMID 9570510 Yankulov K Bentley D 1998 Transcriptional control Tat cofactors and transcriptional elongation Curr Biol 8 13 R447 9 Bibcode 1998CBio 8 R447Y doi 10 1016 S0960 9822 98 70289 1 PMID 9651670 S2CID 15480646 Romano G Kasten M De Falco G et al 2000 Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression J Cell Biochem 75 3 357 68 doi 10 1002 SICI 1097 4644 19991201 75 3 lt 357 AID JCB1 gt 3 0 CO 2 K PMID 10536359 S2CID 43685090 Marcello A Zoppe M Giacca M 2002 Multiple modes of transcriptional regulation by the HIV 1 Tat transactivator IUBMB Life 51 3 175 81 doi 10 1080 152165401753544241 PMID 11547919 S2CID 10931640 Huigen MC Kamp W Nottet HS 2004 Multiple effects of HIV 1 trans activator protein on the pathogenesis of HIV 1 infection Eur J Clin Invest 34 1 57 66 doi 10 1111 j 1365 2362 2004 01282 x PMID 14984439 S2CID 29713968 Rice AP Herrmann CH 2004 Regulation of TAK P TEFb in CD4 T lymphocytes and macrophages Curr HIV Res 1 4 395 404 doi 10 2174 1570162033485159 PMID 15049426 Minghetti L Visentin S Patrizio M et al 2004 Multiple actions of the human immunodeficiency virus type 1 Tat protein on microglial cell functions Neurochem Res 29 5 965 78 doi 10 1023 B NERE 0000021241 90133 89 PMID 15139295 S2CID 25323034 Liou LY Herrmann CH Rice AP 2005 HIV 1 infection and regulation of Tat function in macrophages Int J Biochem Cell Biol 36 9 1767 75 doi 10 1016 j biocel 2004 02 018 PMID 15183343 Pugliese A Vidotto V Beltramo T et al 2005 A review of HIV 1 Tat protein biological effects Cell Biochem Funct 23 4 223 7 doi 10 1002 cbf 1147 PMID 15473004 S2CID 8408278 Bannwarth S Gatignol A 2005 HIV 1 TAR RNA the target of molecular interactions between the virus and its host Curr HIV Res 3 1 61 71 doi 10 2174 1570162052772924 PMID 15638724 Gibellini D Vitone F Schiavone P Re MC 2005 HIV 1 tat protein and cell proliferation and survival a brief review New Microbiol 28 2 95 109 PMID 16035254 Peruzzi F 2006 The multiple functions of HIV 1 Tat proliferation versus apoptosis Front Biosci 11 708 17 doi 10 2741 1829 PMID 16146763 See also editEnitociclibExternal links editCyclin Dependent Kinase 9 at the U S National Library of Medicine Medical Subject Headings MeSH Drosophila Cyclin dependent kinase 9 The Interactive Fly CDK9 human gene location in the UCSC Genome Browser CDK9 human gene details in the UCSC Genome Browser Portal nbsp Biology This EC 2 7 enzyme related article is a stub You can help Wikipedia by expanding it vte Retrieved from https en wikipedia org w index php title Cyclin dependent kinase 9 amp oldid 1215920053, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.