fbpx
Wikipedia

Bures metric

In mathematics, in the area of quantum information geometry, the Bures metric (named after Donald Bures)[1] or Helstrom metric (named after Carl W. Helstrom)[2] defines an infinitesimal distance between density matrix operators defining quantum states. It is a quantum generalization of the Fisher information metric, and is identical to the Fubini–Study metric[3] when restricted to the pure states alone.

Definition Edit

The Bures metric   may be defined as

 [clarification needed]

where   is Hermitian 1-form operator implicitly given by

 

which is a special case of a continuous Lyapunov equation.

Some of the applications of the Bures metric include that given a target error, it allows the calculation of the minimum number of measurements to distinguish two different states[4] and the use of the volume element as a candidate for the Jeffreys prior probability density[5] for mixed quantum states.

Bures distance Edit

The Bures distance is the finite version of the infinitesimal square distance described above and is given by

 

where the fidelity function is defined as[6]

 

Another associated function is the Bures arc also known as Bures angle, Bures length or quantum angle, defined as

 

which is a measure of the statistical distance[7] between quantum states.

Quantum Fisher information Edit

The Bures metric can be seen as the quantum equivalent of the Fisher information metric and can be rewritten in terms of the variation of coordinate parameters as

 

which holds as long as   and   have the same rank. In cases where they do not have the same rank, there is an additional term on the right hand side.[8][9]  is the Symmetric logarithmic derivative operator (SLD) defined from[10]

 

In this way, one has

 

where the quantum Fisher metric (tensor components) is identified as

 

The definition of the SLD implies that the quantum Fisher metric is 4 times the Bures metric. In other words, given that   are components of the Bures metric tensor, one has

 

As it happens with the classical Fisher information metric, the quantum Fisher metric can be used to find the Cramér–Rao bound of the covariance.

Explicit formulas Edit

The actual computation of the Bures metric is not evident from the definition, so, some formulas were developed for that purpose. For 2x2 and 3x3 systems, respectively, the quadratic form of the Bures metric is calculated as[11]

 
 

For general systems, the Bures metric can be written in terms of the eigenvectors and eigenvalues of the density matrix   as[12][13]

 

as an integral,[14]

 

or in terms of Kronecker product and vectorization,[15]

 

where   denotes complex conjugate, and   denotes conjugate transpose. This formula holds for invertible density matrices. For non-invertible density matrices, the inverse above is substituted by the Moore-Penrose pseudoinverse. Alternatively, the expression can be also computed by performing a limit on a certain mixed and thus invertible state.

Two-level system Edit

The state of a two-level system can be parametrized with three variables as

 

where   is the vector of Pauli matrices and   is the (three-dimensional) Bloch vector satisfying  . The components of the Bures metric in this parametrization can be calculated as

 .

The Bures measure can be calculated by taking the square root of the determinant to find

 

which can be used to calculate the Bures volume as

 

Three-level system Edit

The state of a three-level system can be parametrized with eight variables as

 

where   are the eight Gell-Mann matrices and   the 8-dimensional Bloch vector satisfying certain constraints.

See also Edit

References Edit

  1. ^ Bures, Donald (1969). "An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite  *-algebras" (PDF). Transactions of the American Mathematical Society. American Mathematical Society (AMS). 135: 199. doi:10.1090/s0002-9947-1969-0236719-2. ISSN 0002-9947.
  2. ^ Helstrom, C.W. (1967). "Minimum mean-squared error of estimates in quantum statistics". Physics Letters A. Elsevier BV. 25 (2): 101–102. Bibcode:1967PhLA...25..101H. doi:10.1016/0375-9601(67)90366-0. ISSN 0375-9601.
  3. ^ Facchi, Paolo; Kulkarni, Ravi; Man'ko, V.I.; Marmo, Giuseppe; Sudarshan, E.C.G.; Ventriglia, Franco (2010). "Classical and quantum Fisher information in the geometrical formulation of quantum mechanics". Physics Letters A. 374 (48): 4801–4803. arXiv:1009.5219. Bibcode:2010PhLA..374.4801F. doi:10.1016/j.physleta.2010.10.005. ISSN 0375-9601. S2CID 55558124.
  4. ^ Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters. American Physical Society (APS). 72 (22): 3439–3443. Bibcode:1994PhRvL..72.3439B. doi:10.1103/physrevlett.72.3439. ISSN 0031-9007. PMID 10056200.
  5. ^ Slater, Paul B. (1996). "Applications of quantum and classical Fisher information to two‐level complex and quaternionic and three‐level complex systems". Journal of Mathematical Physics. AIP Publishing. 37 (6): 2682–2693. Bibcode:1996JMP....37.2682S. doi:10.1063/1.531528. ISSN 0022-2488.
  6. ^ Unfortunately, some authors use a different definition,  
  7. ^ Wootters, W. K. (1981-01-15). "Statistical distance and Hilbert space". Physical Review D. American Physical Society (APS). 23 (2): 357–362. Bibcode:1981PhRvD..23..357W. doi:10.1103/physrevd.23.357. ISSN 0556-2821.
  8. ^ Šafránek, Dominik (2017-05-11). "Discontinuities of the quantum Fisher information and the Bures metric". Physical Review A. 95 (5): 052320. arXiv:1612.04581. Bibcode:2017PhRvA..95e2320S. doi:10.1103/physreva.95.052320. ISSN 2469-9926.
  9. ^ Rezakhani, A. T.; Hassani, M.; Alipour, S. (2019-09-12). "Continuity of the quantum Fisher information". Physical Review A. 100 (3): 032317. arXiv:1507.01736. Bibcode:2019PhRvA.100c2317R. doi:10.1103/PhysRevA.100.032317. S2CID 51680508.
  10. ^ Paris, Matteo G. A. (2009). "Quantum estimation for quantum technology". International Journal of Quantum Information. 07 (supp01): 125–137. arXiv:0804.2981. doi:10.1142/s0219749909004839. ISSN 0219-7499. S2CID 2365312.
  11. ^ Dittmann, J (1999-01-01). "Explicit formulae for the Bures metric". Journal of Physics A: Mathematical and General. 32 (14): 2663–2670. arXiv:quant-ph/9808044. Bibcode:1999JPhA...32.2663D. doi:10.1088/0305-4470/32/14/007. ISSN 0305-4470. S2CID 18298901.
  12. ^ Hübner, Matthias (1992). "Explicit computation of the Bures distance for density matrices". Physics Letters A. Elsevier BV. 163 (4): 239–242. Bibcode:1992PhLA..163..239H. doi:10.1016/0375-9601(92)91004-b. ISSN 0375-9601.
  13. ^ Hübner, Matthias (1993). "Computation of Uhlmann's parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space". Physics Letters A. Elsevier BV. 179 (4–5): 226–230. Bibcode:1993PhLA..179..226H. doi:10.1016/0375-9601(93)90668-p. ISSN 0375-9601.
  14. ^ PARIS, MATTEO G. A. (2009). "Quantum estimation for quantum technology". International Journal of Quantum Information. 07 (supp01): 125–137. arXiv:0804.2981. doi:10.1142/s0219749909004839. ISSN 0219-7499. S2CID 2365312.
  15. ^ Šafránek, Dominik (2018-04-12). "Simple expression for the quantum Fisher information matrix". Physical Review A. 97 (4): 042322. arXiv:1801.00945. Bibcode:2018PhRvA..97d2322S. doi:10.1103/physreva.97.042322. ISSN 2469-9926.

Further reading Edit

  • Uhlmann, A. (1992). "The Metric of Bures and the Geometric Phase". In Gielerak, R.; Lukierski, J.; Popowicz, Z. (eds.). Groups and Related Topics. Proceedings of the First Max Born Symposium. pp. 267–274. doi:10.1007/978-94-011-2801-8_23. ISBN 94-010-5244-1.
  • Sommers, H. J.; Zyczkowski, K. (2003). "Bures volume of the set of mixed quantum states". Journal of Physics A. 36 (39): 10083–10100. arXiv:quant-ph/0304041. Bibcode:2003JPhA...3610083S. doi:10.1088/0305-4470/36/39/308. S2CID 39943897.
  • Dittmann, J. (1993). "On the Riemannian Geometry of Finite Dimensional Mixed States" (PDF). Seminar Sophus Lie. 73.
  • Slater, Paul B. (1996). "Quantum Fisher-Bures information of two-level systems and a three-level extension". J. Phys. A: Math. Gen. 29 (10): L271–L275. doi:10.1088/0305-4470/29/10/008.
  • Nielsen, M. A.; Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 0-521-63235-8.

bures, metric, mathematics, area, quantum, information, geometry, named, after, donald, bures, helstrom, metric, named, after, carl, helstrom, defines, infinitesimal, distance, between, density, matrix, operators, defining, quantum, states, quantum, generaliza. In mathematics in the area of quantum information geometry the Bures metric named after Donald Bures 1 or Helstrom metric named after Carl W Helstrom 2 defines an infinitesimal distance between density matrix operators defining quantum states It is a quantum generalization of the Fisher information metric and is identical to the Fubini Study metric 3 when restricted to the pure states alone Contents 1 Definition 2 Bures distance 3 Quantum Fisher information 4 Explicit formulas 5 Two level system 6 Three level system 7 See also 8 References 9 Further readingDefinition EditThe Bures metric G displaystyle G nbsp may be defined as d r r d r 2 1 2 tr d r G displaystyle d rho rho d rho 2 frac 1 2 mbox tr d rho G nbsp clarification needed where G displaystyle G nbsp is Hermitian 1 form operator implicitly given by r G G r d r displaystyle rho G G rho d rho nbsp which is a special case of a continuous Lyapunov equation Some of the applications of the Bures metric include that given a target error it allows the calculation of the minimum number of measurements to distinguish two different states 4 and the use of the volume element as a candidate for the Jeffreys prior probability density 5 for mixed quantum states Bures distance EditThe Bures distance is the finite version of the infinitesimal square distance described above and is given by D B r 1 r 2 2 2 1 F r 1 r 2 displaystyle D B rho 1 rho 2 2 2 1 sqrt F rho 1 rho 2 nbsp where the fidelity function is defined as 6 F r 1 r 2 tr r 1 r 2 r 1 2 displaystyle F rho 1 rho 2 left mbox tr sqrt sqrt rho 1 rho 2 sqrt rho 1 right 2 nbsp Another associated function is the Bures arc also known as Bures angle Bures length or quantum angle defined as D A r 1 r 2 arccos F r 1 r 2 displaystyle D A rho 1 rho 2 arccos sqrt F rho 1 rho 2 nbsp which is a measure of the statistical distance 7 between quantum states Quantum Fisher information EditThe Bures metric can be seen as the quantum equivalent of the Fisher information metric and can be rewritten in terms of the variation of coordinate parameters as d r r d r 2 1 2 tr d r d 8 m L n d 8 m d 8 n displaystyle d rho rho d rho 2 frac 1 2 mbox tr left frac d rho d theta mu L nu right d theta mu d theta nu nbsp which holds as long as r displaystyle rho nbsp and r d r displaystyle rho d rho nbsp have the same rank In cases where they do not have the same rank there is an additional term on the right hand side 8 9 L m displaystyle L mu nbsp is the Symmetric logarithmic derivative operator SLD defined from 10 r L m L m r 2 d r d 8 m displaystyle frac rho L mu L mu rho 2 frac d rho d theta mu nbsp In this way one has d r r d r 2 1 2 tr r L m L n L n L m 2 d 8 m d 8 n displaystyle d rho rho d rho 2 frac 1 2 mbox tr left rho frac L mu L nu L nu L mu 2 right d theta mu d theta nu nbsp where the quantum Fisher metric tensor components is identified as J m n tr r L m L n L n L m 2 displaystyle J mu nu mbox tr left rho frac L mu L nu L nu L mu 2 right nbsp The definition of the SLD implies that the quantum Fisher metric is 4 times the Bures metric In other words given that g m n displaystyle g mu nu nbsp are components of the Bures metric tensor one has J m n 4 g m n displaystyle J mu nu 4g mu nu nbsp As it happens with the classical Fisher information metric the quantum Fisher metric can be used to find the Cramer Rao bound of the covariance Explicit formulas EditThe actual computation of the Bures metric is not evident from the definition so some formulas were developed for that purpose For 2x2 and 3x3 systems respectively the quadratic form of the Bures metric is calculated as 11 d r r d r 2 1 4 tr d r d r 1 det r 1 r d r 1 r d r displaystyle d rho rho d rho 2 frac 1 4 mbox tr left d rho d rho frac 1 det rho mathbf 1 rho d rho mathbf 1 rho d rho right nbsp d r r d r 2 1 4 tr d r d r 3 1 tr r 3 1 r d r 1 r d r 3 det r 1 tr r 3 1 r 1 d r 1 r 1 d r displaystyle d rho rho d rho 2 frac 1 4 mbox tr left d rho d rho frac 3 1 mbox tr rho 3 mathbf 1 rho d rho mathbf 1 rho d rho frac 3 det rho 1 mbox tr rho 3 mathbf 1 rho 1 d rho mathbf 1 rho 1 d rho right nbsp For general systems the Bures metric can be written in terms of the eigenvectors and eigenvalues of the density matrix r j 1 n l j j j displaystyle rho sum j 1 n lambda j j rangle langle j nbsp as 12 13 d r r d r 2 1 2 j k 1 n j d r k 2 l j l k displaystyle d rho rho d rho 2 frac 1 2 sum j k 1 n frac langle j d rho k rangle 2 lambda j lambda k nbsp as an integral 14 d r r d r 2 1 2 0 tr e r t d r e r t d r d t displaystyle d rho rho d rho 2 frac 1 2 int 0 infty text tr e rho t d rho e rho t d rho dt nbsp or in terms of Kronecker product and vectorization 15 d r r d r 2 1 2 vec d r r 1 1 r 1 vec d r displaystyle d rho rho d rho 2 frac 1 2 text vec d rho dagger big rho otimes mathbf 1 mathbf 1 otimes rho big 1 text vec d rho nbsp where displaystyle nbsp denotes complex conjugate and displaystyle dagger nbsp denotes conjugate transpose This formula holds for invertible density matrices For non invertible density matrices the inverse above is substituted by the Moore Penrose pseudoinverse Alternatively the expression can be also computed by performing a limit on a certain mixed and thus invertible state Two level system EditThe state of a two level system can be parametrized with three variables as r 1 2 I r s displaystyle rho frac 1 2 I boldsymbol r cdot sigma nbsp where s displaystyle boldsymbol sigma nbsp is the vector of Pauli matrices and r displaystyle boldsymbol r nbsp is the three dimensional Bloch vector satisfying r 2 d e f r r 1 displaystyle r 2 stackrel mathrm def boldsymbol r cdot r leq 1 nbsp The components of the Bures metric in this parametrization can be calculated as g I 4 r r 4 1 r 2 displaystyle mathsf g frac mathsf I 4 frac boldsymbol r otimes r 4 1 r 2 nbsp The Bures measure can be calculated by taking the square root of the determinant to find d V B d 3 r 8 1 r 2 displaystyle dV B frac d 3 boldsymbol r 8 sqrt 1 r 2 nbsp which can be used to calculate the Bures volume as V B r 2 1 d 3 r 8 1 r 2 p 2 8 displaystyle V B iiint r 2 leq 1 frac d 3 boldsymbol r 8 sqrt 1 r 2 frac pi 2 8 nbsp Three level system EditThe state of a three level system can be parametrized with eight variables as r 1 3 I 3 n 1 8 3 n l n displaystyle rho frac 1 3 I sqrt 3 sum nu 1 8 xi nu lambda nu nbsp where l n displaystyle lambda nu nbsp are the eight Gell Mann matrices and 3 R 8 displaystyle boldsymbol xi in mathbb R 8 nbsp the 8 dimensional Bloch vector satisfying certain constraints See also EditFubini Study metric Fidelity of quantum states Fisher information Fisher information metricReferences Edit Bures Donald 1969 An extension of Kakutani s theorem on infinite product measures to the tensor product of semifinite w displaystyle omega nbsp algebras PDF Transactions of the American Mathematical Society American Mathematical Society AMS 135 199 doi 10 1090 s0002 9947 1969 0236719 2 ISSN 0002 9947 Helstrom C W 1967 Minimum mean squared error of estimates in quantum statistics Physics Letters A Elsevier BV 25 2 101 102 Bibcode 1967PhLA 25 101H doi 10 1016 0375 9601 67 90366 0 ISSN 0375 9601 Facchi Paolo Kulkarni Ravi Man ko V I Marmo Giuseppe Sudarshan E C G Ventriglia Franco 2010 Classical and quantum Fisher information in the geometrical formulation of quantum mechanics Physics Letters A 374 48 4801 4803 arXiv 1009 5219 Bibcode 2010PhLA 374 4801F doi 10 1016 j physleta 2010 10 005 ISSN 0375 9601 S2CID 55558124 Braunstein Samuel L Caves Carlton M 1994 05 30 Statistical distance and the geometry of quantum states Physical Review Letters American Physical Society APS 72 22 3439 3443 Bibcode 1994PhRvL 72 3439B doi 10 1103 physrevlett 72 3439 ISSN 0031 9007 PMID 10056200 Slater Paul B 1996 Applications of quantum and classical Fisher information to two level complex and quaternionic and three level complex systems Journal of Mathematical Physics AIP Publishing 37 6 2682 2693 Bibcode 1996JMP 37 2682S doi 10 1063 1 531528 ISSN 0022 2488 Unfortunately some authors use a different definition F r 1 r 2 tr r 1 r 2 r 1 displaystyle F rho 1 rho 2 mbox tr sqrt sqrt rho 1 rho 2 sqrt rho 1 nbsp Wootters W K 1981 01 15 Statistical distance and Hilbert space Physical Review D American Physical Society APS 23 2 357 362 Bibcode 1981PhRvD 23 357W doi 10 1103 physrevd 23 357 ISSN 0556 2821 Safranek Dominik 2017 05 11 Discontinuities of the quantum Fisher information and the Bures metric Physical Review A 95 5 052320 arXiv 1612 04581 Bibcode 2017PhRvA 95e2320S doi 10 1103 physreva 95 052320 ISSN 2469 9926 Rezakhani A T Hassani M Alipour S 2019 09 12 Continuity of the quantum Fisher information Physical Review A 100 3 032317 arXiv 1507 01736 Bibcode 2019PhRvA 100c2317R doi 10 1103 PhysRevA 100 032317 S2CID 51680508 Paris Matteo G A 2009 Quantum estimation for quantum technology International Journal of Quantum Information 07 supp01 125 137 arXiv 0804 2981 doi 10 1142 s0219749909004839 ISSN 0219 7499 S2CID 2365312 Dittmann J 1999 01 01 Explicit formulae for the Bures metric Journal of Physics A Mathematical and General 32 14 2663 2670 arXiv quant ph 9808044 Bibcode 1999JPhA 32 2663D doi 10 1088 0305 4470 32 14 007 ISSN 0305 4470 S2CID 18298901 Hubner Matthias 1992 Explicit computation of the Bures distance for density matrices Physics Letters A Elsevier BV 163 4 239 242 Bibcode 1992PhLA 163 239H doi 10 1016 0375 9601 92 91004 b ISSN 0375 9601 Hubner Matthias 1993 Computation of Uhlmann s parallel transport for density matrices and the Bures metric on three dimensional Hilbert space Physics Letters A Elsevier BV 179 4 5 226 230 Bibcode 1993PhLA 179 226H doi 10 1016 0375 9601 93 90668 p ISSN 0375 9601 PARIS MATTEO G A 2009 Quantum estimation for quantum technology International Journal of Quantum Information 07 supp01 125 137 arXiv 0804 2981 doi 10 1142 s0219749909004839 ISSN 0219 7499 S2CID 2365312 Safranek Dominik 2018 04 12 Simple expression for the quantum Fisher information matrix Physical Review A 97 4 042322 arXiv 1801 00945 Bibcode 2018PhRvA 97d2322S doi 10 1103 physreva 97 042322 ISSN 2469 9926 Further reading EditUhlmann A 1992 The Metric of Bures and the Geometric Phase In Gielerak R Lukierski J Popowicz Z eds Groups and Related Topics Proceedings of the First Max Born Symposium pp 267 274 doi 10 1007 978 94 011 2801 8 23 ISBN 94 010 5244 1 Sommers H J Zyczkowski K 2003 Bures volume of the set of mixed quantum states Journal of Physics A 36 39 10083 10100 arXiv quant ph 0304041 Bibcode 2003JPhA 3610083S doi 10 1088 0305 4470 36 39 308 S2CID 39943897 Dittmann J 1993 On the Riemannian Geometry of Finite Dimensional Mixed States PDF Seminar Sophus Lie 73 Slater Paul B 1996 Quantum Fisher Bures information of two level systems and a three level extension J Phys A Math Gen 29 10 L271 L275 doi 10 1088 0305 4470 29 10 008 Nielsen M A Chuang I L 2000 Quantum Computation and Quantum Information Cambridge University Press ISBN 0 521 63235 8 Retrieved from https en wikipedia org w index php title Bures metric amp oldid 1121348625, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.