fbpx
Wikipedia

Blast shelter

A blast shelter is a place where people can go to protect themselves from blasts and explosions, like those from bombs, or in hazardous worksites, such as on oil and gas refineries or petrochemical facilities. It differs from a fallout shelter, in that its main purpose is to protect from shock waves and overpressure instead of from radioactive precipitation, as a fallout shelter does. It is also possible for a shelter to protect from both blasts and fallout.

Blast shelters are a vital form of protection from nuclear attacks and are employed in civil defense. There are above-ground, below-ground, dedicated, dual-purpose, and potential blast shelters. Dedicated blast shelters are built specifically for the purpose of blast protection (see bunker). Dual-purpose blast shelters are existing structures with blast-protective properties that have been modified to accommodate people seeking protection from blasts. Potential blast shelters are existing structures or geological features exhibiting blast-protective properties that have potential to be used for protection from blasts.

Design

 
Blast doors in a missile control bunker at Minot Air Force Base, North Dakota.
 
The 25-ton blast door in the Cheyenne Mountain nuclear bunker is the main entrance to another blast door (background) beyond which the side tunnel branches into access tunnels to the main chambers.

Blast shelters deflect the blast wave from nearby explosions to prevent ear and internal injuries to people sheltering in the bunker. While frame buildings collapse from as little as 3 psi (20 kPa) of overpressure, blast shelters are regularly constructed to survive several hundred psi. This substantially decreases the likelihood that a bomb can harm the structure.

The basic plan is to provide a structure that is very strong in compression. The actual strength specification must be done individually, based on the nature and probability of the threat. A typical specification for heavy civil defence shelter in Europe during the Cold war was an overhead explosion of a 500 kiloton weapon at the height of 500 meters. Such a weapon would be used to attack soft targets (factories, administrative centres, communications) in the area.

Only the most heavy bedrock-shelters would stand a chance of surviving.[citation needed] However, in the countryside or in a suburb, the likely distance to the explosion is much larger, as it is improbable that anyone would waste an expensive nuclear device on such targets. The most common purpose-built structure is a steel-reinforced concrete vault or arch buried or located in the basement of a house.

Most expedient blast shelters are civil engineering structures that contain large buried tubes or pipes such as sewage or rapid transit tunnels. Even these, nonetheless, require several additions to serve properly: blast doors, air-filtration and ventilation equipment, secondary exits, and air-proofing.

Improvised purpose-built blast shelters normally use earthen arches or vaults. To form these, a narrow (1-2 metre-wide) flexible tent of thin wood is placed in a deep trench (usually the apex of the tent is below grade), and then covered with cloth or plastic, and then covered with 1–2 meters of tamped earth. Shelters of this type are approved field expedient blast shelters of both the U.S. and China. Entrances are constructed from thick wooden frames. Blast valves are to be constructed from tire-treads laid on thick wooden grids.

Nuclear bunkers must also cope with the underpressure that lasts for several seconds after the shock wave passes, and prompt radiation. The overburden and structure provide substantial radiation shielding, and the negative pressure is usually only 1/3 of the overpressure.

The doors must be at least as strong as the walls. The usual design is a trap-door, to minimize the size and expense. In dual-purpose shelters, which have a secondary peacetime use, the door may be normal. To reduce the weight, the door is normally constructed of steel, with a fitted steel lintel and frame welded to the steel-reinforcement of the concrete. The shelter should be located so that there is no combustible material directly outside it.

If the door is on the surface and will be exposed to the blast wave, the edge of the door is normally counter-sunk in the frame so that the blast wave or a reflection cannot lift the edge. If possible, this should be avoided, and the door built so that it is sheltered from the blast wave by other structures. The most useful construction is to build the door behind a 90°-turn in a corridor that has an exit for the overpressure.

 
The door of a light civil defense shelter in Finland

A bunker commonly has two doors, one of which is convenient, and in peacetime use, and the other is strong. Naturally, the shelter must always have a secondary exit which can be used if the primary door is blocked by debris. Door shafts may double as ventilation shafts to reduce the digging, although this is inadvisable.

A large ground shock can move the walls of a bunker several centimeters in a few milliseconds. Bunkers designed for large ground shocks must have sprung internal buildings, hammocks, or bean-bag chairs to protect inhabitants from the walls and floors. However, most civilian-built improvised shelters do not need these as their structure cannot stand a shock large enough to seriously damage the occupants.

Earth is an excellent insulator. In bunkers inhabited for prolonged periods, large amounts of ventilation or air-conditioning must be provided to prevent heat prostration. In bunkers designed for war-time use, manually operated ventilators must be provided because supplies of electricity or gas are unreliable. The simplest form of effective fan to cool a shelter is a wide, heavy frame with flaps that swings in the shelter's doorway and can be swung from hinges on the ceiling.

The flaps open in one direction and close in the other, pumping air. (This is a Kearny Air Pump, or KAP, named after the inventor Cresson Kearny.[citation needed]) Kearny asserts, based on field testing, that air filtration is not normally needed in a nuclear shelter. He asserts that fallout is either large enough to fall to the ground, or so fine that it will not settle and thus has little bulk to emit radiation. However, if possible, shelters should have air-filtration to stop chemical, biological and nuclear impurities which may abound after an explosion.

Ventilation openings in a bunker must be protected by blast valves. A blast valve is closed by a shock wave, but otherwise remains open. If the bunker is in a built-up area, it may include water-cooling or an immersion tube and breathing tubes to protect inhabitants from fire storms. In these cases, the secondary exit is also most useful.

Bunkers must also protect the inhabitants from normal weather, including rain, summer heat and winter cold. A normal form of rainproofing is to place plastic film on the bunker's main structure before burying it. Thick (5-mil or 125 μm), inexpensive polyethylene film serves quite well, because the overburden protects it from degradation by wind and sunlight. Naturally, a buried or basement-situated reinforced-concrete shelter usually has the normal appearance of a building.

When a house is purpose-built with a blast shelter, the normal location is a reinforced below-grade bathroom with large cabinets.[citation needed] In apartment houses, the shelter may double as storage space, as long as it can be swiftly emptied for its primary use. A shelter can easily be added in a new basement construction by taking an existing corner and adding two poured walls and a ceiling.

Some vendors provide true blast shelters engineered to provide good protection to individual families at modest cost. One common design approach uses fiber-reinforced plastic shells. Compressive protection may be provided by inexpensive earth arching. The overburden is designed to shield from radiation. To prevent the shelter from floating to the surface in high groundwater, some designs have a skirt held-down with the overburden. A properly designed, properly installed home shelter does not become a sinkhole in the lawn. In Switzerland, which requires shelters for private apartment blocks and large private houses, the lightest shelters are constructed of stainless steel.[citation needed]

Subways

 
A blast door of a subway shelter in Singapore

During World War II, people in London and Moscow survived German aerial bombing by taking refuge in the underground railway stations, e.g., the London Underground. In the second half of the 20th century, metro stations in eastern Europe and the USSR were constructed to serve as blast shelters.

Stations of the Pyongyang Metro in North Korea, constructed 110 metres (360 ft) below ground in the 1960s and 1970s, are designed as nuclear blast shelters and each station entrance has thick steel blast doors.[1][2]

Further reading

  • Protecting Buildings from Bomb Damage: Transfer of Blast-Effects Mitigation, 1995, pp32-33 an overview of the literature.
  • Superseded by 1987 Manual for Design and Analysis of Hardened Structures, AFWL-TR-87-57 and Army Technical Manual TM 5-855-1 (Air Force Pamphlet AFPAM 32-1147, Navy Manual NAVFAC P-1080, DSWA Manual 1997).

See also

References

  1. ^ Robinson, Martin; Bartlett, Ray; Whyte Rob (2007). Korea. Lonely Planet. p. 364. ISBN 978-1-74104-558-1.
  2. ^ Springer, Chris (2003). Pyongyang: the hidden history of the North Korean capital. Entente Bt. p. 125. ISBN 978-963-00-8104-7.

External links

  • Australian Bunker And Military Museum - abmm.org
  • Oregon Institute of Science and Medicine
  • 60's Era ATT Equipment Nuclear Bomb Shelter. Hi-res interior & exterior virtual tour

blast, shelter, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, relies, largely, entirely, single, source, relevant, discussion, found, talk, page, pleas. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article relies largely or entirely on a single source Relevant discussion may be found on the talk page Please help improve this article by introducing citations to additional sources Find sources Blast shelter news newspapers books scholar JSTOR January 2008 This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations November 2012 Learn how and when to remove this template message Learn how and when to remove this template message A blast shelter is a place where people can go to protect themselves from blasts and explosions like those from bombs or in hazardous worksites such as on oil and gas refineries or petrochemical facilities It differs from a fallout shelter in that its main purpose is to protect from shock waves and overpressure instead of from radioactive precipitation as a fallout shelter does It is also possible for a shelter to protect from both blasts and fallout Blast shelters are a vital form of protection from nuclear attacks and are employed in civil defense There are above ground below ground dedicated dual purpose and potential blast shelters Dedicated blast shelters are built specifically for the purpose of blast protection see bunker Dual purpose blast shelters are existing structures with blast protective properties that have been modified to accommodate people seeking protection from blasts Potential blast shelters are existing structures or geological features exhibiting blast protective properties that have potential to be used for protection from blasts Contents 1 Design 2 Subways 3 Further reading 4 See also 5 References 6 External linksDesign Edit Blast doors in a missile control bunker at Minot Air Force Base North Dakota The 25 ton blast door in the Cheyenne Mountain nuclear bunker is the main entrance to another blast door background beyond which the side tunnel branches into access tunnels to the main chambers Blast shelters deflect the blast wave from nearby explosions to prevent ear and internal injuries to people sheltering in the bunker While frame buildings collapse from as little as 3 psi 20 kPa of overpressure blast shelters are regularly constructed to survive several hundred psi This substantially decreases the likelihood that a bomb can harm the structure The basic plan is to provide a structure that is very strong in compression The actual strength specification must be done individually based on the nature and probability of the threat A typical specification for heavy civil defence shelter in Europe during the Cold war was an overhead explosion of a 500 kiloton weapon at the height of 500 meters Such a weapon would be used to attack soft targets factories administrative centres communications in the area Only the most heavy bedrock shelters would stand a chance of surviving citation needed However in the countryside or in a suburb the likely distance to the explosion is much larger as it is improbable that anyone would waste an expensive nuclear device on such targets The most common purpose built structure is a steel reinforced concrete vault or arch buried or located in the basement of a house Most expedient blast shelters are civil engineering structures that contain large buried tubes or pipes such as sewage or rapid transit tunnels Even these nonetheless require several additions to serve properly blast doors air filtration and ventilation equipment secondary exits and air proofing Improvised purpose built blast shelters normally use earthen arches or vaults To form these a narrow 1 2 metre wide flexible tent of thin wood is placed in a deep trench usually the apex of the tent is below grade and then covered with cloth or plastic and then covered with 1 2 meters of tamped earth Shelters of this type are approved field expedient blast shelters of both the U S and China Entrances are constructed from thick wooden frames Blast valves are to be constructed from tire treads laid on thick wooden grids Nuclear bunkers must also cope with the underpressure that lasts for several seconds after the shock wave passes and prompt radiation The overburden and structure provide substantial radiation shielding and the negative pressure is usually only 1 3 of the overpressure The doors must be at least as strong as the walls The usual design is a trap door to minimize the size and expense In dual purpose shelters which have a secondary peacetime use the door may be normal To reduce the weight the door is normally constructed of steel with a fitted steel lintel and frame welded to the steel reinforcement of the concrete The shelter should be located so that there is no combustible material directly outside it If the door is on the surface and will be exposed to the blast wave the edge of the door is normally counter sunk in the frame so that the blast wave or a reflection cannot lift the edge If possible this should be avoided and the door built so that it is sheltered from the blast wave by other structures The most useful construction is to build the door behind a 90 turn in a corridor that has an exit for the overpressure The door of a light civil defense shelter in Finland A bunker commonly has two doors one of which is convenient and in peacetime use and the other is strong Naturally the shelter must always have a secondary exit which can be used if the primary door is blocked by debris Door shafts may double as ventilation shafts to reduce the digging although this is inadvisable A large ground shock can move the walls of a bunker several centimeters in a few milliseconds Bunkers designed for large ground shocks must have sprung internal buildings hammocks or bean bag chairs to protect inhabitants from the walls and floors However most civilian built improvised shelters do not need these as their structure cannot stand a shock large enough to seriously damage the occupants Earth is an excellent insulator In bunkers inhabited for prolonged periods large amounts of ventilation or air conditioning must be provided to prevent heat prostration In bunkers designed for war time use manually operated ventilators must be provided because supplies of electricity or gas are unreliable The simplest form of effective fan to cool a shelter is a wide heavy frame with flaps that swings in the shelter s doorway and can be swung from hinges on the ceiling The flaps open in one direction and close in the other pumping air This is a Kearny Air Pump or KAP named after the inventor Cresson Kearny citation needed Kearny asserts based on field testing that air filtration is not normally needed in a nuclear shelter He asserts that fallout is either large enough to fall to the ground or so fine that it will not settle and thus has little bulk to emit radiation However if possible shelters should have air filtration to stop chemical biological and nuclear impurities which may abound after an explosion Ventilation openings in a bunker must be protected by blast valves A blast valve is closed by a shock wave but otherwise remains open If the bunker is in a built up area it may include water cooling or an immersion tube and breathing tubes to protect inhabitants from fire storms In these cases the secondary exit is also most useful Bunkers must also protect the inhabitants from normal weather including rain summer heat and winter cold A normal form of rainproofing is to place plastic film on the bunker s main structure before burying it Thick 5 mil or 125 mm inexpensive polyethylene film serves quite well because the overburden protects it from degradation by wind and sunlight Naturally a buried or basement situated reinforced concrete shelter usually has the normal appearance of a building When a house is purpose built with a blast shelter the normal location is a reinforced below grade bathroom with large cabinets citation needed In apartment houses the shelter may double as storage space as long as it can be swiftly emptied for its primary use A shelter can easily be added in a new basement construction by taking an existing corner and adding two poured walls and a ceiling Some vendors provide true blast shelters engineered to provide good protection to individual families at modest cost One common design approach uses fiber reinforced plastic shells Compressive protection may be provided by inexpensive earth arching The overburden is designed to shield from radiation To prevent the shelter from floating to the surface in high groundwater some designs have a skirt held down with the overburden A properly designed properly installed home shelter does not become a sinkhole in the lawn In Switzerland which requires shelters for private apartment blocks and large private houses the lightest shelters are constructed of stainless steel citation needed Subways Edit A blast door of a subway shelter in Singapore During World War II people in London and Moscow survived German aerial bombing by taking refuge in the underground railway stations e g the London Underground In the second half of the 20th century metro stations in eastern Europe and the USSR were constructed to serve as blast shelters Stations of the Pyongyang Metro in North Korea constructed 110 metres 360 ft below ground in the 1960s and 1970s are designed as nuclear blast shelters and each station entrance has thick steel blast doors 1 2 Further reading EditProtecting Buildings from Bomb Damage Transfer of Blast Effects Mitigation 1995 pp32 33 an overview of the literature FEMA Bibliography of building design documents to prevent blast hazards Blast Loading and Blast Effects on Structures An Overview 2007 Predicting blast pressures AFSWC TDR 6Z 138 Air Force Design Manual Principles and practices for design of hardened structures 1962 Superseded by 1987 Manual for Design and Analysis of Hardened Structures AFWL TR 87 57 and Army Technical Manual TM 5 855 1 Air Force Pamphlet AFPAM 32 1147 Navy Manual NAVFAC P 1080 DSWA Manual 1997 See also EditAir raid shelter Autonomous building Emergency preparedness Retreat survivalism References Edit Robinson Martin Bartlett Ray Whyte Rob 2007 Korea Lonely Planet p 364 ISBN 978 1 74104 558 1 Springer Chris 2003 Pyongyang the hidden history of the North Korean capital Entente Bt p 125 ISBN 978 963 00 8104 7 External links EditAustralian Bunker And Military Museum abmm org Oregon Institute of Science and Medicine 60 s Era ATT Equipment Nuclear Bomb Shelter Hi res interior amp exterior virtual tour Retrieved from https en wikipedia org w index php title Blast shelter amp oldid 1090992556 Design of blast shelters, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.