fbpx
Wikipedia

Bcl-2 homologous antagonist killer

Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6.[4][5] The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.[6]

BAK1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesBAK1, BAK, BAK-LIKE, BCL2L7, CDN1, BCL2 antagonist/killer 1
External IDsOMIM: 600516 MGI: 1097161 HomoloGene: 917 GeneCards: BAK1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001188

NM_007523

RefSeq (protein)

NP_001179

NP_031549

Location (UCSC)Chr 6: 33.57 – 33.58 Mbn/a
PubMed search[2][3]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

BAK1 is a pro-apoptotic Bcl-2 protein containing four Bcl-2 homology (BH) domains: BH1, BH2, BH3, and BH4. These domains are composed of nine α-helices, with a hydrophobic α-helix core surrounded by amphipathic helices and a transmembrane C-terminal α-helix anchored to the mitochondrial outer membrane (MOM). A hydrophobic groove formed along the C-terminal of α2 to the N-terminal of α5, and some residues from α8, binds the BH3 domain of other BCL-2 proteins in its active form.[7]

Function edit

As a member of the BCL2 protein family, BAK1 functions as a pro-apoptotic regulator involved in a wide variety of cellular activities.[6] In healthy mammalian cells, BAK1 localizes primarily to the MOM, but remains in an inactive form until stimulated by apoptotic signaling. The inactive form of BAK1 is maintained by the protein’s interactions with VDAC2, Mtx2, and other anti-apoptotic members of the BCL2 protein family. Nonetheless, VDAC2 functions to recruit newly synthesized BAK1 to the mitochondria to carry out apoptosis.[8] Moreover, BAK1 is believed to induce the opening of the mitochondrial voltage-dependent anion channel, leading to release of cytochrome c from the mitochondria.[6] Alternatively, BAK1 itself forms an oligomeric pore, MAC, in the MOM, through which pro-apoptotic factors leak in a process called MOM permeabilization.[9][10][11]

Clinical significance edit

Generally, the pro-apoptotic function of BAK1 contributes to neurodegenerative and autoimmune diseases when overexpressed and cancers when inhibited.[8] For instance, dysregulation of the BAK gene has been implicated in human gastrointestinal cancers, indicating that the gene plays a part in the pathogenesis of some cancers.[12][13]

BAK1 is also involved in the HIV replication pathway, as the virus induces apoptosis in T cells via Casp8p41, which activates BAK to carry out membrane permeabilization, leading to cell death.[14] Consequently, drugs that regulate BAK1 activity present promising treatments for these diseases.[7]

Recently, one study of the role of genetics in abdominal aortic aneurysm (AAA) showed that different BAK1 variants can exist in both diseased and non-diseased AA tissues compared to matching blood samples.[15][16] Given the current paradigm that all cells have the same genomic DNA, BAK1 gene variants in different tissues may be easily explained by the expression of BAK1 gene on chromosome 6 and one its edited copies on chromosome 20.[17]

Interactions edit

BAK1 has been shown to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000030110 – Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (April 1995). "Induction of apoptosis by the Bcl-2 homologue Bak". Nature. 374 (6524): 733–6. Bibcode:1995Natur.374..733C. doi:10.1038/374733a0. PMID 7715730. S2CID 4315947.
  5. ^ Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (April 1995). "Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak". Nature. 374 (6524): 736–9. Bibcode:1995Natur.374..736K. doi:10.1038/374736a0. PMID 7715731. S2CID 4087773.
  6. ^ a b c "Entrez Gene: BAK1 BCL2-antagonist/killer 1".
  7. ^ a b Westphal D, Kluck RM, Dewson G (February 2014). "Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis". Cell Death and Differentiation. 21 (2): 196–205. doi:10.1038/cdd.2013.139. PMC 3890949. PMID 24162660.
  8. ^ a b c d e Cartron PF, Petit E, Bellot G, Oliver L, Vallette FM (September 2014). "Metaxins 1 and 2, two proteins of the mitochondrial protein sorting and assembly machinery, are essential for Bak activation during TNF alpha triggered apoptosis". Cellular Signalling. 26 (9): 1928–34. doi:10.1016/j.cellsig.2014.04.021. PMID 24794530.
  9. ^ Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2006). "Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum". Autophagy. 2 (3): 238–40. doi:10.4161/auto.2730. PMID 16874066.
  10. ^ a b c d Mignard V, Lalier L, Paris F, Vallette FM (May 2014). "Bioactive lipids and the control of Bax pro-apoptotic activity". Cell Death & Disease. 5 (5): e1266. doi:10.1038/cddis.2014.226. PMC 4047880. PMID 24874738.
  11. ^ McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT (February 2018). "BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis". Science. 359 (6378): eaao6047. doi:10.1126/science.aao6047. PMID 29472455.
  12. ^ Tong QS, Zheng LD, Wang L, Liu J, Qian W (July 2004). "BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells". BMC Cancer. 4: 33. doi:10.1186/1471-2407-4-33. PMC 481072. PMID 15248898.
  13. ^ Duckworth CA, Pritchard DM (March 2009). "Suppression of apoptosis, crypt hyperplasia, and altered differentiation in the colonic epithelia of bak-null mice". Gastroenterology. 136 (3): 943–52. doi:10.1053/j.gastro.2008.11.036. PMID 19185578.
  14. ^ a b Sainski AM, Dai H, Natesampillai S, Pang YP, Bren GD, Cummins NW, Correia C, Meng XW, Tarara JE, Ramirez-Alvarado M, Katzmann DJ, Ochsenbauer C, Kappes JC, Kaufmann SH, Badley AD (September 2014). "Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation". The Journal of Cell Biology. 206 (7): 867–76. doi:10.1083/jcb.201405051. PMC 4178959. PMID 25246614.
  15. ^ Michel Eduardo Beleza Yamagishi (2009). "A simpler explanation to BAK1 gene variation in Aortic and Blood tissues". arXiv:0909.2321 [q-bio.GN].
  16. ^ Gottlieb B, Chalifour LE, Mitmaker B, Sheiner N, Obrand D, Abraham C, Meilleur M, Sugahara T, Bkaily G, Schweitzer M (July 2009). "BAK1 gene variation and abdominal aortic aneurysms". Human Mutation. 30 (7): 1043–7. doi:10.1002/humu.21046. PMID 19514060. S2CID 205919153.
  17. ^ Hatchwell E (January 2010). "BAK1 gene variation and abdominal aortic aneurysms-variants are likely due to sequencing of a processed gene on chromosome 20". Human Mutation. 31 (1): 108–9, author reply 110–1. doi:10.1002/humu.21147. PMID 19847788. S2CID 205919423.
  18. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  19. ^ Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M (August 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)". Analytical Biochemistry. 307 (1): 70–5. doi:10.1016/s0003-2697(02)00028-3. PMID 12137781.
  20. ^ Whitfield J, Harada K, Bardelle C, Staddon JM (November 2003). "High-throughput methods to detect dimerization of Bcl-2 family proteins". Analytical Biochemistry. 322 (2): 170–8. doi:10.1016/j.ab.2003.07.014. PMID 14596824.
  21. ^ a b Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (June 2005). "Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins". Genes & Development. 19 (11): 1294–305. doi:10.1101/gad.1304105. PMC 1142553. PMID 15901672.
  22. ^ Zheng TS (February 2001). "Death by design: the big debut of small molecules". Nature Cell Biology. 3 (2): E43–6. doi:10.1038/35055145. PMID 11175758. S2CID 22879400.
  23. ^ Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (February 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell. 116 (4): 527–40. doi:10.1016/s0092-8674(04)00162-x. PMID 14980220. S2CID 17808479.
  24. ^ Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (December 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening". Journal of Medicinal Chemistry. 44 (25): 4313–24. doi:10.1021/jm010016f. PMID 11728179.
  25. ^ a b Perfettini JL, Kroemer RT, Kroemer G (May 2004). "Fatal liaisons of p53 with Bax and Bak". Nature Cell Biology. 6 (5): 386–8. doi:10.1038/ncb0504-386. PMID 15122264. S2CID 21913599.
  26. ^ Weng C, Li Y, Xu D, Shi Y, Tang H (March 2005). "Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells". The Journal of Biological Chemistry. 280 (11): 10491–500. doi:10.1074/jbc.M412819200. PMID 15637055.
  27. ^ Bae J, Leo CP, Hsu SY, Hsueh AJ (August 2000). "MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain". The Journal of Biological Chemistry. 275 (33): 25255–61. doi:10.1074/jbc.M909826199. PMID 10837489.

Further reading edit

  • Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2007). "Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum". Autophagy. 2 (3): 238–40. doi:10.4161/auto.2730. PMID 16874066.
  • Farrow SN, White JH, Martinou I, Raven T, Pun KT, Grinham CJ, Martinou JC, Brown R (April 1995). "Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K". Nature. 374 (6524): 731–3. Bibcode:1995Natur.374..731F. doi:10.1038/374731a0. PMID 7715729. S2CID 4338100.
  • Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ (November 1995). "A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions". The EMBO Journal. 14 (22): 5589–96. doi:10.1002/j.1460-2075.1995.tb00246.x. PMC 394673. PMID 8521816.
  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (February 1997). "Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis". Science. 275 (5302): 983–6. doi:10.1126/science.275.5302.983. PMID 9020082. S2CID 22667419.
  • Diaz JL, Oltersdorf T, Horne W, McConnell M, Wilson G, Weeks S, Garcia T, Fritz LC (April 1997). "A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members". The Journal of Biological Chemistry. 272 (17): 11350–5. doi:10.1074/jbc.272.17.11350. PMID 9111042.
  • Huang DC, Adams JM, Cory S (February 1998). "The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4". The EMBO Journal. 17 (4): 1029–39. doi:10.1093/emboj/17.4.1029. PMC 1170452. PMID 9463381.
  • Herberg JA, Phillips S, Beck S, Jones T, Sheer D, Wu JJ, Prochazka V, Barr PJ, Kiefer MC, Trowsdale J (April 1998). "Genomic structure and domain organisation of the human Bak gene". Gene. 211 (1): 87–94. doi:10.1016/S0378-1119(98)00101-2. PMID 9573342.
  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (December 1998). "Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria". Proceedings of the National Academy of Sciences of the United States of America. 95 (25): 14681–6. Bibcode:1998PNAS...9514681N. doi:10.1073/pnas.95.25.14681. PMC 24509. PMID 9843949.
  • Song Q, Kuang Y, Dixit VM, Vincenz C (January 1999). "Boo, a novel negative regulator of cell death, interacts with Apaf-1". The EMBO Journal. 18 (1): 167–78. doi:10.1093/emboj/18.1.167. PMC 1171112. PMID 9878060.
  • Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C, Hickman JA (March 1999). "Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis". The Journal of Cell Biology. 144 (5): 903–14. doi:10.1083/jcb.144.5.903. PMC 2148192. PMID 10085290.
  • Shimizu S, Narita M, Tsujimoto Y (June 1999). "Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC". Nature. 399 (6735): 483–7. Bibcode:1999Natur.399..483S. doi:10.1038/20959. PMID 10365962. S2CID 4423304.
  • Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K, Motoyama N, Nakajima T (April 1999). "A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region". Cell Death and Differentiation. 6 (4): 314–25. doi:10.1038/sj.cdd.4400493. PMID 10381623.
  • Holmgreen SP, Huang DC, Adams JM, Cory S (June 1999). "Survival activity of Bcl-2 homologs Bcl-w and A1 only partially correlates with their ability to bind pro-apoptotic family members". Cell Death and Differentiation. 6 (6): 525–32. doi:10.1038/sj.cdd.4400519. PMID 10381646.
  • Leo CP, Hsu SY, Chun SY, Bae HW, Hsueh AJ (December 1999). "Characterization of the antiapoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) and the stimulation of its message by gonadotropins in the rat ovary". Endocrinology. 140 (12): 5469–77. doi:10.1210/endo.140.12.7171. PMID 10579309.
  • Shimizu S, Tsujimoto Y (January 2000). "Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity". Proceedings of the National Academy of Sciences of the United States of America. 97 (2): 577–82. Bibcode:2000PNAS...97..577S. doi:10.1073/pnas.97.2.577. PMC 15372. PMID 10639121.
  • Bae J, Leo CP, Hsu SY, Hsueh AJ (August 2000). "MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain". The Journal of Biological Chemistry. 275 (33): 25255–61. doi:10.1074/jbc.M909826199. PMID 10837489.
  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (August 2000). "tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c". Genes & Development. 14 (16): 2060–71. doi:10.1101/gad.14.16.2060. PMC 316859. PMID 10950869.
  • Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (February 2001). "Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL". Nature Cell Biology. 3 (2): 173–82. doi:10.1038/35055085. PMID 11175750. S2CID 32934759.
  • Duckworth CA, Pritchard DM (March 2009). "Suppression of apoptosis, crypt hyperplasia, and altered differentiation in the colonic epithelia of bak-null mice". Gastroenterology. 136 (3): 943–52. doi:10.1053/j.gastro.2008.11.036. PMID 19185578.

External links edit

homologous, antagonist, killer, this, article, about, mammalian, bak1, gene, plant, gene, with, same, symbol, bri1, associated, receptor, kinase, homologous, antagonist, killer, protein, that, humans, encoded, bak1, gene, chromosome, protein, encoded, this, ge. This article is about the mammalian BAK1 gene For the plant gene with the same symbol see BRI1 associated receptor kinase 1 Bcl 2 homologous antagonist killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6 4 5 The protein encoded by this gene belongs to the BCL2 protein family BCL2 family members form oligomers or heterodimers and act as anti or pro apoptotic regulators that are involved in a wide variety of cellular activities This protein localizes to mitochondria and functions to induce apoptosis It interacts with and accelerates the opening of the mitochondrial voltage dependent anion channel which leads to a loss in membrane potential and the release of cytochrome c This protein also interacts with the tumor suppressor P53 after exposure to cell stress 6 BAK1Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes5AJK 1BXL 2IMS 2IMT 2JBY 2JCN 2LP8 2M5B 2XPX 3I1H 3QBR 4D2L 4U2U 4U2V 4UF1 5FMK 5FMIIdentifiersAliasesBAK1 BAK BAK LIKE BCL2L7 CDN1 BCL2 antagonist killer 1External IDsOMIM 600516 MGI 1097161 HomoloGene 917 GeneCards BAK1Gene location Human Chr Chromosome 6 human 1 Band6p21 31Start33 572 547 bp 1 End33 580 293 bp 1 RNA expression patternBgeeHumanMouse ortholog Top expressed inleft adrenal glandright adrenal glandmonocyteduodenumrectumspleenbloodleft ventriclebody of stomachstromal cell of endometriumn aMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functiontransmembrane transporter binding metal ion binding protein binding identical protein binding protein homodimerization activity molecular function heat shock protein binding protein heterodimerization activity chaperone binding BH domain bindingCellular componentintegral component of membrane cytosol membrane mitochondrial membranes integral component of mitochondrial outer membrane intracellular anatomical structure endoplasmic reticulum mitochondrion pore complex mitochondrial outer membrane BAK complexBiological processmitochondrial fusion leukocyte homeostasis regulation of apoptotic process positive regulation of endoplasmic reticulum unfolded protein response establishment or maintenance of transmembrane electrochemical gradient limb morphogenesis positive regulation of calcium ion transport into cytosol response to organic cyclic compound B cell apoptotic process regulation of protein heterodimerization activity positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway vagina development homeostasis of number of cells cellular response to UV myeloid cell homeostasis human ageing post embryonic camera type eye morphogenesis B cell homeostasis thymocyte apoptotic process endoplasmic reticulum calcium ion homeostasis negative regulation of gene expression regulation of cell cycle regulation of mitochondrial membrane potential positive regulation of IRE1 mediated unfolded protein response blood vessel remodeling intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress brain development response to fungus regulation of mitochondrial membrane permeability cellular response to mechanical stimulus fibroblast apoptotic process activation of cysteine type endopeptidase activity apoptotic process involved in blood vessel morphogenesis activation of cysteine type endopeptidase activity involved in apoptotic process by cytochrome c animal organ regeneration negative regulation of peptidyl serine phosphorylation positive regulation of proteolysis positive regulation of release of cytochrome c from mitochondria apoptotic signaling pathway negative regulation of endoplasmic reticulum calcium ion concentration cell population proliferation response to ethanol activation of cysteine type endopeptidase activity involved in apoptotic process response to gamma radiation regulation of protein homodimerization activity response to UV C response to hydrogen peroxide endocrine pancreas development release of cytochrome c from mitochondria B cell negative selection negative regulation of cell population proliferation response to mycotoxin positive regulation of apoptotic process intrinsic apoptotic signaling pathway in response to DNA damage extrinsic apoptotic signaling pathway in absence of ligand apoptotic process Unfolded Protein ResponseSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez57812018EnsemblENSG00000030110ENSMUSG00000057789UniProtQ16611O08734RefSeq mRNA NM 001188NM 007523RefSeq protein NP 001179NP 031549Location UCSC Chr 6 33 57 33 58 Mbn aPubMed search 2 3 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 2 Function 3 Clinical significance 4 Interactions 5 References 6 Further reading 7 External linksStructure editBAK1 is a pro apoptotic Bcl 2 protein containing four Bcl 2 homology BH domains BH1 BH2 BH3 and BH4 These domains are composed of nine a helices with a hydrophobic a helix core surrounded by amphipathic helices and a transmembrane C terminal a helix anchored to the mitochondrial outer membrane MOM A hydrophobic groove formed along the C terminal of a2 to the N terminal of a5 and some residues from a8 binds the BH3 domain of other BCL 2 proteins in its active form 7 Function editAs a member of the BCL2 protein family BAK1 functions as a pro apoptotic regulator involved in a wide variety of cellular activities 6 In healthy mammalian cells BAK1 localizes primarily to the MOM but remains in an inactive form until stimulated by apoptotic signaling The inactive form of BAK1 is maintained by the protein s interactions with VDAC2 Mtx2 and other anti apoptotic members of the BCL2 protein family Nonetheless VDAC2 functions to recruit newly synthesized BAK1 to the mitochondria to carry out apoptosis 8 Moreover BAK1 is believed to induce the opening of the mitochondrial voltage dependent anion channel leading to release of cytochrome c from the mitochondria 6 Alternatively BAK1 itself forms an oligomeric pore MAC in the MOM through which pro apoptotic factors leak in a process called MOM permeabilization 9 10 11 Clinical significance editGenerally the pro apoptotic function of BAK1 contributes to neurodegenerative and autoimmune diseases when overexpressed and cancers when inhibited 8 For instance dysregulation of the BAK gene has been implicated in human gastrointestinal cancers indicating that the gene plays a part in the pathogenesis of some cancers 12 13 BAK1 is also involved in the HIV replication pathway as the virus induces apoptosis in T cells via Casp8p41 which activates BAK to carry out membrane permeabilization leading to cell death 14 Consequently drugs that regulate BAK1 activity present promising treatments for these diseases 7 Recently one study of the role of genetics in abdominal aortic aneurysm AAA showed that different BAK1 variants can exist in both diseased and non diseased AA tissues compared to matching blood samples 15 16 Given the current paradigm that all cells have the same genomic DNA BAK1 gene variants in different tissues may be easily explained by the expression of BAK1 gene on chromosome 6 and one its edited copies on chromosome 20 17 Interactions editBAK1 has been shown to interact with BCL2 like 1 18 19 20 21 22 Bcl 2 23 24 MCL1 21 25 26 27 P53 25 Casp8p41 14 VDAC2 8 Mtx2 8 Mcl 1 8 Bid 10 Bim 10 and Puma 10 References edit a b c GRCh38 Ensembl release 89 ENSG00000030110 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Chittenden T Harrington EA O Connor R Flemington C Lutz RJ Evan GI Guild BC April 1995 Induction of apoptosis by the Bcl 2 homologue Bak Nature 374 6524 733 6 Bibcode 1995Natur 374 733C doi 10 1038 374733a0 PMID 7715730 S2CID 4315947 Kiefer MC Brauer MJ Powers VC Wu JJ Umansky SR Tomei LD Barr PJ April 1995 Modulation of apoptosis by the widely distributed Bcl 2 homologue Bak Nature 374 6524 736 9 Bibcode 1995Natur 374 736K doi 10 1038 374736a0 PMID 7715731 S2CID 4087773 a b c Entrez Gene BAK1 BCL2 antagonist killer 1 a b Westphal D Kluck RM Dewson G February 2014 Building blocks of the apoptotic pore how Bax and Bak are activated and oligomerize during apoptosis Cell Death and Differentiation 21 2 196 205 doi 10 1038 cdd 2013 139 PMC 3890949 PMID 24162660 a b c d e Cartron PF Petit E Bellot G Oliver L Vallette FM September 2014 Metaxins 1 and 2 two proteins of the mitochondrial protein sorting and assembly machinery are essential for Bak activation during TNF alpha triggered apoptosis Cellular Signalling 26 9 1928 34 doi 10 1016 j cellsig 2014 04 021 PMID 24794530 Buytaert E Callewaert G Vandenheede JR Agostinis P 2006 Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum Autophagy 2 3 238 40 doi 10 4161 auto 2730 PMID 16874066 a b c d Mignard V Lalier L Paris F Vallette FM May 2014 Bioactive lipids and the control of Bax pro apoptotic activity Cell Death amp Disease 5 5 e1266 doi 10 1038 cddis 2014 226 PMC 4047880 PMID 24874738 McArthur K Whitehead LW Heddleston JM Li L Padman BS Oorschot V Geoghegan ND Chappaz S Davidson S San Chin H Lane RM Dramicanin M Saunders TL Sugiana C Lessene R Osellame LD Chew TL Dewson G Lazarou M Ramm G Lessene G Ryan MT Rogers KL van Delft MF Kile BT February 2018 BAK BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis Science 359 6378 eaao6047 doi 10 1126 science aao6047 PMID 29472455 Tong QS Zheng LD Wang L Liu J Qian W July 2004 BAK overexpression mediates p53 independent apoptosis inducing effects on human gastric cancer cells BMC Cancer 4 33 doi 10 1186 1471 2407 4 33 PMC 481072 PMID 15248898 Duckworth CA Pritchard DM March 2009 Suppression of apoptosis crypt hyperplasia and altered differentiation in the colonic epithelia of bak null mice Gastroenterology 136 3 943 52 doi 10 1053 j gastro 2008 11 036 PMID 19185578 a b Sainski AM Dai H Natesampillai S Pang YP Bren GD Cummins NW Correia C Meng XW Tarara JE Ramirez Alvarado M Katzmann DJ Ochsenbauer C Kappes JC Kaufmann SH Badley AD September 2014 Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation The Journal of Cell Biology 206 7 867 76 doi 10 1083 jcb 201405051 PMC 4178959 PMID 25246614 Michel Eduardo Beleza Yamagishi 2009 A simpler explanation to BAK1 gene variation in Aortic and Blood tissues arXiv 0909 2321 q bio GN Gottlieb B Chalifour LE Mitmaker B Sheiner N Obrand D Abraham C Meilleur M Sugahara T Bkaily G Schweitzer M July 2009 BAK1 gene variation and abdominal aortic aneurysms Human Mutation 30 7 1043 7 doi 10 1002 humu 21046 PMID 19514060 S2CID 205919153 Hatchwell E January 2010 BAK1 gene variation and abdominal aortic aneurysms variants are likely due to sequencing of a processed gene on chromosome 20 Human Mutation 31 1 108 9 author reply 110 1 doi 10 1002 humu 21147 PMID 19847788 S2CID 205919423 Rual JF Venkatesan K Hao T Hirozane Kishikawa T Dricot A Li N Berriz GF Gibbons FD Dreze M Ayivi Guedehoussou N Klitgord N Simon C Boxem M Milstein S Rosenberg J Goldberg DS Zhang LV Wong SL Franklin G Li S Albala JS Lim J Fraughton C Llamosas E Cevik S Bex C Lamesch P Sikorski RS Vandenhaute J Zoghbi HY Smolyar A Bosak S Sequerra R Doucette Stamm L Cusick ME Hill DE Roth FP Vidal M October 2005 Towards a proteome scale map of the human protein protein interaction network Nature 437 7062 1173 8 Bibcode 2005Natur 437 1173R doi 10 1038 nature04209 PMID 16189514 S2CID 4427026 Zhang H Nimmer P Rosenberg SH Ng SC Joseph M August 2002 Development of a high throughput fluorescence polarization assay for Bcl x L Analytical Biochemistry 307 1 70 5 doi 10 1016 s0003 2697 02 00028 3 PMID 12137781 Whitfield J Harada K Bardelle C Staddon JM November 2003 High throughput methods to detect dimerization of Bcl 2 family proteins Analytical Biochemistry 322 2 170 8 doi 10 1016 j ab 2003 07 014 PMID 14596824 a b Willis SN Chen L Dewson G Wei A Naik E Fletcher JI Adams JM Huang DC June 2005 Proapoptotic Bak is sequestered by Mcl 1 and Bcl xL but not Bcl 2 until displaced by BH3 only proteins Genes amp Development 19 11 1294 305 doi 10 1101 gad 1304105 PMC 1142553 PMID 15901672 Zheng TS February 2001 Death by design the big debut of small molecules Nature Cell Biology 3 2 E43 6 doi 10 1038 35055145 PMID 11175758 S2CID 22879400 Lin B Kolluri SK Lin F Liu W Han YH Cao X Dawson MI Reed JC Zhang XK February 2004 Conversion of Bcl 2 from protector to killer by interaction with nuclear orphan receptor Nur77 TR3 Cell 116 4 527 40 doi 10 1016 s0092 8674 04 00162 x PMID 14980220 S2CID 17808479 Enyedy IJ Ling Y Nacro K Tomita Y Wu X Cao Y Guo R Li B Zhu X Huang Y Long YQ Roller PP Yang D Wang S December 2001 Discovery of small molecule inhibitors of Bcl 2 through structure based computer screening Journal of Medicinal Chemistry 44 25 4313 24 doi 10 1021 jm010016f PMID 11728179 a b Perfettini JL Kroemer RT Kroemer G May 2004 Fatal liaisons of p53 with Bax and Bak Nature Cell Biology 6 5 386 8 doi 10 1038 ncb0504 386 PMID 15122264 S2CID 21913599 Weng C Li Y Xu D Shi Y Tang H March 2005 Specific cleavage of Mcl 1 by caspase 3 in tumor necrosis factor related apoptosis inducing ligand TRAIL induced apoptosis in Jurkat leukemia T cells The Journal of Biological Chemistry 280 11 10491 500 doi 10 1074 jbc M412819200 PMID 15637055 Bae J Leo CP Hsu SY Hsueh AJ August 2000 MCL 1S a splicing variant of the antiapoptotic BCL 2 family member MCL 1 encodes a proapoptotic protein possessing only the BH3 domain The Journal of Biological Chemistry 275 33 25255 61 doi 10 1074 jbc M909826199 PMID 10837489 Further reading editBuytaert E Callewaert G Vandenheede JR Agostinis P 2007 Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum Autophagy 2 3 238 40 doi 10 4161 auto 2730 PMID 16874066 Farrow SN White JH Martinou I Raven T Pun KT Grinham CJ Martinou JC Brown R April 1995 Cloning of a bcl 2 homologue by interaction with adenovirus E1B 19K Nature 374 6524 731 3 Bibcode 1995Natur 374 731F doi 10 1038 374731a0 PMID 7715729 S2CID 4338100 Chittenden T Flemington C Houghton AB Ebb RG Gallo GJ Elangovan B Chinnadurai G Lutz RJ November 1995 A conserved domain in Bak distinct from BH1 and BH2 mediates cell death and protein binding functions The EMBO Journal 14 22 5589 96 doi 10 1002 j 1460 2075 1995 tb00246 x PMC 394673 PMID 8521816 Sattler M Liang H Nettesheim D Meadows RP Harlan JE Eberstadt M Yoon HS Shuker SB Chang BS Minn AJ Thompson CB Fesik SW February 1997 Structure of Bcl xL Bak peptide complex recognition between regulators of apoptosis Science 275 5302 983 6 doi 10 1126 science 275 5302 983 PMID 9020082 S2CID 22667419 Diaz JL Oltersdorf T Horne W McConnell M Wilson G Weeks S Garcia T Fritz LC April 1997 A common binding site mediates heterodimerization and homodimerization of Bcl 2 family members The Journal of Biological Chemistry 272 17 11350 5 doi 10 1074 jbc 272 17 11350 PMID 9111042 Huang DC Adams JM Cory S February 1998 The conserved N terminal BH4 domain of Bcl 2 homologues is essential for inhibition of apoptosis and interaction with CED 4 The EMBO Journal 17 4 1029 39 doi 10 1093 emboj 17 4 1029 PMC 1170452 PMID 9463381 Herberg JA Phillips S Beck S Jones T Sheer D Wu JJ Prochazka V Barr PJ Kiefer MC Trowsdale J April 1998 Genomic structure and domain organisation of the human Bak gene Gene 211 1 87 94 doi 10 1016 S0378 1119 98 00101 2 PMID 9573342 Narita M Shimizu S Ito T Chittenden T Lutz RJ Matsuda H Tsujimoto Y December 1998 Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria Proceedings of the National Academy of Sciences of the United States of America 95 25 14681 6 Bibcode 1998PNAS 9514681N doi 10 1073 pnas 95 25 14681 PMC 24509 PMID 9843949 Song Q Kuang Y Dixit VM Vincenz C January 1999 Boo a novel negative regulator of cell death interacts with Apaf 1 The EMBO Journal 18 1 167 78 doi 10 1093 emboj 18 1 167 PMC 1171112 PMID 9878060 Griffiths GJ Dubrez L Morgan CP Jones NA Whitehouse J Corfe BM Dive C Hickman JA March 1999 Cell damage induced conformational changes of the pro apoptotic protein Bak in vivo precede the onset of apoptosis The Journal of Cell Biology 144 5 903 14 doi 10 1083 jcb 144 5 903 PMC 2148192 PMID 10085290 Shimizu S Narita M Tsujimoto Y June 1999 Bcl 2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC Nature 399 6735 483 7 Bibcode 1999Natur 399 483S doi 10 1038 20959 PMID 10365962 S2CID 4423304 Ohi N Tokunaga A Tsunoda H Nakano K Haraguchi K Oda K Motoyama N Nakajima T April 1999 A novel adenovirus E1B19K binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C terminal hydrophobic region Cell Death and Differentiation 6 4 314 25 doi 10 1038 sj cdd 4400493 PMID 10381623 Holmgreen SP Huang DC Adams JM Cory S June 1999 Survival activity of Bcl 2 homologs Bcl w and A1 only partially correlates with their ability to bind pro apoptotic family members Cell Death and Differentiation 6 6 525 32 doi 10 1038 sj cdd 4400519 PMID 10381646 Leo CP Hsu SY Chun SY Bae HW Hsueh AJ December 1999 Characterization of the antiapoptotic Bcl 2 family member myeloid cell leukemia 1 Mcl 1 and the stimulation of its message by gonadotropins in the rat ovary Endocrinology 140 12 5469 77 doi 10 1210 endo 140 12 7171 PMID 10579309 Shimizu S Tsujimoto Y January 2000 Proapoptotic BH3 only Bcl 2 family members induce cytochrome c release but not mitochondrial membrane potential loss and do not directly modulate voltage dependent anion channel activity Proceedings of the National Academy of Sciences of the United States of America 97 2 577 82 Bibcode 2000PNAS 97 577S doi 10 1073 pnas 97 2 577 PMC 15372 PMID 10639121 Bae J Leo CP Hsu SY Hsueh AJ August 2000 MCL 1S a splicing variant of the antiapoptotic BCL 2 family member MCL 1 encodes a proapoptotic protein possessing only the BH3 domain The Journal of Biological Chemistry 275 33 25255 61 doi 10 1074 jbc M909826199 PMID 10837489 Wei MC Lindsten T Mootha VK Weiler S Gross A Ashiya M Thompson CB Korsmeyer SJ August 2000 tBID a membrane targeted death ligand oligomerizes BAK to release cytochrome c Genes amp Development 14 16 2060 71 doi 10 1101 gad 14 16 2060 PMC 316859 PMID 10950869 Degterev A Lugovskoy A Cardone M Mulley B Wagner G Mitchison T Yuan J February 2001 Identification of small molecule inhibitors of interaction between the BH3 domain and Bcl xL Nature Cell Biology 3 2 173 82 doi 10 1038 35055085 PMID 11175750 S2CID 32934759 Duckworth CA Pritchard DM March 2009 Suppression of apoptosis crypt hyperplasia and altered differentiation in the colonic epithelia of bak null mice Gastroenterology 136 3 943 52 doi 10 1053 j gastro 2008 11 036 PMID 19185578 External links editHuman BAK1 genome location and BAK1 gene details page in the UCSC Genome Browser Retrieved from https en wikipedia org w index php title Bcl 2 homologous antagonist killer amp oldid 1187880128, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.