fbpx
Wikipedia

BTRC (gene)

F-box/WD repeat-containing protein 1A (FBXW1A) also known as βTrCP1 or Fbxw1 or hsSlimb or pIkappaBalpha-E3 receptor subunit is a protein that in humans is encoded by the BTRC (beta-transducin repeat containing) gene.[5][6]

BTRC
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesBTRC, BETA-TRCP, FBW1A, FBXW1, FBXW1A, FWD1, bTrCP, bTrCP1, betaTrCP, beta-transducin repeat containing E3 ubiquitin protein ligase
External IDsOMIM: 603482 MGI: 1338871 HomoloGene: 39330 GeneCards: BTRC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001256856
NM_003939
NM_033637

RefSeq (protein)

NP_001243785
NP_003930
NP_378663

Location (UCSC)Chr 10: 101.35 – 101.56 MbChr 19: 45.35 – 45.52 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

This gene encodes a member of the F-box protein family which is characterized by an approximately 40 residue structural motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (Skp1-Cul1-F-box protein), which often, but not always, recognize substrates in a phosphorylation-dependent manner. F-box proteins are divided into 3 classes:

  • Fbxws containing WD40 repeats,
  • Fbxls containing leucine-rich repeats,
  • and Fbxos containing either "other" protein–protein interaction modules or no recognizable motifs.

The protein encoded by this gene belongs to the Fbxw class as, in addition to an F-box, this protein contains multiple WD40 repeats. This protein is homologous to Xenopus βTrCP, yeast Met30, Neurospora Scon2 and Drosophila Slimb. In mammals, in addition to βTrCP1, a paralog protein (called βTrCP2 or FBXW11) also exists, but, so far, their functions appear redundant and indistinguishable.

Discovery

Human βTrCP (referred to both βTrCP1 and βTrCP2) was originally identified as a cellular ubiquitin ligase that is bound by the HIV-1 Vpu viral protein to eliminate cellular CD4 by connecting it to the proteolytic machinery.[7] Subsequently, βTrCP was shown to regulate multiple cellular processes by mediating the degradation of various targets.[8] Cell cycle regulators constitute a major group of βTrCP substrates. During S phase, βTrCP keeps CDK1 in check by promoting the degradation of the phosphatase CDC25A,[9] whereas in G2, βTrCP contributes to CDK1 activation by targeting the kinase WEE1 for degradation.[10] In early mitosis, βTrCP mediates the degradation of EMI1,[11][12] an inhibitor of the APC/C ubiquitin ligase complex, which is responsible for the anaphase-metaphase transition (by inducing the proteolysis of Securin) and mitotic exit (by driving the degradation of mitotic CDK1 activating cyclin subunits). Furthermore, βTrCP controls APC/C by targeting REST, thereby removing its transcriptional repression on MAD2, an essential component of the spindle assembly checkpoint that keeps APC/C inactive until all chromatids are attached to the spindle microtubules.[13]

Function

βTrCP plays important roles in regulating cell cycle checkpoints. In response to genotoxic stress, it contributes to turn off CDK1 activity by mediating the degradation of CDC25A in collaboration with Chk1,[9][14] thereby preventing cell cycle progression before the completion of DNA repair. During recovery from DNA replication and DNA damage, βTrCP instead targets Claspin in a Plk1-dependent manner.[15][16][17]

βTrCP has also emerged as an important player in protein translation, cell growth and survival. In response to mitogens, PDCD4, an inhibitor of the translation initiation factor eIF4A, is rapidly degraded in a βTrCP- and S6K1-dependent manner, allowing efficient protein translation and cell growth.[18] Another target of βTrCP that is involved in protein translation is eEF2K, which inhibits translation elongation by phosphorylating eukaryotic Elongation Factor 2 (eEF2) and decreasing its affinity for the ribosome.[19] βTrCP also cooperates with mTOR and CK1α to induce the degradation of DEPTOR (an mTOR inhibitor), thereby generating an auto-amplification loop to promote the full activation of mTOR.[20][21][22] At the same time, βTrCP mediates the degradation of the pro-apoptotic protein BimEL to promote cell survival.[23]

βTrCP also associates with phosphorylated IkappaBalpha and beta-catenin destruction motifs, probably functioning in multiple transcriptional programs by regulating the NF-kappaB and the WNT pathways.[24][25] βTrCP has also been shown to regulate centriole disengagement and licensing. βTrCP target the intercentrosomal linker protein Cep68 in prometaphase, which contributes to centriole disengagement and subsequent centriole separation.[26]

Interactions

BTRC (gene) has been shown to interact with:

Clinical Significance

βTrCP behaves as an oncoprotein in some tissues. Elevated levels of βTrCP expression have been found in colorectal,[39] pancreatic,[40] hapatoblastoma,[41] and breast cancers.[42]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000166167 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025217 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Fujiwara T, Suzuki M, Tanigami A, Ikenoue T, Omata M, Chiba T, Tanaka K (May 1999). "The BTRC gene, encoding a human F-box/WD40-repeat protein, maps to chromosome 10q24-q25". Genomics. 58 (1): 104–5. doi:10.1006/geno.1999.5792. PMID 10331953.
  6. ^ "Entrez Gene: BTRC beta-transducin repeat containing".
  7. ^ a b Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (March 1998). "A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif". Molecular Cell. 1 (4): 565–74. doi:10.1016/S1097-2765(00)80056-8. PMID 9660940.
  8. ^ Frescas D, Pagano M (June 2008). "Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer". Nature Reviews. Cancer. 8 (6): 438–49. doi:10.1038/nrc2396. PMC 2711846. PMID 18500245.
  9. ^ a b c Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF (November 2003). "Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage". Nature. 426 (6962): 87–91. Bibcode:2003Natur.426...87B. doi:10.1038/nature02082. PMID 14603323. S2CID 768783.
  10. ^ a b Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H (March 2004). "M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP". Proceedings of the National Academy of Sciences of the United States of America. 101 (13): 4419–24. Bibcode:2004PNAS..101.4419W. doi:10.1073/pnas.0307700101. PMC 384762. PMID 15070733.
  11. ^ a b c Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (June 2003). "Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo". Developmental Cell. 4 (6): 799–812. doi:10.1016/S1534-5807(03)00154-0. PMID 12791266.
  12. ^ a b Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (June 2003). "Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase". Developmental Cell. 4 (6): 813–26. doi:10.1016/S1534-5807(03)00153-9. PMID 12791267.
  13. ^ Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M (March 2008). "Control of chromosome stability by the beta-TrCP-REST-Mad2 axis". Nature. 452 (7185): 365–9. Bibcode:2008Natur.452..365G. doi:10.1038/nature06641. PMC 2707768. PMID 18354482.
  14. ^ a b Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ, Harper JW (December 2003). "SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase". Genes & Development. 17 (24): 3062–74. doi:10.1101/gad.1157503. PMC 305258. PMID 14681206.
  15. ^ a b Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M (August 2006). "SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response". Molecular Cell. 23 (3): 319–29. doi:10.1016/j.molcel.2006.06.013. PMID 16885022.
  16. ^ a b Mailand N, Bekker-Jensen S, Bartek J, Lukas J (August 2006). "Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress". Molecular Cell. 23 (3): 307–18. doi:10.1016/j.molcel.2006.06.016. PMID 16885021.
  17. ^ a b Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R (October 2006). "Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery". Current Biology. 16 (19): 1950–5. doi:10.1016/j.cub.2006.08.026. PMID 16934469. S2CID 2928268.
  18. ^ a b Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (October 2006). "S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth". Science. 314 (5798): 467–71. Bibcode:2006Sci...314..467D. doi:10.1126/science.1130276. PMID 17053147. S2CID 84039829.
  19. ^ Sci Signal. 2012 Jun 5;5(227):ra40. doi: 10.1126/scisignal.2002718. SCFβTrCP-mediated degradation of eEF2K couples protein synthesis elongation to the G2 DNA damage checkpoint. Kruiswijk F., Yuniati L., Magliozzi R., Bolder R., Lim R., Low T., Heck A., Pagano M., and Guardavaccaro D.
  20. ^ a b Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M (October 2011). "mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR". Molecular Cell. 44 (2): 317–24. doi:10.1016/j.molcel.2011.09.005. PMC 3212871. PMID 22017877.
  21. ^ a b Zhao Y, Xiong X, Sun Y (October 2011). "DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy". Molecular Cell. 44 (2): 304–16. doi:10.1016/j.molcel.2011.08.029. PMC 3216641. PMID 22017876.
  22. ^ a b Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S, Lyssiotis CA, Gygi SP, Toker A, Cantley LC, Asara JM, Harper JW, Wei W (October 2011). "mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR". Molecular Cell. 44 (2): 290–303. doi:10.1016/j.molcel.2011.08.030. PMC 3229299. PMID 22017875.
  23. ^ a b Dehan E, Bassermann F, Guardavaccaro D, Vasiliver-Shamis G, Cohen M, Lowes KN, Dustin M, Huang DC, Taunton J, Pagano M (January 2009). "betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis". Molecular Cell. 33 (1): 109–16. doi:10.1016/j.molcel.2008.12.020. PMC 2655121. PMID 19150432.
  24. ^ Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (February 1999). "The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro". Genes & Development. 13 (3): 270–83. doi:10.1101/gad.13.3.270. PMC 316433. PMID 9990852.
  25. ^ a b Latres E, Chiaur DS, Pagano M (January 1999). "The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin". Oncogene. 18 (4): 849–54. doi:10.1038/sj.onc.1202653. PMID 10023660.
  26. ^ Nature cell biology. 2015;17(1):31-43. doi:10.1038/ncb3076. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Pagan JK, Marzio A, Jones MJ, Saraf A, Jallepalli PV, Florens L, Washburn MP, Pagano M.
  27. ^ Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (May 1999). "beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation". Proceedings of the National Academy of Sciences of the United States of America. 96 (11): 6273–8. Bibcode:1999PNAS...96.6273L. doi:10.1073/pnas.96.11.6273. PMC 26871. PMID 10339577.
  28. ^ a b c Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M (October 1999). "Identification of a family of human F-box proteins". Current Biology. 9 (20): 1177–9. doi:10.1016/S0960-9822(00)80020-2. PMID 10531035. S2CID 7467493.
  29. ^ Semplici F, Meggio F, Pinna LA, Oliviero S (June 2002). "CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation". Oncogene. 21 (25): 3978–87. doi:10.1038/sj.onc.1205574. PMID 12037680.
  30. ^ a b c d Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (January 2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". The Journal of Biological Chemistry. 275 (4): 2877–84. doi:10.1074/jbc.275.4.2877. PMID 10644755.
  31. ^ a b Min KW, Hwang JW, Lee JS, Park Y, Tamura TA, Yoon JB (May 2003). "TIP120A associates with cullins and modulates ubiquitin ligase activity". The Journal of Biological Chemistry. 278 (18): 15905–10. doi:10.1074/jbc.M213070200. PMID 12609982.
  32. ^ Mantovani F, Banks L (October 2003). "Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the beta-TrCP ubiquitin ligase receptor". The Journal of Biological Chemistry. 278 (43): 42477–86. doi:10.1074/jbc.M302799200. PMID 12902344.
  33. ^ a b Spencer E, Jiang J, Chen ZJ (February 1999). "Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP". Genes & Development. 13 (3): 284–94. doi:10.1101/gad.13.3.284. PMC 316434. PMID 9990853.
  34. ^ Fong A, Sun SC (June 2002). "Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100". The Journal of Biological Chemistry. 277 (25): 22111–4. doi:10.1074/jbc.C200151200. PMID 11994270.
  35. ^ Vatsyayan J, Qing G, Xiao G, Hu J (September 2008). "SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing". EMBO Reports. 9 (9): 885–90. doi:10.1038/embor.2008.122. PMC 2529344. PMID 18617892.
  36. ^ Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ (March 2008). "SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation". Nature. 452 (7185): 370–4. Bibcode:2008Natur.452..370W. doi:10.1038/nature06780. PMC 2688689. PMID 18354483.
  37. ^ Strack P, Caligiuri M, Pelletier M, Boisclair M, Theodoras A, Beer-Romero P, Glass S, Parsons T, Copeland RA, Auger KR, Benfield P, Brizuela L, Rolfe M (July 2000). "SCF(beta-TRCP) and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4". Oncogene. 19 (31): 3529–36. doi:10.1038/sj.onc.1203647. PMID 10918611.
  38. ^ . Archived from the original on 2006-05-06. Retrieved 2012-05-08.
  39. ^ Ougolkov A, Zhang B, Yamashita K, Bilim V, Mai M, Fuchs SY, Minamoto T (August 2004). "Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer". Journal of the National Cancer Institute. 96 (15): 1161–70. doi:10.1093/jnci/djh219. PMID 15292388.
  40. ^ Müerköster S, Arlt A, Sipos B, Witt M, Grossmann M, Klöppel G, Kalthoff H, Fölsch UR, Schäfer H (February 2005). "Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells". Cancer Research. 65 (4): 1316–24. doi:10.1158/0008-5472.CAN-04-1626. PMID 15735017.
  41. ^ Koch A, Waha A, Hartmann W, Hrychyk A, Schüller U, Waha A, Wharton KA, Fuchs SY, von Schweinitz D, Pietsch T (June 2005). "Elevated expression of Wnt antagonists is a common event in hepatoblastomas". Clinical Cancer Research. 11 (12): 4295–304. doi:10.1158/1078-0432.CCR-04-1162. PMID 15958610.
  42. ^ Spiegelman VS, Tang W, Chan AM, Igarashi M, Aaronson SA, Sassoon DA, Katoh M, Slaga TJ, Fuchs SY (September 2002). "Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling". The Journal of Biological Chemistry. 277 (39): 36624–30. doi:10.1074/jbc.M204524200. PMID 12151397.

External links

Further reading

  • Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ (March 2008). "SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation". Nature. 452 (7185): 370–4. Bibcode:2008Natur.452..370W. doi:10.1038/nature06780. PMC 2688689. PMID 18354483.
  • Maniatis T (March 1999). "A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways". Genes & Development. 13 (5): 505–10. doi:10.1101/gad.13.5.505. PMID 10072378.
  • Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Research. 15 (11–12): 923–34. doi:10.1038/sj.cr.7290370. PMID 16354571.
  • Bonaldo MF, Lennon G, Soares MB (September 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y (December 1998). "Identification of the receptor component of the IkappaBalpha-ubiquitin ligase". Nature. 396 (6711): 590–4. Bibcode:1998Natur.396..590Y. doi:10.1038/25159. PMID 9859996. S2CID 4408963.
  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (February 1999). "The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro". Genes & Development. 13 (3): 270–83. doi:10.1101/gad.13.3.270. PMC 316433. PMID 9990852.
  • Spencer E, Jiang J, Chen ZJ (February 1999). "Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP". Genes & Development. 13 (3): 284–94. doi:10.1101/gad.13.3.284. PMC 316434. PMID 9990853.
  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K (May 1999). "An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin". The EMBO Journal. 18 (9): 2401–10. doi:10.1093/emboj/18.9.2401. PMC 1171323. PMID 10228155.
  • Wu C, Ghosh S (October 1999). "beta-TrCP mediates the signal-induced ubiquitination of IkappaBbeta". The Journal of Biological Chemistry. 274 (42): 29591–4. doi:10.1074/jbc.274.42.29591. PMID 10514424.
  • Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M (October 1999). "Identification of a family of human F-box proteins". Current Biology. 9 (20): 1177–9. doi:10.1016/S0960-9822(00)80020-2. PMID 10531035. S2CID 7467493.
  • Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A (December 1999). "Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli". Journal of Cell Science. 112. 112 ( Pt 23) (23): 4437–48. doi:10.1242/jcs.112.23.4437. PMID 10564661.
  • Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (January 2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". The Journal of Biological Chemistry. 275 (4): 2877–84. doi:10.1074/jbc.275.4.2877. PMID 10644755.
  • Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ (April 2000). "Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha". Molecular and Cellular Biology. 20 (7): 2326–33. doi:10.1128/MCB.20.7.2326-2333.2000. PMC 85397. PMID 10713156.
  • Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze'ev A (April 2000). "Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system". Oncogene. 19 (16): 1992–2001. doi:10.1038/sj.onc.1203519. PMID 10803460.
  • Chiaur DS, Murthy S, Cenciarelli C, Parks W, Loda M, Inghirami G, Demetrick D, Pagano M (2000). "Five human genes encoding F-box proteins: chromosome mapping and analysis in human tumors". Cytogenetics and Cell Genetics. 88 (3–4): 255–8. doi:10.1159/000015532. PMID 10828603. S2CID 431704.
  • Orian A, Gonen H, Bercovich B, Fajerman I, Eytan E, Israël A, Mercurio F, Iwai K, Schwartz AL, Ciechanover A (June 2000). "SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase". The EMBO Journal. 19 (11): 2580–91. doi:10.1093/emboj/19.11.2580. PMC 212749. PMID 10835356.
  • Strack P, Caligiuri M, Pelletier M, Boisclair M, Theodoras A, Beer-Romero P, Glass S, Parsons T, Copeland RA, Auger KR, Benfield P, Brizuela L, Rolfe M (July 2000). "SCF(beta-TRCP) and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4". Oncogene. 19 (31): 3529–36. doi:10.1038/sj.onc.1203647. PMID 10918611.
  • Kleijnen MF, Shih AH, Zhou P, Kumar S, Soccio RE, Kedersha NL, Gill G, Howley PM (August 2000). "The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome". Molecular Cell. 6 (2): 409–19. doi:10.1016/S1097-2765(00)00040-X. PMID 10983987.

btrc, gene, repeat, containing, protein, fbxw1a, also, known, βtrcp1, fbxw1, hsslimb, pikappabalpha, receptor, subunit, protein, that, humans, encoded, btrc, beta, transducin, repeat, containing, gene, btrcavailable, structurespdbortholog, search, pdbe, rcsbli. F box WD repeat containing protein 1A FBXW1A also known as bTrCP1 or Fbxw1 or hsSlimb or pIkappaBalpha E3 receptor subunit is a protein that in humans is encoded by the BTRC beta transducin repeat containing gene 5 6 BTRCAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes1P22 2P64IdentifiersAliasesBTRC BETA TRCP FBW1A FBXW1 FBXW1A FWD1 bTrCP bTrCP1 betaTrCP beta transducin repeat containing E3 ubiquitin protein ligaseExternal IDsOMIM 603482 MGI 1338871 HomoloGene 39330 GeneCards BTRCGene location Human Chr Chromosome 10 human 1 Band10q24 32Start101 354 033 bp 1 End101 557 321 bp 1 Gene location Mouse Chr Chromosome 19 mouse 2 Band19 19 C3Start45 352 173 bp 2 End45 518 452 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed insecondary oocytepostcentral gyrussuperior frontal gyrusentorhinal cortexsuperior vestibular nucleusprefrontal cortexmiddle temporal gyrusinternal globus pallidusexternal globus pallidusnucleus accumbensTop expressed inspermatocytespermatidmorulablastocystseminiferous tubulesuperior frontal gyrussubiculumsupraoptic nucleuscerebellar cortexsecondary oocyteMore reference expression dataBioGPSn aGene ontologyMolecular functionprotein binding ligase activity protein phosphorylated amino acid binding protein dimerization activity beta catenin binding ubiquitin protein ligase activity ubiquitin protein transferase activity snoRNA bindingCellular componentnucleus cytoplasm nucleoplasm cytosol SCF ubiquitin ligase complex small subunit processome Pwp2p containing subcomplex of 90S preribosomeBiological processcellular response to organic cyclic compound protein destabilization regulation of cell cycle protein catabolic process G2 M transition of mitotic cell cycle negative regulation of DNA binding transcription factor activity regulation of I kappaB kinase NF kappaB signaling stress activated MAPK cascade negative regulation of transcription DNA templated positive regulation of proteolysis regulation of proteasomal protein catabolic process regulation of circadian rhythm mammary gland epithelial cell proliferation branching involved in mammary gland duct morphogenesis negative regulation of smoothened signaling pathway rhythmic process NIK NF kappaB signaling signal transduction ubiquitin dependent protein catabolic process regulation of canonical Wnt signaling pathway protein dephosphorylation positive regulation of transcription DNA templated protein ubiquitination positive regulation of circadian rhythm Wnt signaling pathway protein polyubiquitination viral process post translational protein modification SCF dependent proteasomal ubiquitin dependent protein catabolic process interleukin 1 mediated signaling pathway proteasome mediated ubiquitin dependent protein catabolic process maturation of SSU rRNA from tricistronic rRNA transcript SSU rRNA 5 8S rRNA LSU rRNA regulation of mitotic cell cycle phase transition stimulatory C type lectin receptor signaling pathway Fc epsilon receptor signaling pathway T cell receptor signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez894512234EnsemblENSG00000166167ENSMUSG00000025217UniProtQ9Y297Q5T1W7Q3ULA2RefSeq mRNA NM 001256856NM 003939NM 033637NM 001037758NM 001286465NM 001286466NM 009771NM 001360120NM 001360122NM 001360124NM 001360126NM 001360127RefSeq protein NP 001243785NP 003930NP 378663NP 001032847NP 001273394NP 001273395NP 033901NP 001347049NP 001347051NP 001347053NP 001347055NP 001347056Location UCSC Chr 10 101 35 101 56 MbChr 19 45 35 45 52 MbPubMed search 3 4 WikidataView Edit HumanView Edit MouseThis gene encodes a member of the F box protein family which is characterized by an approximately 40 residue structural motif the F box The F box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs Skp1 Cul1 F box protein which often but not always recognize substrates in a phosphorylation dependent manner F box proteins are divided into 3 classes Fbxws containing WD40 repeats Fbxls containing leucine rich repeats and Fbxos containing either other protein protein interaction modules or no recognizable motifs The protein encoded by this gene belongs to the Fbxw class as in addition to an F box this protein contains multiple WD40 repeats This protein is homologous to Xenopus bTrCP yeast Met30 Neurospora Scon2 and Drosophila Slimb In mammals in addition to bTrCP1 a paralog protein called bTrCP2 or FBXW11 also exists but so far their functions appear redundant and indistinguishable Contents 1 Discovery 2 Function 3 Interactions 4 Clinical Significance 5 References 6 External links 7 Further readingDiscovery EditHuman bTrCP referred to both bTrCP1 and bTrCP2 was originally identified as a cellular ubiquitin ligase that is bound by the HIV 1 Vpu viral protein to eliminate cellular CD4 by connecting it to the proteolytic machinery 7 Subsequently bTrCP was shown to regulate multiple cellular processes by mediating the degradation of various targets 8 Cell cycle regulators constitute a major group of bTrCP substrates During S phase bTrCP keeps CDK1 in check by promoting the degradation of the phosphatase CDC25A 9 whereas in G2 bTrCP contributes to CDK1 activation by targeting the kinase WEE1 for degradation 10 In early mitosis bTrCP mediates the degradation of EMI1 11 12 an inhibitor of the APC C ubiquitin ligase complex which is responsible for the anaphase metaphase transition by inducing the proteolysis of Securin and mitotic exit by driving the degradation of mitotic CDK1 activating cyclin subunits Furthermore bTrCP controls APC C by targeting REST thereby removing its transcriptional repression on MAD2 an essential component of the spindle assembly checkpoint that keeps APC C inactive until all chromatids are attached to the spindle microtubules 13 Function EditbTrCP plays important roles in regulating cell cycle checkpoints In response to genotoxic stress it contributes to turn off CDK1 activity by mediating the degradation of CDC25A in collaboration with Chk1 9 14 thereby preventing cell cycle progression before the completion of DNA repair During recovery from DNA replication and DNA damage bTrCP instead targets Claspin in a Plk1 dependent manner 15 16 17 bTrCP has also emerged as an important player in protein translation cell growth and survival In response to mitogens PDCD4 an inhibitor of the translation initiation factor eIF4A is rapidly degraded in a bTrCP and S6K1 dependent manner allowing efficient protein translation and cell growth 18 Another target of bTrCP that is involved in protein translation is eEF2K which inhibits translation elongation by phosphorylating eukaryotic Elongation Factor 2 eEF2 and decreasing its affinity for the ribosome 19 bTrCP also cooperates with mTOR and CK1a to induce the degradation of DEPTOR an mTOR inhibitor thereby generating an auto amplification loop to promote the full activation of mTOR 20 21 22 At the same time bTrCP mediates the degradation of the pro apoptotic protein BimEL to promote cell survival 23 bTrCP also associates with phosphorylated IkappaBalpha and beta catenin destruction motifs probably functioning in multiple transcriptional programs by regulating the NF kappaB and the WNT pathways 24 25 bTrCP has also been shown to regulate centriole disengagement and licensing bTrCP target the intercentrosomal linker protein Cep68 in prometaphase which contributes to centriole disengagement and subsequent centriole separation 26 Interactions EditBTRC gene has been shown to interact with b catenin 25 27 BimEL1 23 Cdc25A 9 14 CDC34 28 29 Claspin 15 16 17 CUL1 28 30 31 DEPTOR 20 21 22 DLG1 32 EMI1 11 12 FBXW11 30 IkBa 30 33 NFKB2 34 35 PDCD4 18 RELA 33 REST 11 36 SKP1A 7 28 30 31 37 and WEE1 10 C22orf25 38 Clinical Significance EditbTrCP behaves as an oncoprotein in some tissues Elevated levels of bTrCP expression have been found in colorectal 39 pancreatic 40 hapatoblastoma 41 and breast cancers 42 References Edit a b c GRCh38 Ensembl release 89 ENSG00000166167 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000025217 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Fujiwara T Suzuki M Tanigami A Ikenoue T Omata M Chiba T Tanaka K May 1999 The BTRC gene encoding a human F box WD40 repeat protein maps to chromosome 10q24 q25 Genomics 58 1 104 5 doi 10 1006 geno 1999 5792 PMID 10331953 Entrez Gene BTRC beta transducin repeat containing a b Margottin F Bour SP Durand H Selig L Benichou S Richard V Thomas D Strebel K Benarous R March 1998 A novel human WD protein h beta TrCp that interacts with HIV 1 Vpu connects CD4 to the ER degradation pathway through an F box motif Molecular Cell 1 4 565 74 doi 10 1016 S1097 2765 00 80056 8 PMID 9660940 Frescas D Pagano M June 2008 Deregulated proteolysis by the F box proteins SKP2 and beta TrCP tipping the scales of cancer Nature Reviews Cancer 8 6 438 49 doi 10 1038 nrc2396 PMC 2711846 PMID 18500245 a b c Busino L Donzelli M Chiesa M Guardavaccaro D Ganoth D Dorrello NV Hershko A Pagano M Draetta GF November 2003 Degradation of Cdc25A by beta TrCP during S phase and in response to DNA damage Nature 426 6962 87 91 Bibcode 2003Natur 426 87B doi 10 1038 nature02082 PMID 14603323 S2CID 768783 a b Watanabe N Arai H Nishihara Y Taniguchi M Watanabe N Hunter T Osada H March 2004 M phase kinases induce phospho dependent ubiquitination of somatic Wee1 by SCFbeta TrCP Proceedings of the National Academy of Sciences of the United States of America 101 13 4419 24 Bibcode 2004PNAS 101 4419W doi 10 1073 pnas 0307700101 PMC 384762 PMID 15070733 a b c Guardavaccaro D Kudo Y Boulaire J Barchi M Busino L Donzelli M Margottin Goguet F Jackson PK Yamasaki L Pagano M June 2003 Control of meiotic and mitotic progression by the F box protein beta Trcp1 in vivo Developmental Cell 4 6 799 812 doi 10 1016 S1534 5807 03 00154 0 PMID 12791266 a b Margottin Goguet F Hsu JY Loktev A Hsieh HM Reimann JD Jackson PK June 2003 Prophase destruction of Emi1 by the SCF betaTrCP Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase Developmental Cell 4 6 813 26 doi 10 1016 S1534 5807 03 00153 9 PMID 12791267 Guardavaccaro D Frescas D Dorrello NV Peschiaroli A Multani AS Cardozo T Lasorella A Iavarone A Chang S Hernando E Pagano M March 2008 Control of chromosome stability by the beta TrCP REST Mad2 axis Nature 452 7185 365 9 Bibcode 2008Natur 452 365G doi 10 1038 nature06641 PMC 2707768 PMID 18354482 a b Jin J Shirogane T Xu L Nalepa G Qin J Elledge SJ Harper JW December 2003 SCFbeta TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase Genes amp Development 17 24 3062 74 doi 10 1101 gad 1157503 PMC 305258 PMID 14681206 a b Peschiaroli A Dorrello NV Guardavaccaro D Venere M Halazonetis T Sherman NE Pagano M August 2006 SCFbetaTrCP mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response Molecular Cell 23 3 319 29 doi 10 1016 j molcel 2006 06 013 PMID 16885022 a b Mailand N Bekker Jensen S Bartek J Lukas J August 2006 Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress Molecular Cell 23 3 307 18 doi 10 1016 j molcel 2006 06 016 PMID 16885021 a b Mamely I van Vugt MA Smits VA Semple JI Lemmens B Perrakis A Medema RH Freire R October 2006 Polo like kinase 1 controls proteasome dependent degradation of Claspin during checkpoint recovery Current Biology 16 19 1950 5 doi 10 1016 j cub 2006 08 026 PMID 16934469 S2CID 2928268 a b Dorrello NV Peschiaroli A Guardavaccaro D Colburn NH Sherman NE Pagano M October 2006 S6K1 and betaTRCP mediated degradation of PDCD4 promotes protein translation and cell growth Science 314 5798 467 71 Bibcode 2006Sci 314 467D doi 10 1126 science 1130276 PMID 17053147 S2CID 84039829 Sci Signal 2012 Jun 5 5 227 ra40 doi 10 1126 scisignal 2002718 SCFbTrCP mediated degradation of eEF2K couples protein synthesis elongation to the G2 DNA damage checkpoint Kruiswijk F Yuniati L Magliozzi R Bolder R Lim R Low T Heck A Pagano M and Guardavaccaro D a b Duan S Skaar JR Kuchay S Toschi A Kanarek N Ben Neriah Y Pagano M October 2011 mTOR generates an auto amplification loop by triggering the bTrCP and CK1a dependent degradation of DEPTOR Molecular Cell 44 2 317 24 doi 10 1016 j molcel 2011 09 005 PMC 3212871 PMID 22017877 a b Zhao Y Xiong X Sun Y October 2011 DEPTOR an mTOR inhibitor is a physiological substrate of SCF bTrCP E3 ubiquitin ligase and regulates survival and autophagy Molecular Cell 44 2 304 16 doi 10 1016 j molcel 2011 08 029 PMC 3216641 PMID 22017876 a b Gao D Inuzuka H Tan MK Fukushima H Locasale JW Liu P Wan L Zhai B Chin YR Shaik S Lyssiotis CA Gygi SP Toker A Cantley LC Asara JM Harper JW Wei W October 2011 mTOR drives its own activation via SCF bTrCP dependent degradation of the mTOR inhibitor DEPTOR Molecular Cell 44 2 290 303 doi 10 1016 j molcel 2011 08 030 PMC 3229299 PMID 22017875 a b Dehan E Bassermann F Guardavaccaro D Vasiliver Shamis G Cohen M Lowes KN Dustin M Huang DC Taunton J Pagano M January 2009 betaTrCP and Rsk1 2 mediated degradation of BimEL inhibits apoptosis Molecular Cell 33 1 109 16 doi 10 1016 j molcel 2008 12 020 PMC 2655121 PMID 19150432 Winston JT Strack P Beer Romero P Chu CY Elledge SJ Harper JW February 1999 The SCFbeta TRCP ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta catenin and stimulates IkappaBalpha ubiquitination in vitro Genes amp Development 13 3 270 83 doi 10 1101 gad 13 3 270 PMC 316433 PMID 9990852 a b Latres E Chiaur DS Pagano M January 1999 The human F box protein beta Trcp associates with the Cul1 Skp1 complex and regulates the stability of beta catenin Oncogene 18 4 849 54 doi 10 1038 sj onc 1202653 PMID 10023660 Nature cell biology 2015 17 1 31 43 doi 10 1038 ncb3076 Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation disengagement and licensing Pagan JK Marzio A Jones MJ Saraf A Jallepalli PV Florens L Washburn MP Pagano M Liu C Kato Y Zhang Z Do VM Yankner BA He X May 1999 beta Trcp couples beta catenin phosphorylation degradation and regulates Xenopus axis formation Proceedings of the National Academy of Sciences of the United States of America 96 11 6273 8 Bibcode 1999PNAS 96 6273L doi 10 1073 pnas 96 11 6273 PMC 26871 PMID 10339577 a b c Cenciarelli C Chiaur DS Guardavaccaro D Parks W Vidal M Pagano M October 1999 Identification of a family of human F box proteins Current Biology 9 20 1177 9 doi 10 1016 S0960 9822 00 80020 2 PMID 10531035 S2CID 7467493 Semplici F Meggio F Pinna LA Oliviero S June 2002 CK2 dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta TrCP and enhances beta catenin degradation Oncogene 21 25 3978 87 doi 10 1038 sj onc 1205574 PMID 12037680 a b c d Suzuki H Chiba T Suzuki T Fujita T Ikenoue T Omata M Furuichi K Shikama H Tanaka K January 2000 Homodimer of two F box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal dependent ubiquitination The Journal of Biological Chemistry 275 4 2877 84 doi 10 1074 jbc 275 4 2877 PMID 10644755 a b Min KW Hwang JW Lee JS Park Y Tamura TA Yoon JB May 2003 TIP120A associates with cullins and modulates ubiquitin ligase activity The Journal of Biological Chemistry 278 18 15905 10 doi 10 1074 jbc M213070200 PMID 12609982 Mantovani F Banks L October 2003 Regulation of the discs large tumor suppressor by a phosphorylation dependent interaction with the beta TrCP ubiquitin ligase receptor The Journal of Biological Chemistry 278 43 42477 86 doi 10 1074 jbc M302799200 PMID 12902344 a b Spencer E Jiang J Chen ZJ February 1999 Signal induced ubiquitination of IkappaBalpha by the F box protein Slimb beta TrCP Genes amp Development 13 3 284 94 doi 10 1101 gad 13 3 284 PMC 316434 PMID 9990853 Fong A Sun SC June 2002 Genetic evidence for the essential role of beta transducin repeat containing protein in the inducible processing of NF kappa B2 p100 The Journal of Biological Chemistry 277 25 22111 4 doi 10 1074 jbc C200151200 PMID 11994270 Vatsyayan J Qing G Xiao G Hu J September 2008 SUMO1 modification of NF kappaB2 p100 is essential for stimuli induced p100 phosphorylation and processing EMBO Reports 9 9 885 90 doi 10 1038 embor 2008 122 PMC 2529344 PMID 18617892 Westbrook TF Hu G Ang XL Mulligan P Pavlova NN Liang A Leng Y Maehr R Shi Y Harper JW Elledge SJ March 2008 SCFbeta TRCP controls oncogenic transformation and neural differentiation through REST degradation Nature 452 7185 370 4 Bibcode 2008Natur 452 370W doi 10 1038 nature06780 PMC 2688689 PMID 18354483 Strack P Caligiuri M Pelletier M Boisclair M Theodoras A Beer Romero P Glass S Parsons T Copeland RA Auger KR Benfield P Brizuela L Rolfe M July 2000 SCF beta TRCP and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4 Oncogene 19 31 3529 36 doi 10 1038 sj onc 1203647 PMID 10918611 Molecular Interaction Database Archived from the original on 2006 05 06 Retrieved 2012 05 08 Ougolkov A Zhang B Yamashita K Bilim V Mai M Fuchs SY Minamoto T August 2004 Associations among beta TrCP an E3 ubiquitin ligase receptor beta catenin and NF kappaB in colorectal cancer Journal of the National Cancer Institute 96 15 1161 70 doi 10 1093 jnci djh219 PMID 15292388 Muerkoster S Arlt A Sipos B Witt M Grossmann M Kloppel G Kalthoff H Folsch UR Schafer H February 2005 Increased expression of the E3 ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor kappaB activation and chemoresistance in pancreatic carcinoma cells Cancer Research 65 4 1316 24 doi 10 1158 0008 5472 CAN 04 1626 PMID 15735017 Koch A Waha A Hartmann W Hrychyk A Schuller U Waha A Wharton KA Fuchs SY von Schweinitz D Pietsch T June 2005 Elevated expression of Wnt antagonists is a common event in hepatoblastomas Clinical Cancer Research 11 12 4295 304 doi 10 1158 1078 0432 CCR 04 1162 PMID 15958610 Spiegelman VS Tang W Chan AM Igarashi M Aaronson SA Sassoon DA Katoh M Slaga TJ Fuchs SY September 2002 Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling The Journal of Biological Chemistry 277 39 36624 30 doi 10 1074 jbc M204524200 PMID 12151397 External links EditHuman BTRC genome location and BTRC gene details page in the UCSC Genome Browser Further reading EditWestbrook TF Hu G Ang XL Mulligan P Pavlova NN Liang A Leng Y Maehr R Shi Y Harper JW Elledge SJ March 2008 SCFbeta TRCP controls oncogenic transformation and neural differentiation through REST degradation Nature 452 7185 370 4 Bibcode 2008Natur 452 370W doi 10 1038 nature06780 PMC 2688689 PMID 18354483 Maniatis T March 1999 A ubiquitin ligase complex essential for the NF kappaB Wnt Wingless and Hedgehog signaling pathways Genes amp Development 13 5 505 10 doi 10 1101 gad 13 5 505 PMID 10072378 Li L Li HS Pauza CD Bukrinsky M Zhao RY 2006 Roles of HIV 1 auxiliary proteins in viral pathogenesis and host pathogen interactions Cell Research 15 11 12 923 34 doi 10 1038 sj cr 7290370 PMID 16354571 Bonaldo MF Lennon G Soares MB September 1996 Normalization and subtraction two approaches to facilitate gene discovery Genome Research 6 9 791 806 doi 10 1101 gr 6 9 791 PMID 8889548 Yaron A Hatzubai A Davis M Lavon I Amit S Manning AM Andersen JS Mann M Mercurio F Ben Neriah Y December 1998 Identification of the receptor component of the IkappaBalpha ubiquitin ligase Nature 396 6711 590 4 Bibcode 1998Natur 396 590Y doi 10 1038 25159 PMID 9859996 S2CID 4408963 Winston JT Strack P Beer Romero P Chu CY Elledge SJ Harper JW February 1999 The SCFbeta TRCP ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta catenin and stimulates IkappaBalpha ubiquitination in vitro Genes amp Development 13 3 270 83 doi 10 1101 gad 13 3 270 PMC 316433 PMID 9990852 Spencer E Jiang J Chen ZJ February 1999 Signal induced ubiquitination of IkappaBalpha by the F box protein Slimb beta TrCP Genes amp Development 13 3 284 94 doi 10 1101 gad 13 3 284 PMC 316434 PMID 9990853 Kitagawa M Hatakeyama S Shirane M Matsumoto M Ishida N Hattori K Nakamichi I Kikuchi A Nakayama K Nakayama K May 1999 An F box protein FWD1 mediates ubiquitin dependent proteolysis of beta catenin The EMBO Journal 18 9 2401 10 doi 10 1093 emboj 18 9 2401 PMC 1171323 PMID 10228155 Wu C Ghosh S October 1999 beta TrCP mediates the signal induced ubiquitination of IkappaBbeta The Journal of Biological Chemistry 274 42 29591 4 doi 10 1074 jbc 274 42 29591 PMID 10514424 Cenciarelli C Chiaur DS Guardavaccaro D Parks W Vidal M Pagano M October 1999 Identification of a family of human F box proteins Current Biology 9 20 1177 9 doi 10 1016 S0960 9822 00 80020 2 PMID 10531035 S2CID 7467493 Stone DM Murone M Luoh S Ye W Armanini MP Gurney A Phillips H Brush J Goddard A de Sauvage FJ Rosenthal A December 1999 Characterization of the human suppressor of fused a negative regulator of the zinc finger transcription factor Gli Journal of Cell Science 112 112 Pt 23 23 4437 48 doi 10 1242 jcs 112 23 4437 PMID 10564661 Suzuki H Chiba T Suzuki T Fujita T Ikenoue T Omata M Furuichi K Shikama H Tanaka K January 2000 Homodimer of two F box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal dependent ubiquitination The Journal of Biological Chemistry 275 4 2877 84 doi 10 1074 jbc 275 4 2877 PMID 10644755 Read MA Brownell JE Gladysheva TB Hottelet M Parent LA Coggins MB Pierce JW Podust VN Luo RS Chau V Palombella VJ April 2000 Nedd8 modification of cul 1 activates SCF beta TrCP dependent ubiquitination of IkappaBalpha Molecular and Cellular Biology 20 7 2326 33 doi 10 1128 MCB 20 7 2326 2333 2000 PMC 85397 PMID 10713156 Sadot E Simcha I Iwai K Ciechanover A Geiger B Ben Ze ev A April 2000 Differential interaction of plakoglobin and beta catenin with the ubiquitin proteasome system Oncogene 19 16 1992 2001 doi 10 1038 sj onc 1203519 PMID 10803460 Chiaur DS Murthy S Cenciarelli C Parks W Loda M Inghirami G Demetrick D Pagano M 2000 Five human genes encoding F box proteins chromosome mapping and analysis in human tumors Cytogenetics and Cell Genetics 88 3 4 255 8 doi 10 1159 000015532 PMID 10828603 S2CID 431704 Orian A Gonen H Bercovich B Fajerman I Eytan E Israel A Mercurio F Iwai K Schwartz AL Ciechanover A June 2000 SCF beta TrCP ubiquitin ligase mediated processing of NF kappaB p105 requires phosphorylation of its C terminus by IkappaB kinase The EMBO Journal 19 11 2580 91 doi 10 1093 emboj 19 11 2580 PMC 212749 PMID 10835356 Strack P Caligiuri M Pelletier M Boisclair M Theodoras A Beer Romero P Glass S Parsons T Copeland RA Auger KR Benfield P Brizuela L Rolfe M July 2000 SCF beta TRCP and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4 Oncogene 19 31 3529 36 doi 10 1038 sj onc 1203647 PMID 10918611 Kleijnen MF Shih AH Zhou P Kumar S Soccio RE Kedersha NL Gill G Howley PM August 2000 The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome Molecular Cell 6 2 409 19 doi 10 1016 S1097 2765 00 00040 X PMID 10983987 Retrieved from https en wikipedia org w index php title BTRC gene amp oldid 1126160727, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.