fbpx
Wikipedia

Ax–Kochen theorem

The Ax–Kochen theorem, named for James Ax and Simon B. Kochen, states that for each positive integer d there is a finite set Yd of prime numbers, such that if p is any prime not in Yd then every homogeneous polynomial of degree d over the p-adic numbers in at least d2 + 1 variables has a nontrivial zero.[1]

The proof of the theorem

The proof of the theorem makes extensive use of methods from mathematical logic, such as model theory.

One first proves Serge Lang's theorem, stating that the analogous theorem is true for the field Fp((t)) of formal Laurent series over a finite field Fp with  . In other words, every homogeneous polynomial of degree d with more than d2 variables has a non-trivial zero (so Fp((t)) is a C2 field).

Then one shows that if two Henselian valued fields have equivalent valuation groups and residue fields, and the residue fields have characteristic 0, then they are elementarily equivalent (which means that a first order sentence is true for one if and only if it is true for the other).

Next one applies this to two fields, one given by an ultraproduct over all primes of the fields Fp((t)) and the other given by an ultraproduct over all primes of the p-adic fields Qp. Both residue fields are given by an ultraproduct over the fields Fp, so are isomorphic and have characteristic 0, and both value groups are the same, so the ultraproducts are elementarily equivalent. (Taking ultraproducts is used to force the residue field to have characteristic 0; the residue fields of Fp((t)) and Qp both have non-zero characteristic p.)

The elementary equivalence of these ultraproducts implies that for any sentence in the language of valued fields, there is a finite set Y of exceptional primes, such that for any p not in this set the sentence is true for Fp((t)) if and only if it is true for the field of p-adic numbers. Applying this to the sentence stating that every non-constant homogeneous polynomial of degree d in at least d2+1 variables represents 0, and using Lang's theorem, one gets the Ax–Kochen theorem.

Alternative proof

Jan Denef found a purely geometric proof for a conjecture of Jean-Louis Colliot-Thélène which generalizes the Ax–Kochen theorem.[2][3]

Exceptional primes

Emil Artin conjectured this theorem with the finite exceptional set Yd being empty (that is, that all p-adic fields are C2), but Guy Terjanian[4] found the following 2-adic counterexample for d = 4. Define

 

Then G has the property that it is 1 mod 4 if some x is odd, and 0 mod 16 otherwise. It follows easily from this that the homogeneous form

G(x) + G(y) + G(z) + 4G(u) + 4G(v) + 4G(w)

of degree d = 4 in 18 > d2 variables has no non-trivial zeros over the 2-adic integers.

Later Terjanian[5] showed that for each prime p and multiple d > 2 of p(p − 1), there is a form over the p-adic numbers of degree d with more than d2 variables but no nontrivial zeros. In other words, for all d > 2, Yd contains all primes p such that p(p − 1) divides d.

Brown (1978) gave an explicit but very large bound for the exceptional set of primes p. If the degree d is 1, 2, or 3 the exceptional set is empty. Heath-Brown (2010) showed that if d = 5 the exceptional set is bounded by 13, and Wooley (2008) showed that for d = 7 the exceptional set is bounded by 883 and for d = 11 it is bounded by 8053.

See also

Notes

  1. ^ James Ax and Simon Kochen, Diophantine problems over local fields I., American Journal of Mathematics, 87, pages 605–630, (1965)
  2. ^ Denef, Jan. (PDF). Archived from the original (PDF) on 11 April 2017.
  3. ^ Denef, Jan (2016), Geometric proofs of theorems of Ax–Kochen and Ersov, arXiv:1601.03607, Bibcode:2016arXiv160103607D
  4. ^ Terjanian, Guy (1966). "Un contre-example à une conjecture d'Artin". Comptes Rendus de l'Académie des Sciences, Série A-B (in French). 262: A612. Zbl 0133.29705.
  5. ^ Guy Terjanian, Formes p-adiques anisotropes. (French) Journal für die Reine und Angewandte Mathematik, 313 (1980), pages 217–220

References

kochen, theorem, named, james, simon, kochen, states, that, each, positive, integer, there, finite, prime, numbers, such, that, prime, then, every, homogeneous, polynomial, degree, over, adic, numbers, least, variables, nontrivial, zero, contents, proof, theor. The Ax Kochen theorem named for James Ax and Simon B Kochen states that for each positive integer d there is a finite set Yd of prime numbers such that if p is any prime not in Yd then every homogeneous polynomial of degree d over the p adic numbers in at least d2 1 variables has a nontrivial zero 1 Contents 1 The proof of the theorem 2 Alternative proof 3 Exceptional primes 4 See also 5 Notes 6 ReferencesThe proof of the theorem EditThe proof of the theorem makes extensive use of methods from mathematical logic such as model theory One first proves Serge Lang s theorem stating that the analogous theorem is true for the field Fp t of formal Laurent series over a finite field Fp with Y d displaystyle Y d varnothing In other words every homogeneous polynomial of degree d with more than d2 variables has a non trivial zero so Fp t is a C2 field Then one shows that if two Henselian valued fields have equivalent valuation groups and residue fields and the residue fields have characteristic 0 then they are elementarily equivalent which means that a first order sentence is true for one if and only if it is true for the other Next one applies this to two fields one given by an ultraproduct over all primes of the fields Fp t and the other given by an ultraproduct over all primes of the p adic fields Qp Both residue fields are given by an ultraproduct over the fields Fp so are isomorphic and have characteristic 0 and both value groups are the same so the ultraproducts are elementarily equivalent Taking ultraproducts is used to force the residue field to have characteristic 0 the residue fields of Fp t and Qp both have non zero characteristic p The elementary equivalence of these ultraproducts implies that for any sentence in the language of valued fields there is a finite set Y of exceptional primes such that for any p not in this set the sentence is true for Fp t if and only if it is true for the field of p adic numbers Applying this to the sentence stating that every non constant homogeneous polynomial of degree d in at least d2 1 variables represents 0 and using Lang s theorem one gets the Ax Kochen theorem Alternative proof EditJan Denef found a purely geometric proof for a conjecture of Jean Louis Colliot Thelene which generalizes the Ax Kochen theorem 2 3 Exceptional primes EditEmil Artin conjectured this theorem with the finite exceptional set Yd being empty that is that all p adic fields are C2 but Guy Terjanian 4 found the following 2 adic counterexample for d 4 Define G x G x 1 x 2 x 3 x i 4 i lt j x i 2 x j 2 x 1 x 2 x 3 x 1 x 2 x 3 displaystyle G x G x 1 x 2 x 3 sum x i 4 sum i lt j x i 2 x j 2 x 1 x 2 x 3 x 1 x 2 x 3 Then G has the property that it is 1 mod 4 if some x is odd and 0 mod 16 otherwise It follows easily from this that the homogeneous form G x G y G z 4G u 4G v 4G w of degree d 4 in 18 gt d2 variables has no non trivial zeros over the 2 adic integers Later Terjanian 5 showed that for each prime p and multiple d gt 2 of p p 1 there is a form over the p adic numbers of degree d with more than d2 variables but no nontrivial zeros In other words for all d gt 2 Yd contains all primes p such that p p 1 divides d Brown 1978 gave an explicit but very large bound for the exceptional set of primes p If the degree d is 1 2 or 3 the exceptional set is empty Heath Brown 2010 showed that if d 5 the exceptional set is bounded by 13 and Wooley 2008 showed that for d 7 the exceptional set is bounded by 883 and for d 11 it is bounded by 8053 See also EditBrauer s theorem on forms Quasi algebraic closureNotes Edit James Ax and Simon Kochen Diophantine problems over local fields I American Journal of Mathematics 87 pages 605 630 1965 Denef Jan Proof of a conjecture of Colliot Thelene PDF Archived from the original PDF on 11 April 2017 Denef Jan 2016 Geometric proofs of theorems of Ax Kochen and Ersov arXiv 1601 03607 Bibcode 2016arXiv160103607D Terjanian Guy 1966 Un contre example a une conjecture d Artin Comptes Rendus de l Academie des Sciences Serie A B in French 262 A612 Zbl 0133 29705 Guy Terjanian Formesp adiques anisotropes French Journal fur die Reine und Angewandte Mathematik 313 1980 pages 217 220References EditBrown Scott Shorey 1978 Bounds on transfer principles for algebraically closed and complete discretely valued fields Memoirs of the American Mathematical Society 15 204 doi 10 1090 memo 0204 ISBN 978 0 8218 2204 3 ISSN 0065 9266 MR 0494980 Chang C C Keisler H Jerome 1989 Model Theory third ed Elsevier ISBN 978 0 7204 0692 4 Corollary 5 4 19 Heath Brown D R 2010 Zeros of p adic forms Proceedings of the London Mathematical Society Third Series 100 2 560 584 arXiv 0805 0534 doi 10 1112 plms pdp043 ISSN 0024 6115 MR 2595750 Wooley Trevor D 2008 Artin s conjecture for septic and unidecic forms Acta Arithmetica 133 1 25 35 Bibcode 2008AcAri 133 25W doi 10 4064 aa133 1 2 ISSN 0065 1036 MR 2413363 Retrieved from https en wikipedia org w index php title Ax Kochen theorem amp oldid 1082356357, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.