fbpx
Wikipedia

Ample line bundle

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor.

In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bundle on a complete variety X is very ample if it has enough sections to give a closed immersion (or "embedding") of X into projective space. A line bundle is ample if some positive power is very ample.

An ample line bundle on a projective variety X has positive degree on every curve in X. The converse is not quite true, but there are corrected versions of the converse, the Nakai–Moishezon and Kleiman criteria for ampleness.

Introduction edit

Pullback of a line bundle and hyperplane divisors edit

Given a morphism   of schemes, a vector bundle E on Y (or more generally a coherent sheaf on Y) has a pullback to X,   (see Sheaf of modules#Operations). The pullback of a vector bundle is a vector bundle of the same rank. In particular, the pullback of a line bundle is a line bundle. (Briefly, the fiber of   at a point x in X is the fiber of E at f(x).)

The notions described in this article are related to this construction in the case of a morphism to projective space

 

with E = O(1) the line bundle on projective space whose global sections are the homogeneous polynomials of degree 1 (that is, linear functions) in variables  . The line bundle O(1) can also be described as the line bundle associated to a hyperplane in   (because the zero set of a section of O(1) is a hyperplane). If f is a closed immersion, for example, it follows that the pullback   is the line bundle on X associated to a hyperplane section (the intersection of X with a hyperplane in  ).

Basepoint-free line bundles edit

Let X be a scheme over a field k (for example, an algebraic variety) with a line bundle L. (A line bundle may also be called an invertible sheaf.) Let   be elements of the k-vector space   of global sections of L. The zero set of each section is a closed subset of X; let U be the open subset of points at which at least one of   is not zero. Then these sections define a morphism

 

In more detail: for each point x of U, the fiber of L over x is a 1-dimensional vector space over the residue field k(x). Choosing a basis for this fiber makes   into a sequence of n+1 numbers, not all zero, and hence a point in projective space. Changing the choice of basis scales all the numbers by the same nonzero constant, and so the point in projective space is independent of the choice.

Moreover, this morphism has the property that the restriction of L to U is isomorphic to the pullback  .[1]

The base locus of a line bundle L on a scheme X is the intersection of the zero sets of all global sections of L. A line bundle L is called basepoint-free if its base locus is empty. That is, for every point x of X there is a global section of L which is nonzero at x. If X is proper over a field k, then the vector space   of global sections has finite dimension; the dimension is called  .[2] So a basepoint-free line bundle L determines a morphism   over k, where  , given by choosing a basis for  . Without making a choice, this can be described as the morphism

 

from X to the space of hyperplanes in  , canonically associated to the basepoint-free line bundle L. This morphism has the property that L is the pullback  .

Conversely, for any morphism f from a scheme X to projective space   over k, the pullback line bundle   is basepoint-free. Indeed, O(1) is basepoint-free on  , because for every point y in   there is a hyperplane not containing y. Therefore, for every point x in X, there is a section s of O(1) over   that is not zero at f(x), and the pullback of s is a global section of   that is not zero at x. In short, basepoint-free line bundles are exactly those that can be expressed as the pullback of O(1) by some morphism to projective space.

Nef, globally generated, semi-ample edit

The degree of a line bundle L on a proper curve C over k is defined as the degree of the divisor (s) of any nonzero rational section s of L. The coefficients of this divisor are positive at points where s vanishes and negative where s has a pole. Therefore, any line bundle L on a curve C such that   has nonnegative degree (because sections of L over C, as opposed to rational sections, have no poles).[3] In particular, every basepoint-free line bundle on a curve has nonnegative degree. As a result, a basepoint-free line bundle L on any proper scheme X over a field is nef, meaning that L has nonnegative degree on every (irreducible) curve in X.[4]

More generally, a sheaf F of  -modules on a scheme X is said to be globally generated if there is a set I of global sections   such that the corresponding morphism

 

of sheaves is surjective.[5] A line bundle is globally generated if and only if it is basepoint-free.

For example, every quasi-coherent sheaf on an affine scheme is globally generated.[6] Analogously, in complex geometry, Cartan's theorem A says that every coherent sheaf on a Stein manifold is globally generated.

A line bundle L on a proper scheme over a field is semi-ample if there is a positive integer r such that the tensor power   is basepoint-free. A semi-ample line bundle is nef (by the corresponding fact for basepoint-free line bundles).[7]

Very ample line bundles edit

A line bundle L on a proper scheme X over a field k is said to be very ample if it is basepoint-free and the associated morphism

 

is a closed immersion. Here  . Equivalently, L is very ample if X can be embedded into projective space of some dimension over k in such a way that L is the restriction of the line bundle O(1) to X.[8] The latter definition is used to define very ampleness for a line bundle on a proper scheme over any commutative ring.[9]

The name "very ample" was introduced by Alexander Grothendieck in 1961.[10] Various names had been used earlier in the context of linear systems of divisors.

For a very ample line bundle L on a proper scheme X over a field with associated morphism f, the degree of L on a curve C in X is the degree of f(C) as a curve in  . So L has positive degree on every curve in X (because every subvariety of projective space has positive degree).[11]

Definitions edit

Ample invertible sheaves on quasi-compact schemes edit

Ample line bundles are used most often on proper schemes, but they can be defined in much wider generality.

Let X be a scheme, and let   be an invertible sheaf on X. For each  , let   denote the ideal sheaf of the reduced subscheme supported only at x. For  , define

 
Equivalently, if   denotes the residue field at x (considered as a skyscraper sheaf supported at x), then
 
where   is the image of s in the tensor product.

Fix  . For every s, the restriction   is a free  -module trivialized by the restriction of s, meaning the multiplication-by-s morphism   is an isomorphism. The set   is always open, and the inclusion morphism   is an affine morphism. Despite this,   need not be an affine scheme. For example, if  , then   is open in itself and affine over itself but generally not affine.

Assume X is quasi-compact. Then   is ample if, for every  , there exists an   and an   such that   and   is an affine scheme.[12] For example, the trivial line bundle   is ample if and only if X is quasi-affine.[13]

In general, it is not true that every   is affine. For example, if   for some point O, and if   is the restriction of   to X, then   and   have the same global sections, and the non-vanishing locus of a section of   is affine if and only if the corresponding section of   contains O.

It is necessary to allow powers of   in the definition. In fact, for every N, it is possible that   is non-affine for every   with  . Indeed, suppose Z is a finite set of points in  ,  , and  . The vanishing loci of the sections of   are plane curves of degree N. By taking Z to be a sufficiently large set of points in general position, we may ensure that no plane curve of degree N (and hence any lower degree) contains all the points of Z. In particular their non-vanishing loci are all non-affine.

Define  . Let   denote the structural morphism. There is a natural isomorphism between  -algebra homomorphisms   and endomorphisms of the graded ring S. The identity endomorphism of S corresponds to a homomorphism  . Applying the   functor produces a morphism from an open subscheme of X, denoted  , to  .

The basic characterization of ample invertible sheaves states that if X is a quasi-compact quasi-separated scheme and   is an invertible sheaf on X, then the following assertions are equivalent:[14]

  1.   is ample.
  2. The open sets  , where   and  , form a basis for the topology of X.
  3. The open sets   with the property of being affine, where   and  , form a basis for the topology of X.
  4.   and the morphism   is a dominant open immersion.
  5.   and the morphism   is a homeomorphism of the underlying topological space of X with its image.
  6. For every quasi-coherent sheaf   on X, the canonical map   is surjective.
  7. For every quasi-coherent sheaf of ideals   on X, the canonical map   is surjective.
  8. For every quasi-coherent sheaf of ideals   on X, the canonical map   is surjective.
  9. For every quasi-coherent sheaf   of finite type on X, there exists an integer   such that for  ,   is generated by its global sections.
  10. For every quasi-coherent sheaf   of finite type on X, there exists integers   and   such that   is isomorphic to a quotient of  .
  11. For every quasi-coherent sheaf of ideals   of finite type on X, there exists integers   and   such that   is isomorphic to a quotient of  .

On proper schemes edit

When X is separated and finite type over an affine scheme, an invertible sheaf   is ample if and only if there exists a positive integer r such that the tensor power   is very ample.[15][16] In particular, a proper scheme over R has an ample line bundle if and only if it is projective over R. Often, this characterization is taken as the definition of ampleness.

The rest of this article will concentrate on ampleness on proper schemes over a field, as this is the most important case. An ample line bundle on a proper scheme X over a field has positive degree on every curve in X, by the corresponding statement for very ample line bundles.

A Cartier divisor D on a proper scheme X over a field k is said to be ample if the corresponding line bundle O(D) is ample. (For example, if X is smooth over k, then a Cartier divisor can be identified with a finite linear combination of closed codimension-1 subvarieties of X with integer coefficients.)

Weakening the notion of "very ample" to "ample" gives a flexible concept with a wide variety of different characterizations. A first point is that tensoring high powers of an ample line bundle with any coherent sheaf whatsoever gives a sheaf with many global sections. More precisely, a line bundle L on a proper scheme X over a field (or more generally over a Noetherian ring) is ample if and only if for every coherent sheaf F on X, there is an integer s such that the sheaf   is globally generated for all  . Here s may depend on F.[17][18]

Another characterization of ampleness, known as the CartanSerreGrothendieck theorem, is in terms of coherent sheaf cohomology. Namely, a line bundle L on a proper scheme X over a field (or more generally over a Noetherian ring) is ample if and only if for every coherent sheaf F on X, there is an integer s such that

 

for all   and all  .[19][18] In particular, high powers of an ample line bundle kill cohomology in positive degrees. This implication is called the Serre vanishing theorem, proved by Jean-Pierre Serre in his 1955 paper Faisceaux algébriques cohérents.

Examples/Non-examples edit

  • The trivial line bundle   on a projective variety X of positive dimension is basepoint-free but not ample. More generally, for any morphism f from a projective variety X to some projective space   over a field, the pullback line bundle   is always basepoint-free, whereas L is ample if and only if the morphism f is finite (that is, all fibers of f have dimension 0 or are empty).[20]
  • For an integer d, the space of sections of the line bundle O(d) over   is the complex vector space of homogeneous polynomials of degree d in variables x,y. In particular, this space is zero for d < 0. For  , the morphism to projective space given by O(d) is
 
by
 
This is a closed immersion for  , with image a rational normal curve of degree d in  . Therefore, O(d) is basepoint-free if and only if  , and very ample if and only if  . It follows that O(d) is ample if and only if  .
  • For an example where "ample" and "very ample" are different, let X be a smooth projective curve of genus 1 (an elliptic curve) over C, and let p be a complex point of X. Let O(p) be the associated line bundle of degree 1 on X. Then the complex vector space of global sections of O(p) has dimension 1, spanned by a section that vanishes at p.[21] So the base locus of O(p) is equal to p. On the other hand, O(2p) is basepoint-free, and O(dp) is very ample for   (giving an embedding of X as an elliptic curve of degree d in  ). Therefore, O(p) is ample but not very ample. Also, O(2p) is ample and basepoint-free but not very ample; the associated morphism to projective space is a ramified double cover  .
  • On curves of higher genus, there are ample line bundles L for which every global section is zero. (But high multiples of L have many sections, by definition.) For example, let X be a smooth plane quartic curve (of degree 4 in  ) over C, and let p and q be distinct complex points of X. Then the line bundle   is ample but has  .[22]

Criteria for ampleness of line bundles edit

Intersection theory edit

To determine whether a given line bundle on a projective variety X is ample, the following numerical criteria (in terms of intersection numbers) are often the most useful. It is equivalent to ask when a Cartier divisor D on X is ample, meaning that the associated line bundle O(D) is ample. The intersection number   can be defined as the degree of the line bundle O(D) restricted to C. In the other direction, for a line bundle L on a projective variety, the first Chern class   means the associated Cartier divisor (defined up to linear equivalence), the divisor of any nonzero rational section of L.

On a smooth projective curve X over an algebraically closed field k, a line bundle L is very ample if and only if   for all k-rational points x,y in X.[23] Let g be the genus of X. By the Riemann–Roch theorem, every line bundle of degree at least 2g + 1 satisfies this condition and hence is very ample. As a result, a line bundle on a curve is ample if and only if it has positive degree.[24]

For example, the canonical bundle   of a curve X has degree 2g − 2, and so it is ample if and only if  . The curves with ample canonical bundle form an important class; for example, over the complex numbers, these are the curves with a metric of negative curvature. The canonical bundle is very ample if and only if   and the curve is not hyperelliptic.[25]

The Nakai–Moishezon criterion (named for Yoshikazu Nakai (1963) and Boris Moishezon (1964)) states that a line bundle L on a proper scheme X over a field is ample if and only if   for every (irreducible) closed subvariety Y of X (Y is not allowed to be a point).[26] In terms of divisors, a Cartier divisor D is ample if and only if   for every (nonzero-dimensional) subvariety Y of X. For X a curve, this says that a divisor is ample if and only if it has positive degree. For X a surface, the criterion says that a divisor D is ample if and only if its self-intersection number   is positive and every curve C on X has  .

Kleiman's criterion edit

To state Kleiman's criterion (1966), let X be a projective scheme over a field. Let   be the real vector space of 1-cycles (real linear combinations of curves in X) modulo numerical equivalence, meaning that two 1-cycles A and B are equal in   if and only if every line bundle has the same degree on A and on B. By the Néron–Severi theorem, the real vector space   has finite dimension. Kleiman's criterion states that a line bundle L on X is ample if and only if L has positive degree on every nonzero element C of the closure of the cone of curves NE(X) in  . (This is slightly stronger than saying that L has positive degree on every curve.) Equivalently, a line bundle is ample if and only if its class in the dual vector space   is in the interior of the nef cone.[27]

Kleiman's criterion fails in general for proper (rather than projective) schemes X over a field, although it holds if X is smooth or more generally Q-factorial.[28]

A line bundle on a projective variety is called strictly nef if it has positive degree on every curve Nagata (1959). and David Mumford constructed line bundles on smooth projective surfaces that are strictly nef but not ample. This shows that the condition   cannot be omitted in the Nakai–Moishezon criterion, and it is necessary to use the closure of NE(X) rather than NE(X) in Kleiman's criterion.[29] Every nef line bundle on a surface has  , and Nagata and Mumford's examples have  .

C. S. Seshadri showed that a line bundle L on a proper scheme over an algebraically closed field is ample if and only if there is a positive real number ε such that deg(L|C) ≥ εm(C) for all (irreducible) curves C in X, where m(C) is the maximum of the multiplicities at the points of C.[30]

Several characterizations of ampleness hold more generally for line bundles on a proper algebraic space over a field k. In particular, the Nakai-Moishezon criterion is valid in that generality.[31] The Cartan-Serre-Grothendieck criterion holds even more generally, for a proper algebraic space over a Noetherian ring R.[32] (If a proper algebraic space over R has an ample line bundle, then it is in fact a projective scheme over R.) Kleiman's criterion fails for proper algebraic spaces X over a field, even if X is smooth.[33]

Openness of ampleness edit

On a projective scheme X over a field, Kleiman's criterion implies that ampleness is an open condition on the class of an R-divisor (an R-linear combination of Cartier divisors) in  , with its topology based on the topology of the real numbers. (An R-divisor is defined to be ample if it can be written as a positive linear combination of ample Cartier divisors.[34]) An elementary special case is: for an ample divisor H and any divisor E, there is a positive real number b such that   is ample for all real numbers a of absolute value less than b. In terms of divisors with integer coefficients (or line bundles), this means that nH + E is ample for all sufficiently large positive integers n.

Ampleness is also an open condition in a quite different sense, when the variety or line bundle is varied in an algebraic family. Namely, let   be a proper morphism of schemes, and let L be a line bundle on X. Then the set of points y in Y such that L is ample on the fiber   is open (in the Zariski topology). More strongly, if L is ample on one fiber  , then there is an affine open neighborhood U of y such that L is ample on   over U.[35]

Kleiman's other characterizations of ampleness edit

Kleiman also proved the following characterizations of ampleness, which can be viewed as intermediate steps between the definition of ampleness and numerical criteria. Namely, for a line bundle L on a proper scheme X over a field, the following are equivalent:[36]

  • L is ample.
  • For every (irreducible) subvariety   of positive dimension, there is a positive integer r and a section   which is not identically zero but vanishes at some point of Y.
  • For every (irreducible) subvariety   of positive dimension, the holomorphic Euler characteristics of powers of L on Y go to infinity:
  as  .

Generalizations edit

Ample vector bundles edit

Robin Hartshorne defined a vector bundle F on a projective scheme X over a field to be ample if the line bundle   on the space   of hyperplanes in F is ample.[37]

Several properties of ample line bundles extend to ample vector bundles. For example, a vector bundle F is ample if and only if high symmetric powers of F kill the cohomology   of coherent sheaves for all  .[38] Also, the Chern class   of an ample vector bundle has positive degree on every r-dimensional subvariety of X, for  .[39]

Big line bundles edit

A useful weakening of ampleness, notably in birational geometry, is the notion of a big line bundle. A line bundle L on a projective variety X of dimension n over a field is said to be big if there is a positive real number a and a positive integer   such that   for all  . This is the maximum possible growth rate for the spaces of sections of powers of L, in the sense that for every line bundle L on X there is a positive number b with   for all j > 0.[40]

There are several other characterizations of big line bundles. First, a line bundle is big if and only if there is a positive integer r such that the rational map from X to   given by the sections of   is birational onto its image.[41] Also, a line bundle L is big if and only if it has a positive tensor power which is the tensor product of an ample line bundle A and an effective line bundle B (meaning that  ).[42] Finally, a line bundle is big if and only if its class in   is in the interior of the cone of effective divisors.[43]

Bigness can be viewed as a birationally invariant analog of ampleness. For example, if   is a dominant rational map between smooth projective varieties of the same dimension, then the pullback of a big line bundle on Y is big on X. (At first sight, the pullback is only a line bundle on the open subset of X where f is a morphism, but this extends uniquely to a line bundle on all of X.) For ample line bundles, one can only say that the pullback of an ample line bundle by a finite morphism is ample.[20]

Example: Let X be the blow-up of the projective plane   at a point over the complex numbers. Let H be the pullback to X of a line on  , and let E be the exceptional curve of the blow-up  . Then the divisor H + E is big but not ample (or even nef) on X, because

 

This negativity also implies that the base locus of H + E (or of any positive multiple) contains the curve E. In fact, this base locus is equal to E.

Relative ampleness edit

Given a quasi-compact morphism of schemes  , an invertible sheaf L on X is said to be ample relative to f or f-ample if the following equivalent conditions are met:[44][45]

  1. For each open affine subset  , the restriction of L to   is ample (in the usual sense).
  2. f is quasi-separated and there is an open immersion   induced by the adjunction map:
     .
  3. The condition 2. without "open".

The condition 2 says (roughly) that X can be openly compactified to a projective scheme with   (not just to a proper scheme).

See also edit

General algebraic geometry edit

Ampleness in complex geometry edit

Notes edit

  1. ^ Hartshorne (1977), Theorem II.7.1.
  2. ^ Hartshorne (1977), Theorem III.5.2; (tag 02O6).
  3. ^ Hartshorne (1977), Lemma IV.1.2.
  4. ^ Lazarsfeld (2004), Example 1.4.5.
  5. ^ tag 01AM.
  6. ^ Hartshorne (1977), Example II.5.16.2.
  7. ^ Lazarsfeld (2004), Definition 2.1.26.
  8. ^ Hartshorne (1977), section II.5.
  9. ^ tag 02NP.
  10. ^ Grothendieck, EGA II, Definition 4.2.2.
  11. ^ Hartshorne (1977), Proposition I.7.6 and Example IV.3.3.2.
  12. ^ tag 01PS.
  13. ^ tag 01QE.
  14. ^ EGA II, Théorème 4.5.2 and Proposition 4.5.5.
  15. ^ EGA II, Proposition 4.5.10.
  16. ^ tag 01VU.
  17. ^ Hartshorne (1977), Theorem II.7.6
  18. ^ a b Lazarsfeld (2004), Theorem 1.2.6.
  19. ^ Hartshorne (1977), Proposition III.5.3
  20. ^ a b Lazarsfeld (2004), Theorem 1.2.13.
  21. ^ Hartshorne (1977), Example II.7.6.3.
  22. ^ Hartshorne (1977), Exercise IV.3.2(b).
  23. ^ Hartshorne (1977), Proposition IV.3.1.
  24. ^ Hartshorne (1977), Corollary IV.3.3.
  25. ^ Hartshorne (1977), Proposition IV.5.2.
  26. ^ Lazarsfeld (2004), Theorem 1.2.23, Remark 1.2.29; Kleiman (1966), Theorem III.1.
  27. ^ Lazarsfeld (2004), Theorems 1.4.23 and 1.4.29; Kleiman (1966), Theorem IV.1.
  28. ^ Fujino (2005), Corollary 3.3; Lazarsfeld (2004), Remark 1.4.24.
  29. ^ Lazarsfeld (2004), Example 1.5.2.
  30. ^ Lazarsfeld (2004), Theorem 1.4.13; Hartshorne (1970), Theorem I.7.1.
  31. ^ Kollár (1990), Theorem 3.11.
  32. ^ tag 0D38.
  33. ^ Kollár (1996), Chapter VI, Appendix, Exercise 2.19.3.
  34. ^ Lazarsfeld (2004), Definition 1.3.11.
  35. ^ Lazarsfeld (2004), Theorem 1.2.17 and its proof.
  36. ^ Lazarsfeld (2004), Example 1.2.32; Kleiman (1966), Theorem III.1.
  37. ^ Lazarsfeld (2004), Definition 6.1.1.
  38. ^ Lazarsfeld (2004), Theorem 6.1.10.
  39. ^ Lazarsfeld (2004), Theorem 8.2.2.
  40. ^ Lazarsfeld (2004), Corollary 2.1.38.
  41. ^ Lazarsfeld (2004), section 2.2.A.
  42. ^ Lazarsfeld (2004), Corollary 2.2.7.
  43. ^ Lazarsfeld (2004), Theorem 2.2.26.
  44. ^ tag 01VG.
  45. ^ Grothendieck & Dieudonné 1961, Proposition 4.6.3.

Sources edit

  • Fujino, Osamu (2005), "On the Kleiman-Mori cone", Proceedings of the Japan Academy, Series A, Mathematical Sciences, 81 (5): 80–84, arXiv:math/0501055, Bibcode:2005math......1055F, doi:10.3792/pjaa.81.80, MR 2143547
  • Grothendieck, Alexandre; Dieudonné, Jean (1961). "Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes". Publications Mathématiques de l'IHÉS. 8. doi:10.1007/bf02699291. MR 0217084.
  • Hartshorne, Robin (1970), Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics, vol. 156, Berlin, Heidelberg: Springer-Verlag, doi:10.1007/BFb0067839, ISBN 978-3-540-05184-8, MR 0282977
  • Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Kleiman, Steven L. (1966), "Toward a numerical theory of ampleness", Annals of Mathematics, Second Series, 84 (3): 293–344, doi:10.2307/1970447, ISSN 0003-486X, JSTOR 1970447, MR 0206009
  • Kollár, János (1990), "Projectivity of complete moduli", Journal of Differential Geometry, 32, doi:10.4310/jdg/1214445046, MR 1064874
  • Kollár, János (1996), Rational curves on algebraic varieties, Berlin, Heidelberg: Springer-Verlag, doi:10.1007/978-3-662-03276-3, ISBN 978-3-642-08219-1, MR 1440180
  • Lazarsfeld, Robert (2004), Positivity in algebraic geometry (2 vols.), Berlin: Springer-Verlag, doi:10.1007/978-3-642-18808-4, ISBN 3-540-22533-1, MR 2095471
  • Nagata, Masayoshi (1959), "On the 14th problem of Hilbert", American Journal of Mathematics, 81 (3): 766–772, doi:10.2307/2372927, JSTOR 2372927, MR 0154867
  • "Section 29.37 (01VG): Relatively ample sheaves—The Stacks project".
  • Stacks Project, Tag 01AM.
  • Stacks Project, Tag 01PS.
  • Stacks Project, Tag 01QE.
  • Stacks Project, Tag 01VU.
  • Stacks Project, Tag 02NP.
  • Stacks Project, Tag 02O6
  • Stacks Project, Tag 0D38.

External links edit

  • The Stacks Project

ample, line, bundle, ample, redirects, here, definition, term, ample, wiktionary, entry, ample, ample, redirects, here, company, ample, company, mathematics, distinctive, feature, algebraic, geometry, that, some, line, bundles, projective, variety, considered,. Ample redirects here For a definition of the term ample see the Wiktionary entry ample Ample redirects here For the company see Ample company In mathematics a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered positive while others are negative or a mixture of the two The most important notion of positivity is that of an ample line bundle although there are several related classes of line bundles Roughly speaking positivity properties of a line bundle are related to having many global sections Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space In view of the correspondence between line bundles and divisors built from codimension 1 subvarieties there is an equivalent notion of an ample divisor In more detail a line bundle is called basepoint free if it has enough sections to give a morphism to projective space A line bundle is semi ample if some positive power of it is basepoint free semi ampleness is a kind of nonnegativity More strongly a line bundle on a complete variety X is very ample if it has enough sections to give a closed immersion or embedding of X into projective space A line bundle is ample if some positive power is very ample An ample line bundle on a projective variety X has positive degree on every curve in X The converse is not quite true but there are corrected versions of the converse the Nakai Moishezon and Kleiman criteria for ampleness Contents 1 Introduction 1 1 Pullback of a line bundle and hyperplane divisors 1 2 Basepoint free line bundles 1 3 Nef globally generated semi ample 1 4 Very ample line bundles 2 Definitions 2 1 Ample invertible sheaves on quasi compact schemes 2 2 On proper schemes 3 Examples Non examples 4 Criteria for ampleness of line bundles 4 1 Intersection theory 4 2 Kleiman s criterion 4 3 Openness of ampleness 4 4 Kleiman s other characterizations of ampleness 5 Generalizations 5 1 Ample vector bundles 5 2 Big line bundles 6 Relative ampleness 7 See also 7 1 General algebraic geometry 7 2 Ampleness in complex geometry 8 Notes 9 Sources 10 External linksIntroduction editPullback of a line bundle and hyperplane divisors edit Given a morphism f X Y displaystyle f colon X to Y nbsp of schemes a vector bundle E on Y or more generally a coherent sheaf on Y has a pullback to X f E displaystyle f E nbsp see Sheaf of modules Operations The pullback of a vector bundle is a vector bundle of the same rank In particular the pullback of a line bundle is a line bundle Briefly the fiber of f E displaystyle f E nbsp at a point x in X is the fiber of E at f x The notions described in this article are related to this construction in the case of a morphism to projective space f X P n displaystyle f colon X to mathbb P n nbsp with E O 1 the line bundle on projective space whose global sections are the homogeneous polynomials of degree 1 that is linear functions in variables x 0 x n displaystyle x 0 ldots x n nbsp The line bundle O 1 can also be described as the line bundle associated to a hyperplane in P n displaystyle mathbb P n nbsp because the zero set of a section of O 1 is a hyperplane If f is a closed immersion for example it follows that the pullback f O 1 displaystyle f O 1 nbsp is the line bundle on X associated to a hyperplane section the intersection of X with a hyperplane in P n displaystyle mathbb P n nbsp Basepoint free line bundles edit Let X be a scheme over a field k for example an algebraic variety with a line bundle L A line bundle may also be called an invertible sheaf Let a 0 a n displaystyle a 0 a n nbsp be elements of the k vector space H 0 X L displaystyle H 0 X L nbsp of global sections of L The zero set of each section is a closed subset of X let U be the open subset of points at which at least one of a 0 a n displaystyle a 0 ldots a n nbsp is not zero Then these sections define a morphism f U P k n x a 0 x a n x displaystyle f colon U to mathbb P k n x mapsto a 0 x ldots a n x nbsp In more detail for each point x of U the fiber of L over x is a 1 dimensional vector space over the residue field k x Choosing a basis for this fiber makes a 0 x a n x displaystyle a 0 x ldots a n x nbsp into a sequence of n 1 numbers not all zero and hence a point in projective space Changing the choice of basis scales all the numbers by the same nonzero constant and so the point in projective space is independent of the choice Moreover this morphism has the property that the restriction of L to U is isomorphic to the pullback f O 1 displaystyle f O 1 nbsp 1 The base locus of a line bundle L on a scheme X is the intersection of the zero sets of all global sections of L A line bundle L is called basepoint free if its base locus is empty That is for every point x of X there is a global section of L which is nonzero at x If X is proper over a field k then the vector space H 0 X L displaystyle H 0 X L nbsp of global sections has finite dimension the dimension is called h 0 X L displaystyle h 0 X L nbsp 2 So a basepoint free line bundle L determines a morphism f X P n displaystyle f colon X to mathbb P n nbsp over k where n h 0 X L 1 displaystyle n h 0 X L 1 nbsp given by choosing a basis for H 0 X L displaystyle H 0 X L nbsp Without making a choice this can be described as the morphism f X P H 0 X L displaystyle f colon X to mathbb P H 0 X L nbsp from X to the space of hyperplanes in H 0 X L displaystyle H 0 X L nbsp canonically associated to the basepoint free line bundle L This morphism has the property that L is the pullback f O 1 displaystyle f O 1 nbsp Conversely for any morphism f from a scheme X to projective space P n displaystyle mathbb P n nbsp over k the pullback line bundle f O 1 displaystyle f O 1 nbsp is basepoint free Indeed O 1 is basepoint free on P n displaystyle mathbb P n nbsp because for every point y in P n displaystyle mathbb P n nbsp there is a hyperplane not containing y Therefore for every point x in X there is a section s of O 1 over P n displaystyle mathbb P n nbsp that is not zero at f x and the pullback of s is a global section of f O 1 displaystyle f O 1 nbsp that is not zero at x In short basepoint free line bundles are exactly those that can be expressed as the pullback of O 1 by some morphism to projective space Nef globally generated semi ample edit The degree of a line bundle L on a proper curve C over k is defined as the degree of the divisor s of any nonzero rational section s of L The coefficients of this divisor are positive at points where s vanishes and negative where s has a pole Therefore any line bundle L on a curve C such that H 0 C L 0 displaystyle H 0 C L neq 0 nbsp has nonnegative degree because sections of L over C as opposed to rational sections have no poles 3 In particular every basepoint free line bundle on a curve has nonnegative degree As a result a basepoint free line bundle L on any proper scheme X over a field is nef meaning that L has nonnegative degree on every irreducible curve in X 4 More generally a sheaf F of O X displaystyle O X nbsp modules on a scheme X is said to be globally generated if there is a set I of global sections s i H 0 X F displaystyle s i in H 0 X F nbsp such that the corresponding morphism i I O X F displaystyle bigoplus i in I O X to F nbsp of sheaves is surjective 5 A line bundle is globally generated if and only if it is basepoint free For example every quasi coherent sheaf on an affine scheme is globally generated 6 Analogously in complex geometry Cartan s theorem A says that every coherent sheaf on a Stein manifold is globally generated A line bundle L on a proper scheme over a field is semi ample if there is a positive integer r such that the tensor power L r displaystyle L otimes r nbsp is basepoint free A semi ample line bundle is nef by the corresponding fact for basepoint free line bundles 7 Very ample line bundles edit A line bundle L on a proper scheme X over a field k is said to be very ample if it is basepoint free and the associated morphism f X P k n displaystyle f colon X to mathbb P k n nbsp is a closed immersion Here n h 0 X L 1 displaystyle n h 0 X L 1 nbsp Equivalently L is very ample if X can be embedded into projective space of some dimension over k in such a way that L is the restriction of the line bundle O 1 to X 8 The latter definition is used to define very ampleness for a line bundle on a proper scheme over any commutative ring 9 The name very ample was introduced by Alexander Grothendieck in 1961 10 Various names had been used earlier in the context of linear systems of divisors For a very ample line bundle L on a proper scheme X over a field with associated morphism f the degree of L on a curve C in X is the degree of f C as a curve in P n displaystyle mathbb P n nbsp So L has positive degree on every curve in X because every subvariety of projective space has positive degree 11 Definitions editAmple invertible sheaves on quasi compact schemes edit Ample line bundles are used most often on proper schemes but they can be defined in much wider generality Let X be a scheme and let L displaystyle mathcal L nbsp be an invertible sheaf on X For each x X displaystyle x in X nbsp let m x displaystyle mathfrak m x nbsp denote the ideal sheaf of the reduced subscheme supported only at x For s G X L displaystyle s in Gamma X mathcal L nbsp defineX s x X s x m x L x displaystyle X s x in X colon s x not in mathfrak m x mathcal L x nbsp Equivalently if k x displaystyle kappa x nbsp denotes the residue field at x considered as a skyscraper sheaf supported at x then X s x X s x 0 k x L x displaystyle X s x in X colon bar s x neq 0 in kappa x otimes mathcal L x nbsp where s x displaystyle bar s x nbsp is the image of s in the tensor product Fix s G X L displaystyle s in Gamma X mathcal L nbsp For every s the restriction L X s displaystyle mathcal L X s nbsp is a free O X displaystyle mathcal O X nbsp module trivialized by the restriction of s meaning the multiplication by s morphism O X s L X s displaystyle mathcal O X s to mathcal L X s nbsp is an isomorphism The set X s displaystyle X s nbsp is always open and the inclusion morphism X s X displaystyle X s to X nbsp is an affine morphism Despite this X s displaystyle X s nbsp need not be an affine scheme For example if s 1 G X O X displaystyle s 1 in Gamma X mathcal O X nbsp then X s X displaystyle X s X nbsp is open in itself and affine over itself but generally not affine Assume X is quasi compact Then L displaystyle mathcal L nbsp is ample if for every x X displaystyle x in X nbsp there exists an n 1 displaystyle n geq 1 nbsp and an s G X L n displaystyle s in Gamma X mathcal L otimes n nbsp such that x X s displaystyle x in X s nbsp and X s displaystyle X s nbsp is an affine scheme 12 For example the trivial line bundle O X displaystyle mathcal O X nbsp is ample if and only if X is quasi affine 13 In general it is not true that every X s displaystyle X s nbsp is affine For example if X P 2 O displaystyle X mathbf P 2 setminus O nbsp for some point O and if L displaystyle mathcal L nbsp is the restriction of O P 2 1 displaystyle mathcal O mathbf P 2 1 nbsp to X then L displaystyle mathcal L nbsp and O P 2 1 displaystyle mathcal O mathbf P 2 1 nbsp have the same global sections and the non vanishing locus of a section of L displaystyle mathcal L nbsp is affine if and only if the corresponding section of O P 2 1 displaystyle mathcal O mathbf P 2 1 nbsp contains O It is necessary to allow powers of L displaystyle mathcal L nbsp in the definition In fact for every N it is possible that X s displaystyle X s nbsp is non affine for every s G X L n displaystyle s in Gamma X mathcal L otimes n nbsp with n N displaystyle n leq N nbsp Indeed suppose Z is a finite set of points in P 2 displaystyle mathbf P 2 nbsp X P 2 Z displaystyle X mathbf P 2 setminus Z nbsp and L O P 2 1 X displaystyle mathcal L mathcal O mathbf P 2 1 X nbsp The vanishing loci of the sections of L N displaystyle mathcal L otimes N nbsp are plane curves of degree N By taking Z to be a sufficiently large set of points in general position we may ensure that no plane curve of degree N and hence any lower degree contains all the points of Z In particular their non vanishing loci are all non affine Define S n 0 G X L n displaystyle textstyle S bigoplus n geq 0 Gamma X mathcal L otimes n nbsp Let p X Spec Z displaystyle p colon X to operatorname Spec mathbf Z nbsp denote the structural morphism There is a natural isomorphism between O X displaystyle mathcal O X nbsp algebra homomorphisms p S n 0 L n displaystyle textstyle p tilde S to bigoplus n geq 0 mathcal L otimes n nbsp and endomorphisms of the graded ring S The identity endomorphism of S corresponds to a homomorphism e displaystyle varepsilon nbsp Applying the Proj displaystyle operatorname Proj nbsp functor produces a morphism from an open subscheme of X denoted G e displaystyle G varepsilon nbsp to Proj S displaystyle operatorname Proj S nbsp The basic characterization of ample invertible sheaves states that if X is a quasi compact quasi separated scheme and L displaystyle mathcal L nbsp is an invertible sheaf on X then the following assertions are equivalent 14 L displaystyle mathcal L nbsp is ample The open sets X s displaystyle X s nbsp where s G X L n displaystyle s in Gamma X mathcal L otimes n nbsp and n 0 displaystyle n geq 0 nbsp form a basis for the topology of X The open sets X s displaystyle X s nbsp with the property of being affine where s G X L n displaystyle s in Gamma X mathcal L otimes n nbsp and n 0 displaystyle n geq 0 nbsp form a basis for the topology of X G e X displaystyle G varepsilon X nbsp and the morphism G e Proj S displaystyle G varepsilon to operatorname Proj S nbsp is a dominant open immersion G e X displaystyle G varepsilon X nbsp and the morphism G e Proj S displaystyle G varepsilon to operatorname Proj S nbsp is a homeomorphism of the underlying topological space of X with its image For every quasi coherent sheaf F displaystyle mathcal F nbsp on X the canonical map n 0 G X F O X L n Z L n F displaystyle bigoplus n geq 0 Gamma X mathcal F otimes mathcal O X mathcal L otimes n otimes mathbf Z mathcal L otimes n to mathcal F nbsp is surjective For every quasi coherent sheaf of ideals J displaystyle mathcal J nbsp on X the canonical map n 0 G X J O X L n Z L n J displaystyle bigoplus n geq 0 Gamma X mathcal J otimes mathcal O X mathcal L otimes n otimes mathbf Z mathcal L otimes n to mathcal J nbsp is surjective For every quasi coherent sheaf of ideals J displaystyle mathcal J nbsp on X the canonical map n 0 G X J O X L n Z L n J displaystyle bigoplus n geq 0 Gamma X mathcal J otimes mathcal O X mathcal L otimes n otimes mathbf Z mathcal L otimes n to mathcal J nbsp is surjective For every quasi coherent sheaf F displaystyle mathcal F nbsp of finite type on X there exists an integer n 0 displaystyle n 0 nbsp such that for n n 0 displaystyle n geq n 0 nbsp F L n displaystyle mathcal F otimes mathcal L otimes n nbsp is generated by its global sections For every quasi coherent sheaf F displaystyle mathcal F nbsp of finite type on X there exists integers n gt 0 displaystyle n gt 0 nbsp and k gt 0 displaystyle k gt 0 nbsp such that F displaystyle mathcal F nbsp is isomorphic to a quotient of L n O X k displaystyle mathcal L otimes n otimes mathcal O X k nbsp For every quasi coherent sheaf of ideals J displaystyle mathcal J nbsp of finite type on X there exists integers n gt 0 displaystyle n gt 0 nbsp and k gt 0 displaystyle k gt 0 nbsp such that J displaystyle mathcal J nbsp is isomorphic to a quotient of L n O X k displaystyle mathcal L otimes n otimes mathcal O X k nbsp On proper schemes edit When X is separated and finite type over an affine scheme an invertible sheaf L displaystyle mathcal L nbsp is ample if and only if there exists a positive integer r such that the tensor power L r displaystyle mathcal L otimes r nbsp is very ample 15 16 In particular a proper scheme over R has an ample line bundle if and only if it is projective over R Often this characterization is taken as the definition of ampleness The rest of this article will concentrate on ampleness on proper schemes over a field as this is the most important case An ample line bundle on a proper scheme X over a field has positive degree on every curve in X by the corresponding statement for very ample line bundles A Cartier divisor D on a proper scheme X over a field k is said to be ample if the corresponding line bundle O D is ample For example if X is smooth over k then a Cartier divisor can be identified with a finite linear combination of closed codimension 1 subvarieties of X with integer coefficients Weakening the notion of very ample to ample gives a flexible concept with a wide variety of different characterizations A first point is that tensoring high powers of an ample line bundle with any coherent sheaf whatsoever gives a sheaf with many global sections More precisely a line bundle L on a proper scheme X over a field or more generally over a Noetherian ring is ample if and only if for every coherent sheaf F on X there is an integer s such that the sheaf F L r displaystyle F otimes L otimes r nbsp is globally generated for all r s displaystyle r geq s nbsp Here s may depend on F 17 18 Another characterization of ampleness known as the Cartan Serre Grothendieck theorem is in terms of coherent sheaf cohomology Namely a line bundle L on a proper scheme X over a field or more generally over a Noetherian ring is ample if and only if for every coherent sheaf F on X there is an integer s such that H i X F L r 0 displaystyle H i X F otimes L otimes r 0 nbsp for all i gt 0 displaystyle i gt 0 nbsp and all r s displaystyle r geq s nbsp 19 18 In particular high powers of an ample line bundle kill cohomology in positive degrees This implication is called the Serre vanishing theorem proved by Jean Pierre Serre in his 1955 paper Faisceaux algebriques coherents Examples Non examples editThe trivial line bundle O X displaystyle O X nbsp on a projective variety X of positive dimension is basepoint free but not ample More generally for any morphism f from a projective variety X to some projective space P n displaystyle mathbb P n nbsp over a field the pullback line bundle L f O 1 displaystyle L f O 1 nbsp is always basepoint free whereas L is ample if and only if the morphism f is finite that is all fibers of f have dimension 0 or are empty 20 For an integer d the space of sections of the line bundle O d over P C 1 displaystyle mathbb P mathbb C 1 nbsp is the complex vector space of homogeneous polynomials of degree d in variables x y In particular this space is zero for d lt 0 For d 0 displaystyle d geq 0 nbsp the morphism to projective space given by O d is P 1 P d displaystyle mathbb P 1 to mathbb P d nbsp dd by x y x d x d 1 y y d displaystyle x y mapsto x d x d 1 y ldots y d nbsp dd This is a closed immersion for d 1 displaystyle d geq 1 nbsp with image a rational normal curve of degree d in P d displaystyle mathbb P d nbsp Therefore O d is basepoint free if and only if d 0 displaystyle d geq 0 nbsp and very ample if and only if d 1 displaystyle d geq 1 nbsp It follows that O d is ample if and only if d 1 displaystyle d geq 1 nbsp For an example where ample and very ample are different let X be a smooth projective curve of genus 1 an elliptic curve over C and let p be a complex point of X Let O p be the associated line bundle of degree 1 on X Then the complex vector space of global sections of O p has dimension 1 spanned by a section that vanishes at p 21 So the base locus of O p is equal to p On the other hand O 2p is basepoint free and O dp is very ample for d 3 displaystyle d geq 3 nbsp giving an embedding of X as an elliptic curve of degree d in P d 1 displaystyle mathbb P d 1 nbsp Therefore O p is ample but not very ample Also O 2p is ample and basepoint free but not very ample the associated morphism to projective space is a ramified double cover X P 1 displaystyle X to mathbb P 1 nbsp On curves of higher genus there are ample line bundles L for which every global section is zero But high multiples of L have many sections by definition For example let X be a smooth plane quartic curve of degree 4 in P 2 displaystyle mathbb P 2 nbsp over C and let p and q be distinct complex points of X Then the line bundle L O 2 p q displaystyle L O 2p q nbsp is ample but has H 0 X L 0 displaystyle H 0 X L 0 nbsp 22 Criteria for ampleness of line bundles editIntersection theory edit Further information intersection theory Intersection theory in algebraic geometry To determine whether a given line bundle on a projective variety X is ample the following numerical criteria in terms of intersection numbers are often the most useful It is equivalent to ask when a Cartier divisor D on X is ample meaning that the associated line bundle O D is ample The intersection number D C displaystyle D cdot C nbsp can be defined as the degree of the line bundle O D restricted to C In the other direction for a line bundle L on a projective variety the first Chern class c 1 L displaystyle c 1 L nbsp means the associated Cartier divisor defined up to linear equivalence the divisor of any nonzero rational section of L On a smooth projective curve X over an algebraically closed field k a line bundle L is very ample if and only if h 0 X L O x y h 0 X L 2 displaystyle h 0 X L otimes O x y h 0 X L 2 nbsp for all k rational points x y in X 23 Let g be the genus of X By the Riemann Roch theorem every line bundle of degree at least 2g 1 satisfies this condition and hence is very ample As a result a line bundle on a curve is ample if and only if it has positive degree 24 For example the canonical bundle K X displaystyle K X nbsp of a curve X has degree 2g 2 and so it is ample if and only if g 2 displaystyle g geq 2 nbsp The curves with ample canonical bundle form an important class for example over the complex numbers these are the curves with a metric of negative curvature The canonical bundle is very ample if and only if g 2 displaystyle g geq 2 nbsp and the curve is not hyperelliptic 25 The Nakai Moishezon criterion named for Yoshikazu Nakai 1963 and Boris Moishezon 1964 states that a line bundle L on a proper scheme X over a field is ample if and only if Y c 1 L dim Y gt 0 displaystyle int Y c 1 L text dim Y gt 0 nbsp for every irreducible closed subvariety Y of X Y is not allowed to be a point 26 In terms of divisors a Cartier divisor D is ample if and only if D dim Y Y gt 0 displaystyle D text dim Y cdot Y gt 0 nbsp for every nonzero dimensional subvariety Y of X For X a curve this says that a divisor is ample if and only if it has positive degree For X a surface the criterion says that a divisor D is ample if and only if its self intersection number D 2 displaystyle D 2 nbsp is positive and every curve C on X has D C gt 0 displaystyle D cdot C gt 0 nbsp Kleiman s criterion edit To state Kleiman s criterion 1966 let X be a projective scheme over a field Let N 1 X displaystyle N 1 X nbsp be the real vector space of 1 cycles real linear combinations of curves in X modulo numerical equivalence meaning that two 1 cycles A and B are equal in N 1 X displaystyle N 1 X nbsp if and only if every line bundle has the same degree on A and on B By the Neron Severi theorem the real vector space N 1 X displaystyle N 1 X nbsp has finite dimension Kleiman s criterion states that a line bundle L on X is ample if and only if L has positive degree on every nonzero element C of the closure of the cone of curves NE X in N 1 X displaystyle N 1 X nbsp This is slightly stronger than saying that L has positive degree on every curve Equivalently a line bundle is ample if and only if its class in the dual vector space N 1 X displaystyle N 1 X nbsp is in the interior of the nef cone 27 Kleiman s criterion fails in general for proper rather than projective schemes X over a field although it holds if X is smooth or more generally Q factorial 28 A line bundle on a projective variety is called strictly nef if it has positive degree on every curve Nagata 1959 and David Mumford constructed line bundles on smooth projective surfaces that are strictly nef but not ample This shows that the condition c 1 L 2 gt 0 displaystyle c 1 L 2 gt 0 nbsp cannot be omitted in the Nakai Moishezon criterion and it is necessary to use the closure of NE X rather than NE X in Kleiman s criterion 29 Every nef line bundle on a surface has c 1 L 2 0 displaystyle c 1 L 2 geq 0 nbsp and Nagata and Mumford s examples have c 1 L 2 0 displaystyle c 1 L 2 0 nbsp C S Seshadri showed that a line bundle L on a proper scheme over an algebraically closed field is ample if and only if there is a positive real number e such that deg L C em C for all irreducible curves C in X where m C is the maximum of the multiplicities at the points of C 30 Several characterizations of ampleness hold more generally for line bundles on a proper algebraic space over a field k In particular the Nakai Moishezon criterion is valid in that generality 31 The Cartan Serre Grothendieck criterion holds even more generally for a proper algebraic space over a Noetherian ring R 32 If a proper algebraic space over R has an ample line bundle then it is in fact a projective scheme over R Kleiman s criterion fails for proper algebraic spaces X over a field even if X is smooth 33 Openness of ampleness edit On a projective scheme X over a field Kleiman s criterion implies that ampleness is an open condition on the class of an R divisor an R linear combination of Cartier divisors in N 1 X displaystyle N 1 X nbsp with its topology based on the topology of the real numbers An R divisor is defined to be ample if it can be written as a positive linear combination of ample Cartier divisors 34 An elementary special case is for an ample divisor H and any divisor E there is a positive real number b such that H a E displaystyle H aE nbsp is ample for all real numbers a of absolute value less than b In terms of divisors with integer coefficients or line bundles this means that nH E is ample for all sufficiently large positive integers n Ampleness is also an open condition in a quite different sense when the variety or line bundle is varied in an algebraic family Namely let f X Y displaystyle f colon X to Y nbsp be a proper morphism of schemes and let L be a line bundle on X Then the set of points y in Y such that L is ample on the fiber X y displaystyle X y nbsp is open in the Zariski topology More strongly if L is ample on one fiber X y displaystyle X y nbsp then there is an affine open neighborhood U of y such that L is ample on f 1 U displaystyle f 1 U nbsp over U 35 Kleiman s other characterizations of ampleness edit Kleiman also proved the following characterizations of ampleness which can be viewed as intermediate steps between the definition of ampleness and numerical criteria Namely for a line bundle L on a proper scheme X over a field the following are equivalent 36 L is ample For every irreducible subvariety Y X displaystyle Y subset X nbsp of positive dimension there is a positive integer r and a section s H 0 Y L r displaystyle s in H 0 Y mathcal L otimes r nbsp which is not identically zero but vanishes at some point of Y For every irreducible subvariety Y X displaystyle Y subset X nbsp of positive dimension the holomorphic Euler characteristics of powers of L on Y go to infinity x Y L r displaystyle chi Y mathcal L otimes r to infty nbsp as r displaystyle r to infty nbsp dd Generalizations editAmple vector bundles edit Robin Hartshorne defined a vector bundle F on a projective scheme X over a field to be ample if the line bundle O 1 displaystyle mathcal O 1 nbsp on the space P F displaystyle mathbb P F nbsp of hyperplanes in F is ample 37 Several properties of ample line bundles extend to ample vector bundles For example a vector bundle F is ample if and only if high symmetric powers of F kill the cohomology H i displaystyle H i nbsp of coherent sheaves for all i gt 0 displaystyle i gt 0 nbsp 38 Also the Chern class c r F displaystyle c r F nbsp of an ample vector bundle has positive degree on every r dimensional subvariety of X for 1 r rank F displaystyle 1 leq r leq text rank F nbsp 39 Big line bundles edit Main article Iitaka dimension A useful weakening of ampleness notably in birational geometry is the notion of a big line bundle A line bundle L on a projective variety X of dimension n over a field is said to be big if there is a positive real number a and a positive integer j 0 displaystyle j 0 nbsp such that h 0 X L j a j n displaystyle h 0 X L otimes j geq aj n nbsp for all j j 0 displaystyle j geq j 0 nbsp This is the maximum possible growth rate for the spaces of sections of powers of L in the sense that for every line bundle L on X there is a positive number b with h 0 X L j b j n displaystyle h 0 X L otimes j leq bj n nbsp for all j gt 0 40 There are several other characterizations of big line bundles First a line bundle is big if and only if there is a positive integer r such that the rational map from X to P H 0 X L r displaystyle mathbb P H 0 X L otimes r nbsp given by the sections of L r displaystyle L otimes r nbsp is birational onto its image 41 Also a line bundle L is big if and only if it has a positive tensor power which is the tensor product of an ample line bundle A and an effective line bundle B meaning that H 0 X B 0 displaystyle H 0 X B neq 0 nbsp 42 Finally a line bundle is big if and only if its class in N 1 X displaystyle N 1 X nbsp is in the interior of the cone of effective divisors 43 Bigness can be viewed as a birationally invariant analog of ampleness For example if f X Y displaystyle f colon X to Y nbsp is a dominant rational map between smooth projective varieties of the same dimension then the pullback of a big line bundle on Y is big on X At first sight the pullback is only a line bundle on the open subset of X where f is a morphism but this extends uniquely to a line bundle on all of X For ample line bundles one can only say that the pullback of an ample line bundle by a finite morphism is ample 20 Example Let X be the blow up of the projective plane P 2 displaystyle mathbb P 2 nbsp at a point over the complex numbers Let H be the pullback to X of a line on P 2 displaystyle mathbb P 2 nbsp and let E be the exceptional curve of the blow up p X P 2 displaystyle pi colon X to mathbb P 2 nbsp Then the divisor H E is big but not ample or even nef on X because H E E E 2 1 lt 0 displaystyle H E cdot E E 2 1 lt 0 nbsp This negativity also implies that the base locus of H E or of any positive multiple contains the curve E In fact this base locus is equal to E Relative ampleness editGiven a quasi compact morphism of schemes f X S displaystyle f X to S nbsp an invertible sheaf L on X is said to be ample relative to f or f ample if the following equivalent conditions are met 44 45 For each open affine subset U S displaystyle U subset S nbsp the restriction of L to f 1 U displaystyle f 1 U nbsp is ample in the usual sense f is quasi separated and there is an open immersion X Proj S R R f 0 L n displaystyle X hookrightarrow operatorname Proj S mathcal R mathcal R f left bigoplus 0 infty L otimes n right nbsp induced by the adjunction map f R 0 L n displaystyle f mathcal R to bigoplus 0 infty L otimes n nbsp The condition 2 without open The condition 2 says roughly that X can be openly compactified to a projective scheme with O 1 L displaystyle mathcal O 1 L nbsp not just to a proper scheme See also editGeneral algebraic geometry edit Algebraic geometry of projective spaces Fano variety a variety whose canonical bundle is anti ample Matsusaka s big theorem Divisorial scheme a scheme admitting an ample family of line bundles Ampleness in complex geometry edit Holomorphic vector bundle Kodaira embedding theorem on a compact complex manifold ampleness and positivity coincide Kodaira vanishing theorem Lefschetz hyperplane theorem an ample divisor in a complex projective variety X is topologically similar to X Notes edit Hartshorne 1977 Theorem II 7 1 Hartshorne 1977 Theorem III 5 2 tag 02O6 Hartshorne 1977 Lemma IV 1 2 Lazarsfeld 2004 Example 1 4 5 tag 01AM Hartshorne 1977 Example II 5 16 2 Lazarsfeld 2004 Definition 2 1 26 Hartshorne 1977 section II 5 tag 02NP Grothendieck EGA II Definition 4 2 2 Hartshorne 1977 Proposition I 7 6 and Example IV 3 3 2 tag 01PS tag 01QE EGA II Theoreme 4 5 2 and Proposition 4 5 5 EGA II Proposition 4 5 10 tag 01VU Hartshorne 1977 Theorem II 7 6 a b Lazarsfeld 2004 Theorem 1 2 6 Hartshorne 1977 Proposition III 5 3 a b Lazarsfeld 2004 Theorem 1 2 13 Hartshorne 1977 Example II 7 6 3 Hartshorne 1977 Exercise IV 3 2 b Hartshorne 1977 Proposition IV 3 1 Hartshorne 1977 Corollary IV 3 3 Hartshorne 1977 Proposition IV 5 2 Lazarsfeld 2004 Theorem 1 2 23 Remark 1 2 29 Kleiman 1966 Theorem III 1 Lazarsfeld 2004 Theorems 1 4 23 and 1 4 29 Kleiman 1966 Theorem IV 1 Fujino 2005 Corollary 3 3 Lazarsfeld 2004 Remark 1 4 24 Lazarsfeld 2004 Example 1 5 2 Lazarsfeld 2004 Theorem 1 4 13 Hartshorne 1970 Theorem I 7 1 Kollar 1990 Theorem 3 11 tag 0D38 Kollar 1996 Chapter VI Appendix Exercise 2 19 3 Lazarsfeld 2004 Definition 1 3 11 Lazarsfeld 2004 Theorem 1 2 17 and its proof Lazarsfeld 2004 Example 1 2 32 Kleiman 1966 Theorem III 1 Lazarsfeld 2004 Definition 6 1 1 Lazarsfeld 2004 Theorem 6 1 10 Lazarsfeld 2004 Theorem 8 2 2 Lazarsfeld 2004 Corollary 2 1 38 Lazarsfeld 2004 section 2 2 A Lazarsfeld 2004 Corollary 2 2 7 Lazarsfeld 2004 Theorem 2 2 26 tag 01VG Grothendieck amp Dieudonne 1961 Proposition 4 6 3 Sources editFujino Osamu 2005 On the Kleiman Mori cone Proceedings of the Japan Academy Series A Mathematical Sciences 81 5 80 84 arXiv math 0501055 Bibcode 2005math 1055F doi 10 3792 pjaa 81 80 MR 2143547 Grothendieck Alexandre Dieudonne Jean 1961 Elements de geometrie algebrique II Etude globale elementaire de quelques classes de morphismes Publications Mathematiques de l IHES 8 doi 10 1007 bf02699291 MR 0217084 Hartshorne Robin 1970 Ample Subvarieties of Algebraic Varieties Lecture Notes in Mathematics vol 156 Berlin Heidelberg Springer Verlag doi 10 1007 BFb0067839 ISBN 978 3 540 05184 8 MR 0282977 Hartshorne Robin 1977 Algebraic Geometry Berlin New York Springer Verlag ISBN 978 0 387 90244 9 MR 0463157 Kleiman Steven L 1966 Toward a numerical theory of ampleness Annals of Mathematics Second Series 84 3 293 344 doi 10 2307 1970447 ISSN 0003 486X JSTOR 1970447 MR 0206009 Kollar Janos 1990 Projectivity of complete moduli Journal of Differential Geometry 32 doi 10 4310 jdg 1214445046 MR 1064874 Kollar Janos 1996 Rational curves on algebraic varieties Berlin Heidelberg Springer Verlag doi 10 1007 978 3 662 03276 3 ISBN 978 3 642 08219 1 MR 1440180 Lazarsfeld Robert 2004 Positivity in algebraic geometry 2 vols Berlin Springer Verlag doi 10 1007 978 3 642 18808 4 ISBN 3 540 22533 1 MR 2095471 Nagata Masayoshi 1959 On the 14th problem of Hilbert American Journal of Mathematics 81 3 766 772 doi 10 2307 2372927 JSTOR 2372927 MR 0154867 Section 29 37 01VG Relatively ample sheaves The Stacks project Stacks Project Tag 01AM Stacks Project Tag 01PS Stacks Project Tag 01QE Stacks Project Tag 01VU Stacks Project Tag 02NP Stacks Project Tag 02O6 Stacks Project Tag 0D38 External links editThe Stacks Project Retrieved from https en wikipedia org w index php title Ample line bundle amp oldid 1220971834, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.