fbpx
Wikipedia

Alternating multilinear map

In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a module over a commutative ring.

The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space.

Definition Edit

Let   be a commutative ring and   be modules over  . A multilinear map of the form   is said to be alternating if it satisfies the following equivalent conditions:

  1. whenever there exists   such that   then  [1][2]
  2. whenever there exists   such that   then  [1][3]

Vector spaces Edit

Let   be vector spaces over the same field. Then a multilinear map of the form   is alternating iff it satisfies the following condition:

  • if   are linearly dependent then  .

Example Edit

In a Lie algebra, the Lie bracket is an alternating bilinear map. The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix.

Properties Edit

If any component   of an alternating multilinear map is replaced by   for any   and   in the base ring   then the value of that map is not changed.[3]

Every alternating multilinear map is antisymmetric,[4] meaning that[1]

 
or equivalently,
 
where  denotes the permutation group of order   and   is the sign of  [5]

If   is a unit in the base ring   then every antisymmetric  -multilinear form is alternating.

Alternatization Edit

Given a multilinear map of the form   the alternating multilinear map   defined by

 
is said to be the alternatization of  

Properties

  • The alternatization of an n-multilinear alternating map is n! times itself.
  • The alternatization of a symmetric map is zero.
  • The alternatization of a bilinear map is bilinear. Most notably, the alternatization of any cocycle is bilinear. This fact plays a crucial role in identifying the second cohomology group of a lattice with the group of alternating bilinear forms on a lattice.

See also Edit

Notes Edit

  1. ^ a b c Lang 2002, pp. 511–512.
  2. ^ Bourbaki 2007, p. A III.80, §4.
  3. ^ a b Dummit & Foote 2004, p. 436.
  4. ^ Rotman 1995, p. 235.
  5. ^ Tu (2011). An Introduction to Manifolds. Springer-Verlag New York. p. 23. ISBN 978-1-4419-7400-6.

References Edit

  • Bourbaki, N. (2007). Eléments de mathématique. Vol. Algèbre Chapitres 1 à 3 (reprint ed.). Springer.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). Wiley.
  • Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (revised 3rd ed.). Springer. ISBN 978-0-387-95385-4. OCLC 48176673.
  • Rotman, Joseph J. (1995). An Introduction to the Theory of Groups. Graduate Texts in Mathematics. Vol. 148 (4th ed.). Springer. ISBN 0-387-94285-8. OCLC 30028913.

alternating, multilinear, mathematics, more, specifically, multilinear, algebra, alternating, multilinear, multilinear, with, arguments, belonging, same, vector, space, example, bilinear, form, multilinear, form, that, zero, whenever, pair, arguments, equal, m. In mathematics more specifically in multilinear algebra an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space for example a bilinear form or a multilinear form that is zero whenever any pair of arguments is equal More generally the vector space may be a module over a commutative ring The notion of alternatization or alternatisation is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space Contents 1 Definition 2 Vector spaces 3 Example 4 Properties 5 Alternatization 6 See also 7 Notes 8 ReferencesDefinition EditLet R displaystyle R nbsp be a commutative ring and V W displaystyle V W nbsp be modules over R displaystyle R nbsp A multilinear map of the form f V n W displaystyle f colon V n to W nbsp is said to be alternating if it satisfies the following equivalent conditions whenever there exists 1 i n 1 textstyle 1 leq i leq n 1 nbsp such that x i x i 1 displaystyle x i x i 1 nbsp then f x 1 x n 0 displaystyle f x 1 ldots x n 0 nbsp 1 2 whenever there exists 1 i j n textstyle 1 leq i neq j leq n nbsp such that x i x j displaystyle x i x j nbsp then f x 1 x n 0 displaystyle f x 1 ldots x n 0 nbsp 1 3 Vector spaces EditLet V W displaystyle V W nbsp be vector spaces over the same field Then a multilinear map of the form f V n W displaystyle f colon V n to W nbsp is alternating iff it satisfies the following condition if x 1 x n displaystyle x 1 ldots x n nbsp are linearly dependent then f x 1 x n 0 displaystyle f x 1 ldots x n 0 nbsp Example EditIn a Lie algebra the Lie bracket is an alternating bilinear map The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix Properties EditIf any component x i displaystyle x i nbsp of an alternating multilinear map is replaced by x i c x j displaystyle x i cx j nbsp for any j i displaystyle j neq i nbsp and c displaystyle c nbsp in the base ring R displaystyle R nbsp then the value of that map is not changed 3 Every alternating multilinear map is antisymmetric 4 meaning that 1 f x i x i 1 f x i 1 x i for any 1 i n 1 displaystyle f dots x i x i 1 dots f dots x i 1 x i dots quad text for any 1 leq i leq n 1 nbsp or equivalently f x s 1 x s n sgn s f x 1 x n for any s S n displaystyle f x sigma 1 dots x sigma n operatorname sgn sigma f x 1 dots x n quad text for any sigma in S n nbsp where S n displaystyle S n nbsp denotes the permutation group of order n displaystyle n nbsp and sgn s displaystyle operatorname sgn sigma nbsp is the sign of s displaystyle sigma nbsp 5 If n displaystyle n nbsp is a unit in the base ring R displaystyle R nbsp then every antisymmetric n displaystyle n nbsp multilinear form is alternating Alternatization EditGiven a multilinear map of the form f V n W displaystyle f V n to W nbsp the alternating multilinear map g V n W displaystyle g V n to W nbsp defined byg x 1 x n s S n sgn s f x s 1 x s n displaystyle g x 1 ldots x n mathrel sum sigma in S n operatorname sgn sigma f x sigma 1 ldots x sigma n nbsp is said to be the alternatization of f displaystyle f nbsp Properties The alternatization of an n multilinear alternating map is n times itself The alternatization of a symmetric map is zero The alternatization of a bilinear map is bilinear Most notably the alternatization of any cocycle is bilinear This fact plays a crucial role in identifying the second cohomology group of a lattice with the group of alternating bilinear forms on a lattice See also EditAlternating algebra Bilinear map Exterior algebra Alternating multilinear forms Map mathematics Multilinear algebra Multilinear map Multilinear form SymmetrizationNotes Edit a b c Lang 2002 pp 511 512 Bourbaki 2007 p A III 80 4 a b Dummit amp Foote 2004 p 436 Rotman 1995 p 235 Tu 2011 An Introduction to Manifolds Springer Verlag New York p 23 ISBN 978 1 4419 7400 6 References EditBourbaki N 2007 Elements de mathematique Vol Algebre Chapitres 1 a 3 reprint ed Springer Dummit David S Foote Richard M 2004 Abstract Algebra 3rd ed Wiley Lang Serge 2002 Algebra Graduate Texts in Mathematics Vol 211 revised 3rd ed Springer ISBN 978 0 387 95385 4 OCLC 48176673 Rotman Joseph J 1995 An Introduction to the Theory of Groups Graduate Texts in Mathematics Vol 148 4th ed Springer ISBN 0 387 94285 8 OCLC 30028913 Retrieved from https en wikipedia org w index php title Alternating multilinear map amp oldid 1108643382, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.