fbpx
Wikipedia

All-pay auction

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981),[1] equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

In the simplest version, there is complete information. The Nash equilibrium is such that each bidder plays a mixed strategy and expected pay-offs are zero.[2] The seller's expected revenue is equal to the value of the prize. However, some economic experiments and studies have shown that over-bidding is common. That is, the seller's revenue frequently exceeds that of the value of the prize, in hopes of securing the winning bid. In repeated games even bidders that win the prize frequently will most likely take a loss in the long run.[3]

The all-pay auction with complete information does not have a Nash equilibrium in pure strategies, but does have a Nash equilibrium in mixed-strategies.[4]

Forms of all-pay auctions edit

The most straightforward form of an all-pay auction is a Tullock auction, sometimes called a Tullock lottery after Gordon Tullock, in which everyone submits a bid but both the losers and the winners pay their submitted bids.[5] This is instrumental in describing certain ideas in public choice economics.[citation needed]

The dollar auction is a two player Tullock auction, or a multiplayer game in which only the two highest bidders pay their bids. Another practical examples are the bidding fee auction and the penny raffle (pejoratively know as a "Chinese auction"[6]).

Other forms of all-pay auctions exist, such as a war of attrition (also known as biological auctions[7]), in which the highest bidder wins, but all (or more typically, both) bidders pay only the lower bid. The war of attrition is used by biologists to model conventional contests, or agonistic interactions resolved without recourse to physical aggression.

Rules edit

The following analysis follows a few basic rules.[8]

  • Each bidder submits a bid, which only depends on their valuation.
  • Bidders do not know the valuations of other bidders.
  • The analysis is based on an independent private value (IPV) environment where the valuation of each bidder is drawn independently from a uniform distribution [0,1]. In the IPV environment, if my value is 0.6 then the probability that some other bidder has a lower value is also 0.6. Accordingly, the probability that two other bidders have lower value is  .

Symmetry Assumption edit

In IPV bidders are symmetric because valuations are from the same distribution. These make the analysis focus on symmetric and monotonic bidding strategies. This implies that two bidders with the same valuation will submit the same bid. As a result, under symmetry, the bidder with the highest value will always win.[8]

Using revenue equivalence to predict bidding function edit

Consider the two-player version of the all-pay auction and   be the private valuations independent and identically distributed on a uniform distribution from [0,1]. We wish to find a monotone increasing bidding function,  , that forms a symmetric Nash Equilibrium.

If player   bids  , he wins the auction only if his bid is larger than player  's bid  . The probability for this to happen is

 , since   is monotone and  

Thus, the probability of allocation of good to   is  . Thus,  's expected utility when he bids as if his private value is   is given by

 .

For   to be a Bayesian-Nash Equilibrium,   should have its maximum at   so that   has no incentive to deviate given   sticks with his bid of  .

 

Upon integrating, we get  .

We know that if player   has private valuation  , then they will bid 0;  . We can use this to show that the constant of integration is also 0.

Thus, we get  .

Since this function is indeed monotone increasing, this bidding strategy   constitutes a Bayesian-Nash Equilibrium. The revenue from the all-pay auction in this example is

 

Since   are drawn iid from Unif[0,1], the expected  revenue is

 .

Due to the revenue equivalence theorem, all auctions with 2 players will have an expected revenue of   when the private valuations are iid from Unif[0,1].[9]

Bidding Function in the Generic Symmetric Case edit

Suppose the auction has   risk-neutral bidders. Each bidder has a private value   drawn i.i.d. from a common smooth distribution  . Given free disposal, each bidder's value is bounded below by zero. Without loss of generality, then, normalize the lowest possible value to zero.

Because the game is symmetric, the optimal bidding function must be the same for all players. Call this optimal bidding function  . Because each player's payoff is defined as their expected gain minus their bid, we can recursively define the optimal bid function as follows:

 

Note because F is smooth the probability of a tie is zero. This means the probability of winning the auction will be equal to the CDF raised to the number of players minus 1: i.e.,  .

The objective now satisfies the requirements for the envelope theorem. Thus, we can write:  

This yields the unique symmetric Nash Equilibrium bidding function  .

Examples edit

Consider a corrupt official who is dealing with campaign donors: Each wants him to do a favor that is worth somewhere between $0 and $1000 to them (uniformly distributed). Their actual valuations are $250, $500 and $750. They can only observe their own valuations. They each treat the official to an expensive present - if they spend X Dollars on the present then this is worth X dollars to the official. The official can only do one favor and will do the favor to the donor who is giving him the most expensive present.

This is a typical model for all-pay auction. To calculate the optimal bid for each donor, we need to normalize the valuations {250, 500, 750} to {0.25, 0.5, 0.75} so that IPV may apply.

According to the formula for optimal bid:

 

The optimal bids for three donors under IPV are:

 

 

 

To get the real optimal amount that each of the three donors should give, simply multiplied the IPV values by 1000:

 

 

 

This example implies that the official will finally get $375 but only the third donor, who donated $281.3 will win the official's favor. Note that the other two donors know their valuations are not high enough (low chance of winning),  so they do not donate much, thus balancing the possible huge winning profit and the low chance of winning.

References edit

  1. ^ Riley, John; Samuelson, William (1981). "Optimal Auctions". American Economic Review (3). doi:10.1257/aer.100.2.597.
  2. ^ Jehiel P, Moldovanu B (2006) Allocative and informational externalities in auctions and related mechanisms. In: Blundell R, Newey WK, Persson T (eds) Advances in Economics and Econometrics: Volume 1: Theory and Applications, Ninth World Congress, vol 1, Cambridge University Press, chap 3
  3. ^ Gneezy, Uri; Smorodinsky, Rann (2006). "All-pay auctions—an experimental study". Journal of Economic Behavior & Organization. 61 (2): 255–275. doi:10.1016/j.jebo.2004.09.013.
  4. ^ Hillman, Arye L.; Riley, John G. (March 1989). "Politically Contestable Rents and Transfers". Economics and Politics. 1 (1): 17–39. doi:10.1111/j.1468-0343.1989.tb00003.x. ISSN 0954-1985.
  5. ^ Dimitri, Nicola (29 November 2011). "Mirror Revelation" in Second-PRice Tullock Auctions. SIDE - ISLE 2011 - Seventh Annual Conference.
  6. ^ Carlin, Blair (5 August 2020). "What's a Chinese Auction? Overview & Modern Alternatives". OneCause. Retrieved 2 May 2024.
  7. ^ Chatterjee, Krishnendu; Reiter, Johannes G.; Nowak, Martin A. (2012). "Evolutionary dynamics of biological auctions". Theoretical Population Biology. 81 (1): 69–80. doi:10.1016/j.tpb.2011.11.003. PMC 3279759. PMID 22120126.
  8. ^ a b Auctions: Theory and Practice: The Toulouse Lectures in Economics; Paul Klemperer; Nuffield College, Oxford University, Princeton University Press, 2004
  9. ^ Algorithmic Game Theory. Vazirani, Vijay V; Nisan, Noam; Roughgarden, Tim; Tardos, Eva; Cambridge, UK: Cambridge University Press, 2007.  Complete preprint on-line at http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf

auction, economics, game, theory, auction, auction, which, every, bidder, must, regardless, whether, they, prize, which, awarded, highest, bidder, conventional, auction, shown, riley, samuelson, 1981, equilibrium, bidding, auction, with, private, information, . In economics and game theory an all pay auction is an auction in which every bidder must pay regardless of whether they win the prize which is awarded to the highest bidder as in a conventional auction As shown by Riley and Samuelson 1981 1 equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction In the simplest version there is complete information The Nash equilibrium is such that each bidder plays a mixed strategy and expected pay offs are zero 2 The seller s expected revenue is equal to the value of the prize However some economic experiments and studies have shown that over bidding is common That is the seller s revenue frequently exceeds that of the value of the prize in hopes of securing the winning bid In repeated games even bidders that win the prize frequently will most likely take a loss in the long run 3 The all pay auction with complete information does not have a Nash equilibrium in pure strategies but does have a Nash equilibrium in mixed strategies 4 Contents 1 Forms of all pay auctions 2 Rules 3 Symmetry Assumption 4 Using revenue equivalence to predict bidding function 5 Bidding Function in the Generic Symmetric Case 6 Examples 7 ReferencesForms of all pay auctions editThe most straightforward form of an all pay auction is a Tullock auction sometimes called a Tullock lottery after Gordon Tullock in which everyone submits a bid but both the losers and the winners pay their submitted bids 5 This is instrumental in describing certain ideas in public choice economics citation needed The dollar auction is a two player Tullock auction or a multiplayer game in which only the two highest bidders pay their bids Another practical examples are the bidding fee auction and the penny raffle pejoratively know as a Chinese auction 6 Other forms of all pay auctions exist such as a war of attrition also known as biological auctions 7 in which the highest bidder wins but all or more typically both bidders pay only the lower bid The war of attrition is used by biologists to model conventional contests or agonistic interactions resolved without recourse to physical aggression Rules editThe following analysis follows a few basic rules 8 Each bidder submits a bid which only depends on their valuation Bidders do not know the valuations of other bidders The analysis is based on an independent private value IPV environment where the valuation of each bidder is drawn independently from a uniform distribution 0 1 In the IPV environment if my value is 0 6 then the probability that some other bidder has a lower value is also 0 6 Accordingly the probability that two other bidders have lower value is 0 6 2 0 36 textstyle 0 6 2 0 36 nbsp Symmetry Assumption editIn IPV bidders are symmetric because valuations are from the same distribution These make the analysis focus on symmetric and monotonic bidding strategies This implies that two bidders with the same valuation will submit the same bid As a result under symmetry the bidder with the highest value will always win 8 Using revenue equivalence to predict bidding function editConsider the two player version of the all pay auction and v i v j displaystyle v i v j nbsp be the private valuations independent and identically distributed on a uniform distribution from 0 1 We wish to find a monotone increasing bidding function b v displaystyle b v nbsp that forms a symmetric Nash Equilibrium If player i displaystyle i nbsp bids b x displaystyle b x nbsp he wins the auction only if his bid is larger than player j displaystyle j nbsp s bid b v j displaystyle b v j nbsp The probability for this to happen isP b x gt b v j P x gt v j x displaystyle mathbb P b x gt b v j mathbb P x gt v j x nbsp since b displaystyle b nbsp is monotone and v j U n i f 0 1 displaystyle v j sim mathrm Unif 0 1 nbsp Thus the probability of allocation of good to i displaystyle i nbsp is x displaystyle x nbsp Thus i displaystyle i nbsp s expected utility when he bids as if his private value is x displaystyle x nbsp is given byu i x v i v i x b x displaystyle u i x v i v i x b x nbsp For b displaystyle b nbsp to be a Bayesian Nash Equilibrium u i x i v i displaystyle u i x i v i nbsp should have its maximum at x i v i displaystyle x i v i nbsp so that i displaystyle i nbsp has no incentive to deviate given j displaystyle j nbsp sticks with his bid of b v j displaystyle b v j nbsp u i v i 0 v i b v i displaystyle implies u i v i 0 implies v i b v i nbsp Upon integrating we get b v i v i 2 2 c displaystyle b v i frac v i 2 2 c nbsp We know that if player i displaystyle i nbsp has private valuation v i 0 displaystyle v i 0 nbsp then they will bid 0 b 0 0 displaystyle b 0 0 nbsp We can use this to show that the constant of integration is also 0 Thus we get b v i v i 2 2 displaystyle b v i frac v i 2 2 nbsp Since this function is indeed monotone increasing this bidding strategy b displaystyle b nbsp constitutes a Bayesian Nash Equilibrium The revenue from the all pay auction in this example isR b v 1 b v 2 v 1 2 2 v 2 2 2 displaystyle R b v 1 b v 2 frac v 1 2 2 frac v 2 2 2 nbsp Since v 1 v 2 displaystyle v 1 v 2 nbsp are drawn iid from Unif 0 1 the expected revenue isE R E v 1 2 2 v 2 2 2 E v 2 0 1 v 2 d v 1 3 displaystyle mathbb E R mathbb E frac v 1 2 2 frac v 2 2 2 mathbb E v 2 int limits 0 1 v 2 dv frac 1 3 nbsp Due to the revenue equivalence theorem all auctions with 2 players will have an expected revenue of 1 3 displaystyle frac 1 3 nbsp when the private valuations are iid from Unif 0 1 9 Bidding Function in the Generic Symmetric Case editSuppose the auction has n displaystyle n nbsp risk neutral bidders Each bidder has a private value v i displaystyle v i nbsp drawn i i d from a common smooth distribution F displaystyle F nbsp Given free disposal each bidder s value is bounded below by zero Without loss of generality then normalize the lowest possible value to zero Because the game is symmetric the optimal bidding function must be the same for all players Call this optimal bidding function b displaystyle beta nbsp Because each player s payoff is defined as their expected gain minus their bid we can recursively define the optimal bid function as follows b v i a r g max b R P j i b v j b v i b displaystyle beta v i in arg max b in mathbb R left mathbb P forall j neq i beta v j leq b v i b right nbsp Note because F is smooth the probability of a tie is zero This means the probability of winning the auction will be equal to the CDF raised to the number of players minus 1 i e P j i b v j b v i F v i n 1 displaystyle mathbb P forall j neq i beta v j leq beta v i F v i n 1 nbsp The objective now satisfies the requirements for the envelope theorem Thus we can write 0 v i F t n 1 d t F v i n 1 v i b v i F n 1 0 0 b 0 b v i F n 1 v i v i 0 v i F t n 1 d t b v i 0 v i t d F n 1 t displaystyle begin aligned int 0 v i F tau n 1 d tau amp F v i n 1 cdot v i beta v i F n 1 0 cdot 0 beta 0 beta v i amp F n 1 v i v i int 0 v i F tau n 1 d tau beta v i amp int 0 v i tau dF n 1 tau end aligned nbsp This yields the unique symmetric Nash Equilibrium bidding function b v i displaystyle beta v i nbsp Examples editConsider a corrupt official who is dealing with campaign donors Each wants him to do a favor that is worth somewhere between 0 and 1000 to them uniformly distributed Their actual valuations are 250 500 and 750 They can only observe their own valuations They each treat the official to an expensive present if they spend X Dollars on the present then this is worth X dollars to the official The official can only do one favor and will do the favor to the donor who is giving him the most expensive present This is a typical model for all pay auction To calculate the optimal bid for each donor we need to normalize the valuations 250 500 750 to 0 25 0 5 0 75 so that IPV may apply According to the formula for optimal bid b i v i n 1 n v i n displaystyle b i v i left frac n 1 n right v i n nbsp The optimal bids for three donors under IPV are b 1 v 1 n 1 n v 1 n 2 3 0 25 3 0 0104 displaystyle b 1 v 1 left frac n 1 n right v 1 n left frac 2 3 right 0 25 3 0 0104 nbsp b 2 v 2 n 1 n v 2 n 2 3 0 50 3 0 0833 displaystyle b 2 v 2 left frac n 1 n right v 2 n left frac 2 3 right 0 50 3 0 0833 nbsp b 3 v 3 n 1 n v 3 n 2 3 0 75 3 0 2813 displaystyle b 3 v 3 left frac n 1 n right v 3 n left frac 2 3 right 0 75 3 0 2813 nbsp To get the real optimal amount that each of the three donors should give simply multiplied the IPV values by 1000 b 1 r e a l v 1 0 25 10 4 displaystyle b 1 real v 1 0 25 10 4 nbsp b 2 r e a l v 2 0 50 83 3 displaystyle b 2 real v 2 0 50 83 3 nbsp b 3 r e a l v 3 0 75 281 3 displaystyle b 3 real v 3 0 75 281 3 nbsp This example implies that the official will finally get 375 but only the third donor who donated 281 3 will win the official s favor Note that the other two donors know their valuations are not high enough low chance of winning so they do not donate much thus balancing the possible huge winning profit and the low chance of winning References edit Riley John Samuelson William 1981 Optimal Auctions American Economic Review 3 doi 10 1257 aer 100 2 597 Jehiel P Moldovanu B 2006 Allocative and informational externalities in auctions and related mechanisms In Blundell R Newey WK Persson T eds Advances in Economics and Econometrics Volume 1 Theory and Applications Ninth World Congress vol 1 Cambridge University Press chap 3 Gneezy Uri Smorodinsky Rann 2006 All pay auctions an experimental study Journal of Economic Behavior amp Organization 61 2 255 275 doi 10 1016 j jebo 2004 09 013 Hillman Arye L Riley John G March 1989 Politically Contestable Rents and Transfers Economics and Politics 1 1 17 39 doi 10 1111 j 1468 0343 1989 tb00003 x ISSN 0954 1985 Dimitri Nicola 29 November 2011 Mirror Revelation in Second PRice Tullock Auctions SIDE ISLE 2011 Seventh Annual Conference Carlin Blair 5 August 2020 What s a Chinese Auction Overview amp Modern Alternatives OneCause Retrieved 2 May 2024 Chatterjee Krishnendu Reiter Johannes G Nowak Martin A 2012 Evolutionary dynamics of biological auctions Theoretical Population Biology 81 1 69 80 doi 10 1016 j tpb 2011 11 003 PMC 3279759 PMID 22120126 a b Auctions Theory and Practice The Toulouse Lectures in Economics Paul Klemperer Nuffield College Oxford University Princeton University Press 2004 Algorithmic Game Theory Vazirani Vijay V Nisan Noam Roughgarden Tim Tardos Eva Cambridge UK Cambridge University Press 2007 Complete preprint on line at http www cs cmu edu sandholm cs15 892F13 algorithmic game theory pdf Retrieved from https en wikipedia org w index php title All pay auction amp oldid 1221861353, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.