fbpx
Wikipedia

Hemoglobin subunit beta

Hemoglobin subunit beta (beta globin, β-globin, haemoglobin beta, hemoglobin beta) is a globin protein, coded for by the HBB gene, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, hemoglobin A (HbA).[5] It is 147 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

HBB
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHBB, CD113t-C, beta-globin, hemoglobin subunit beta, ECYT6
External IDsOMIM: 141900 MGI: 5474850 HomoloGene: 68066 GeneCards: HBB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000518

NM_008220

RefSeq (protein)

NP_000509

NP_032246
NP_001188320
NP_001265090

Location (UCSC)Chr 11: 5.23 – 5.23 MbChr 7: 103.46 – 103.46 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
In human, the HBB gene is located on chromosome 11 at position p15.5.

HBB is encoded by the HBB gene on human chromosome 11. Mutations in the gene produce several variants of the proteins which are implicated with genetic disorders such as sickle-cell disease and beta thalassemia, as well as beneficial traits such as genetic resistance to malaria.[6][7] At least 50 disease-causing mutations in this gene have been discovered.[8]

Gene locus edit

HBB protein is produced by the gene HBB which is located in the multigene locus of β-globin locus on chromosome 11, specifically on the short arm position 15.4. Expression of beta globin and the neighbouring globins in the β-globin locus is controlled by single locus control region (LCR), the most important regulatory element in the locus located upstream of the globin genes.[9] The normal allelic variant is 1600 base pairs (bp) long and contains three exons. The order of the genes in the beta-globin cluster is 5' - epsilongamma-Ggamma-Adelta – beta - 3'.[5]

Interactions edit

HBB interacts with Haemoglobin, alpha 1 (HBA1) to form haemoglobin A, the major haemoglobin in adult humans.[10][11] The interaction is two-fold. First, one HBB and one HBA1 combine, non-covalently, to form a dimer. Secondly, two dimers combine to form the four-chain tetramer, and this becomes the functional haemoglobin.[12]

Associated genetic disorders edit

Beta thalassemia edit

Beta thalassemia is an inherited genetic mutation in one (Beta thalassemia minor) or both (Beta thalassemia major) of the Beta globin alleles on chromosome 11. The mutant alleles are subdivided into two groups: β0, in which no functional β-globin is made, and β+, in which a small amount of normal β-globin protein is produced. Beta thalassemia minor occurs when an individual inherits one normal Beta allele and one abnormal Beta allele (either β0, or β+). Beta thalassemia minor results in a mild microcytic anemia that is often asymptomatic or may cause fatigue and or pale skin. Beta thalassemia major occurs when a person inherits two abnormal alleles. This can be either two β+ alleles, two β0 alleles, or one of each. Beta thalassemia major is a severe medical condition. A severe anemia is seen starting at 6 months of age. Without medical treatment death often occurs before age 12. [13] Beta thalassemia major can be treated by lifelong blood transfusions or bone marrow transplantation.[14][15]

According to a recent study, the stop gain mutation Gln40stop in HBB gene is a common cause of autosomal recessive Beta- thalassemia in Sardinian people (almost exclusive in Sardinia). Carriers of this mutation show an enhanced red blood cell count. As a curiosity, the same mutation was also associated to a decrease in serum LDL levels in carriers, so the authors suggest that is due to the need of cholesterol to regenerate cell membranes.[16]

Sickle cell disease edit

More than a thousand naturally occurring HBB variants have been discovered. The most common is HbS, which causes sickle cell disease. HbS is produced by a point mutation in HBB in which the codon GAG is replaced by GTG. This results in the replacement of hydrophilic amino acid glutamic acid with the hydrophobic amino acid valine at the seventh position (β6Glu→Val). This substitution creates a hydrophobic spot on the outside of the protein that sticks to the hydrophobic region of an adjacent hemoglobin molecule's beta chain. This further causes clumping of HbS molecules into rigid fibers, causing "sickling" of the entire red blood cells in the homozygous (HbS/HbS) condition.[17] The homozygous allele has become one of the deadliest genetic factors,[18] whereas people heterozygous for the mutant allele (HbS/HbA) are resistant to malaria and develop minimal effects of the anaemia.[19]

Haemoglobin C edit

Sickle cell disease is closely related to another mutant haemoglobin called haemoglobin C (HbC), because they can be inherited together.[20] HbC mutation is at the same position in HbS, but glutamic acid is replaced by lysine (β6Glu→Lys). The mutation is particularly prevalent in West African populations. HbC provides near full protection against Plasmodium falciparum in homozygous (CC) individuals and intermediate protection in heterozygous (AC) individuals.[21] This indicates that HbC has stronger influence than HbS, and is predicted to replace HbS in malaria-endemic regions.[22]

Haemoglobin E edit

Another point mutation in HBB, in which glutamic acid is replaced with lysine at position 26 (β26Glu→Lys), leads to the formation of haemoglobin E (HbE).[23] HbE has a very unstable α- and β-globin association. Even though the unstable protein itself has mild effect, inherited with HbS and thalassemia traits, it turns into a life-threatening form of β-thalassemia. The mutation is of relatively recent origin suggesting that it resulted from selective pressure against severe falciparum malaria, as heterozygous allele prevents the development of malaria.[24]

Human evolution edit

Malaria due to Plasmodium falciparum is a major selective factor in human evolution.[7][25] It has influenced mutations in HBB in various degrees resulting in the existence of numerous HBB variants. Some of these mutations are not directly lethal and instead confer resistance to malaria, particularly in Africa where malaria is epidemic.[26] People of African descent have evolved to have higher rates of the mutant HBB because the heterozygous individuals have a misshaped red blood cell that prevent attacks from malarial parasites. Thus, HBB mutants are the sources of positive selection in these regions and are important for their long-term survival.[6][27] Such selection markers are important for tracing human ancestry and diversification from Africa.[28]

See also edit

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000244734 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000073940 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: HBB hemoglobin, beta".
  6. ^ a b Sabeti, Pardis C (2008). "Natural selection: uncovering mechanisms of evolutionary adaptation to infectious disease". Nature Education. 1 (1): 13.
  7. ^ a b Kwiatkowski DP (2005). "How malaria has affected the human genome and what human genetics can teach us about malaria". The American Journal of Human Genetics. 77 (2): 171–192. doi:10.1086/432519. PMC 1224522. PMID 16001361.
  8. ^ Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC 6901466. PMID 31819097.
  9. ^ Levings PP, Bungert J (2002). "The human beta-globin locus control region". Eur. J. Biochem. 269 (6): 1589–99. doi:10.1046/j.1432-1327.2002.02797.x. PMID 11895428.
  10. ^ Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–968. doi:10.1016/j.cell.2005.08.029. hdl:11858/00-001M-0000-0010-8592-0. PMID 16169070. S2CID 8235923.
  11. ^ Shaanan B (1983). "Structure of human oxyhaemoglobin at 2.1 A resolution". J. Mol. Biol. ENGLAND. 171 (1): 31–59. doi:10.1016/S0022-2836(83)80313-1. ISSN 0022-2836. PMID 6644819.
  12. ^ "Hemoglobin Synthesis". harvard.edu. Harvard University. 2002. Retrieved 18 November 2014.
  13. ^ H. Franklin Bunn; Vijay G. Sankaran (2017). "8". Pathology of blood disorders. pp. 927–933.
  14. ^ Muncie HL, Campbell J (2009). "Alpha and beta thalassemia". American Family Physician. 80 (4): 339–44. PMID 19678601.
  15. ^ "Beta thalassemia". Genetics Home Reference. U.S. National Library of Medicine. 11 November 2014. Retrieved 18 November 2014.
  16. ^ Sidore, C.; et al. (2015). "Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers". Nature Genetics. 47 (11): 1272–1281. doi:10.1038/ng.3368. PMC 4627508. PMID 26366554.
  17. ^ Thom CS, Dickson CF, Gell DA, Weiss MJ (2013). "Hemoglobin variants: biochemical properties and clinical correlates". Cold Spring Harb Perspect Med. 3 (3): a011858. doi:10.1101/cshperspect.a011858. PMC 3579210. PMID 23388674.
  18. ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. hdl:10536/DRO/DU:30050819. PMID 23245604. S2CID 1541253.
  19. ^ Luzzatto L (2012). "Sickle cell anaemia and malaria". Mediterr J Hematol Infect Dis. 4 (1): e2012065. doi:10.4084/MJHID.2012.065. PMC 3499995. PMID 23170194.
  20. ^ Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, Williams TN, Weatherall DJ, Hay SI (2013). "The distribution of haemoglobin C and its prevalence in newborns in Africa". Scientific Reports. 3 (1671): 1671. Bibcode:2013NatSR...3E1671P. doi:10.1038/srep01671. PMC 3628164. PMID 23591685.
  21. ^ Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Olivieri A, Calissano C, Paganotti GM, D'Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M (2001). "Haemoglobin C protects against clinical Plasmodium falciparum malaria". Nature. 414 (6861): 305–308. Bibcode:2001Natur.414..305M. doi:10.1038/35104556. PMID 11713529. S2CID 4360808.
  22. ^ Verra F, Bancone G, Avellino P, Blot I, Simporé J, Modiano D (2007). "Haemoglobin C and S in natural selection against Plasmodium falciparum malaria: a plethora or a single shared adaptive mechanism?". Parassitologia. 49 (4): 209–13. PMID 18689228.
  23. ^ Olivieri NF, Pakbaz Z, Vichinsky E (2011). "Hb E/beta-thalassaemia: a common & clinically diverse disorder". The Indian Journal of Medical Research. 134 (4): 522–531. PMC 3237252. PMID 22089616.
  24. ^ Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J, Looareesuwan S, White N (2002). "Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria". Blood. 100 (4): 1172–1176. doi:10.1182/blood.V100.4.1172.h81602001172_1172_1176. PMID 12149194.
  25. ^ Verra F, Mangano VD, Modiano D (2009). "Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies". Parasite Immunology. 31 (5): 234–53. doi:10.1111/j.1365-3024.2009.01106.x. PMID 19388945. S2CID 23734166.
  26. ^ Tishkoff SA, Williams SM (2002). "Genetic analysis of African populations: human evolution and complex disease". Nature Reviews Genetics. 3 (8): 611–21. doi:10.1038/nrg865. PMID 12154384. S2CID 7801737.
  27. ^ Excoffier L (2002). "Human demographic history: refining the recent African origin model". Current Opinion in Genetics & Development. 12 (6): 675–682. doi:10.1016/S0959-437X(02)00350-7. PMID 12433581.
  28. ^ Reed FA, Tishkoff SA (2006). "African human diversity, origins and migrations". Current Opinion in Genetics & Development. 16 (6): 597–605. doi:10.1016/j.gde.2006.10.008. PMID 17056248.

Further reading edit

  • Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989). "A review of the molecular genetics of the human alpha-globin gene cluster". Blood. 73 (5): 1081–104. doi:10.1182/blood.V73.5.1081.1081. PMID 2649166.
  • Giardina B, Messana I, Scatena R, Castagnola M (1995). "The multiple functions of hemoglobin". Crit. Rev. Biochem. Mol. Biol. 30 (3): 165–96. doi:10.3109/10409239509085142. PMID 7555018.
  • Salzano AM, Carbone V, Pagano L, Buffardi S, De RC, Pucci P (2002). "Hb Vila Real [beta36(C2)Pro-->His] in Italy: characterization of the amino acid substitution and the DNA mutation". Haemoglobin. 26 (1): 21–31. doi:10.1081/HEM-120002937. PMID 11939509. S2CID 40757080.
  • Frischknecht H, Dutly F (2007). "A 65 bp duplication/insertion in exon II of the beta globin gene causing beta0-thalassemia". Hematologica. 92 (3): 423–4. doi:10.3324/haematol.10785. PMID 17339197.

External links edit

  • Overview of all the structural information available in the PDB for UniProt: P68871 (Human Hemoglobin subunit beta) at the PDBe-KB.
  • Overview of all the structural information available in the PDB for UniProt: P02088 (Mouse Hemoglobin subunit beta-1) at the PDBe-KB.

hemoglobin, subunit, beta, redirects, here, other, uses, disambiguation, beta, globin, globin, haemoglobin, beta, hemoglobin, beta, globin, protein, coded, gene, which, along, with, alpha, globin, makes, most, common, form, haemoglobin, adult, humans, hemoglob. HBB redirects here For other uses see HBB disambiguation Hemoglobin subunit beta beta globin b globin haemoglobin beta hemoglobin beta is a globin protein coded for by the HBB gene which along with alpha globin HBA makes up the most common form of haemoglobin in adult humans hemoglobin A HbA 5 It is 147 amino acids long and has a molecular weight of 15 867 Da Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains HBBAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes6HBW 1A00 1A01 1A0U 1A0Z 1A3N 1A3O 1ABW 1ABY 1AJ9 1B86 1BAB 1BBB 1BIJ 1BUW 1BZ0 1BZ1 1BZZ 1C7B 1C7C 1C7D 1CBL 1CBM 1CH4 1CLS 1CMY 1COH 1DKE 1DXT 1DXU 1DXV 1FN3 1G9V 1GBU 1GBV 1GLI 1GZX 1HAB 1HAC 1HBA 1HBB 1HBS 1HCO 1HDB 1HGA 1HGB 1HGC 1HHO 1IRD 1J3Y 1J3Z 1J40 1J41 1J7S 1J7W 1J7Y 1JY7 1K0Y 1K1K 1KD2 1LFL 1LFQ 1LFT 1LFV 1LFY 1LFZ 1LJW 1M9P 1MKO 1NEJ 1NIH 1NQP 1O1I 1O1J 1O1K 1O1L 1O1M 1O1N 1O1O 1O1P 1QI8 1QSH 1QSI 1QXD 1QXE 1R1X 1R1Y 1RPS 1RQ3 1RQ4 1RQA 1RVW 1SDK 1SDL 1THB 1UIW 1VWT 1XXT 1XY0 1XYE 1XZ2 1XZ4 1XZ5 1XZ7 1XZU 1XZV 1Y09 1Y0A 1Y0C 1Y0D 1Y0T 1Y0W 1Y22 1Y2Z 1Y31 1Y35 1Y45 1Y46 1Y4B 1Y4F 1Y4G 1Y4P 1Y4Q 1Y4R 1Y4V 1Y5F 1Y5J 1Y5K 1Y7C 1Y7D 1Y7G 1Y7Z 1Y83 1Y85 1Y8W 1YDZ 1YE0 1YE1 1YE2 1YEN 1YEO 1YEQ 1YEU 1YEV 1YFF 1YG5 1YGD 1YGF 1YH9 1YHE 1YHR 1YIE 1YIH 1YVQ 1YVT 1YZI 2D5Z 2D60 2DN1 2DN2 2DN3 2DXM 2H35 2HBC 2HBD 2HBE 2HBF 2HBS 2HCO 2HHD 2HHE 2M6Z 2W6V 2W72 2YRS 3B75 3D17 3D7O 3DUT 3HXN 3IC0 3IC2 3KMF 3NL7 3NMM 3ODQ 3ONZ 3OO4 3OO5 3P5Q 3QJB 3QJC 3QJD 3QJE 3R5I 3S65 3S66 3SZK 3W4U 3WCP 3WHM 4FC3 4HHB 4IJ2 4L7Y 4M4A 4M4B 4MQC 4MQG 4MQH 4MQI 4N7N 4N7O 4N7P 4N8T 4NI0 4NI1 4ROL 4ROM 4WJG 4X0L 4XS0 5E29 5E6E 5EE4 5HU6 5JDO 5KDQ 5E83IdentifiersAliasesHBB CD113t C beta globin hemoglobin subunit beta ECYT6External IDsOMIM 141900 MGI 5474850 HomoloGene 68066 GeneCards HBBGene location Human Chr Chromosome 11 human 1 Band11p15 4Start5 225 464 bp 1 End5 229 395 bp 1 Gene location Mouse Chr Chromosome 7 mouse 2 Band7 E3 7Start103 461 731 bp 2 End103 463 203 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inspongy bonevena cavaperiodontal fibermonocytebone marrowtriceps brachii musclebone marrow cellsbloodbronchial epithelial cellspleenTop expressed inbone marrowspleenneural tubeheartlungganglionic eminencemesencephalonesophaguszone of skinquadriceps femoris muscleMore reference expression dataBioGPSn aGene ontologyMolecular functioniron ion binding oxygen binding oxygen carrier activity peroxidase activity metal ion binding hemoglobin binding protein binding heme binding haptoglobin bindingCellular componentcytosol endocytic vesicle lumen blood microparticle extracellular region hemoglobin complex extracellular exosome haptoglobin hemoglobin complex tertiary granule lumen ficolin 1 rich granule lumen extracellular spaceBiological processpositive regulation of cell death protein heterooligomerization nitric oxide transport positive regulation of nitric oxide biosynthetic process oxygen transport blood coagulation receptor mediated endocytosis regulation of blood pressure bicarbonate transport hydrogen peroxide catabolic process platelet aggregation response to hydrogen peroxide renal absorption cellular oxidant detoxification neutrophil degranulation transportSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez3043101488143EnsemblENSG00000244734ENSMUSG00000073940UniProtP68871P02088RefSeq mRNA NM 000518NM 008220RefSeq protein NP 000509NP 032246NP 001188320NP 001265090Location UCSC Chr 11 5 23 5 23 MbChr 7 103 46 103 46 MbPubMed search 3 4 WikidataView Edit HumanView Edit MouseIn human the HBB gene is located on chromosome 11 at position p15 5 HBB is encoded by the HBB gene on human chromosome 11 Mutations in the gene produce several variants of the proteins which are implicated with genetic disorders such as sickle cell disease and beta thalassemia as well as beneficial traits such as genetic resistance to malaria 6 7 At least 50 disease causing mutations in this gene have been discovered 8 Contents 1 Gene locus 2 Interactions 3 Associated genetic disorders 3 1 Beta thalassemia 3 2 Sickle cell disease 3 3 Haemoglobin C 3 4 Haemoglobin E 4 Human evolution 5 See also 6 References 7 Further reading 8 External linksGene locus editMain article Human b globin locus HBB protein is produced by the gene HBB which is located in the multigene locus of b globin locus on chromosome 11 specifically on the short arm position 15 4 Expression of beta globin and the neighbouring globins in the b globin locus is controlled by single locus control region LCR the most important regulatory element in the locus located upstream of the globin genes 9 The normal allelic variant is 1600 base pairs bp long and contains three exons The order of the genes in the beta globin cluster is 5 epsilon gamma G gamma A delta beta 3 5 Interactions editHBB interacts with Haemoglobin alpha 1 HBA1 to form haemoglobin A the major haemoglobin in adult humans 10 11 The interaction is two fold First one HBB and one HBA1 combine non covalently to form a dimer Secondly two dimers combine to form the four chain tetramer and this becomes the functional haemoglobin 12 Associated genetic disorders editBeta thalassemia edit Beta thalassemia is an inherited genetic mutation in one Beta thalassemia minor or both Beta thalassemia major of the Beta globin alleles on chromosome 11 The mutant alleles are subdivided into two groups b0 in which no functional b globin is made and b in which a small amount of normal b globin protein is produced Beta thalassemia minor occurs when an individual inherits one normal Beta allele and one abnormal Beta allele either b0 or b Beta thalassemia minor results in a mild microcytic anemia that is often asymptomatic or may cause fatigue and or pale skin Beta thalassemia major occurs when a person inherits two abnormal alleles This can be either two b alleles two b0 alleles or one of each Beta thalassemia major is a severe medical condition A severe anemia is seen starting at 6 months of age Without medical treatment death often occurs before age 12 13 Beta thalassemia major can be treated by lifelong blood transfusions or bone marrow transplantation 14 15 According to a recent study the stop gain mutation Gln40stop in HBB gene is a common cause of autosomal recessive Beta thalassemia in Sardinian people almost exclusive in Sardinia Carriers of this mutation show an enhanced red blood cell count As a curiosity the same mutation was also associated to a decrease in serum LDL levels in carriers so the authors suggest that is due to the need of cholesterol to regenerate cell membranes 16 Sickle cell disease edit More than a thousand naturally occurring HBB variants have been discovered The most common is HbS which causes sickle cell disease HbS is produced by a point mutation in HBB in which the codon GAG is replaced by GTG This results in the replacement of hydrophilic amino acid glutamic acid with the hydrophobic amino acid valine at the seventh position b6Glu Val This substitution creates a hydrophobic spot on the outside of the protein that sticks to the hydrophobic region of an adjacent hemoglobin molecule s beta chain This further causes clumping of HbS molecules into rigid fibers causing sickling of the entire red blood cells in the homozygous HbS HbS condition 17 The homozygous allele has become one of the deadliest genetic factors 18 whereas people heterozygous for the mutant allele HbS HbA are resistant to malaria and develop minimal effects of the anaemia 19 Haemoglobin C edit Sickle cell disease is closely related to another mutant haemoglobin called haemoglobin C HbC because they can be inherited together 20 HbC mutation is at the same position in HbS but glutamic acid is replaced by lysine b6Glu Lys The mutation is particularly prevalent in West African populations HbC provides near full protection against Plasmodium falciparumin homozygous CC individuals and intermediate protection in heterozygous AC individuals 21 This indicates that HbC has stronger influence than HbS and is predicted to replace HbS in malaria endemic regions 22 Haemoglobin E edit Another point mutation in HBB in which glutamic acid is replaced with lysine at position 26 b26Glu Lys leads to the formation of haemoglobin E HbE 23 HbE has a very unstable a and b globin association Even though the unstable protein itself has mild effect inherited with HbS and thalassemia traits it turns into a life threatening form of b thalassemia The mutation is of relatively recent origin suggesting that it resulted from selective pressure against severe falciparum malaria as heterozygous allele prevents the development of malaria 24 Human evolution editMalaria due to Plasmodium falciparum is a major selective factor in human evolution 7 25 It has influenced mutations in HBB in various degrees resulting in the existence of numerous HBB variants Some of these mutations are not directly lethal and instead confer resistance to malaria particularly in Africa where malaria is epidemic 26 People of African descent have evolved to have higher rates of the mutant HBB because the heterozygous individuals have a misshaped red blood cell that prevent attacks from malarial parasites Thus HBB mutants are the sources of positive selection in these regions and are important for their long term survival 6 27 Such selection markers are important for tracing human ancestry and diversification from Africa 28 See also editHemoglobin subunit alpha Human b globin locusReferences edit a b c GRCh38 Ensembl release 89 ENSG00000244734 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000073940 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine a b Entrez Gene HBB hemoglobin beta a b Sabeti Pardis C 2008 Natural selection uncovering mechanisms of evolutionary adaptation to infectious disease Nature Education 1 1 13 a b Kwiatkowski DP 2005 How malaria has affected the human genome and what human genetics can teach us about malaria The American Journal of Human Genetics 77 2 171 192 doi 10 1086 432519 PMC 1224522 PMID 16001361 Simcikova D Heneberg P December 2019 Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases Scientific Reports 9 1 18577 Bibcode 2019NatSR 918577S doi 10 1038 s41598 019 54976 4 PMC 6901466 PMID 31819097 Levings PP Bungert J 2002 The human beta globin locus control region Eur J Biochem 269 6 1589 99 doi 10 1046 j 1432 1327 2002 02797 x PMID 11895428 Stelzl U Worm U Lalowski M Haenig C Brembeck FH Goehler H Stroedicke M Zenkner M Schoenherr A Koeppen S Timm J Mintzlaff S Abraham C Bock N Kietzmann S Goedde A Toksoz E Droege A Krobitsch S Korn B Birchmeier W Lehrach H Wanker EE 2005 A human protein protein interaction network a resource for annotating the proteome Cell 122 6 957 968 doi 10 1016 j cell 2005 08 029 hdl 11858 00 001M 0000 0010 8592 0 PMID 16169070 S2CID 8235923 Shaanan B 1983 Structure of human oxyhaemoglobin at 2 1 A resolution J Mol Biol ENGLAND 171 1 31 59 doi 10 1016 S0022 2836 83 80313 1 ISSN 0022 2836 PMID 6644819 Hemoglobin Synthesis harvard edu Harvard University 2002 Retrieved 18 November 2014 H Franklin Bunn Vijay G Sankaran 2017 8 Pathology of blood disorders pp 927 933 Muncie HL Campbell J 2009 Alpha and beta thalassemia American Family Physician 80 4 339 44 PMID 19678601 Beta thalassemia Genetics Home Reference U S National Library of Medicine 11 November 2014 Retrieved 18 November 2014 Sidore C et al 2015 Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers Nature Genetics 47 11 1272 1281 doi 10 1038 ng 3368 PMC 4627508 PMID 26366554 Thom CS Dickson CF Gell DA Weiss MJ 2013 Hemoglobin variants biochemical properties and clinical correlates Cold Spring Harb Perspect Med 3 3 a011858 doi 10 1101 cshperspect a011858 PMC 3579210 PMID 23388674 Lozano R Naghavi M Foreman K Lim S Shibuya K Aboyans V Abraham J Adair T Aggarwal R Ahn SY Alvarado M Anderson HR Anderson LM Andrews KG Atkinson C Baddour LM Barker Collo S Bartels DH Bell ML Benjamin EJ Bennett D Bhalla K Bikbov B Bin Abdulhak A Birbeck G Blyth F Bolliger I Boufous S Bucello C Burch M Burney P Carapetis J Chen H Chou D Chugh SS Coffeng LE Colan SD Colquhoun S Colson KE Condon J Connor MD Cooper LT Corriere M Cortinovis M de Vaccaro KC Couser W Cowie BC Criqui MH Cross M Dabhadkar KC Dahodwala N De Leo D Degenhardt L Delossantos A Denenberg J Des Jarlais DC Dharmaratne SD Dorsey ER Driscoll T Duber H Ebel B Erwin PJ Espindola P Ezzati M Feigin V Flaxman AD Forouzanfar MH Fowkes FG Franklin R Fransen M Freeman MK Gabriel SE Gakidou E Gaspari F Gillum RF Gonzalez Medina D Halasa YA Haring D Harrison JE Havmoeller R Hay RJ Hoen B Hotez PJ Hoy D Jacobsen KH James SL Jasrasaria R Jayaraman S Johns N Karthikeyan G Kassebaum N Keren A Khoo JP Knowlton LM Kobusingye O Koranteng A Krishnamurthi R Lipnick M Lipshultz SE Ohno SL Mabweijano J MacIntyre MF Mallinger L March L Marks GB Marks R Matsumori A Matzopoulos R Mayosi BM McAnulty JH McDermott MM McGrath J Mensah GA Merriman TR Michaud C Miller M Miller TR Mock C Mocumbi AO Mokdad AA Moran A Mulholland K Nair MN Naldi L Narayan KM Nasseri K Norman P O Donnell M Omer SB Ortblad K Osborne R Ozgediz D Pahari B Pandian JD Rivero AP Padilla RP Perez Ruiz F Perico N Phillips D Pierce K Pope CA Porrini E Pourmalek F Raju M Ranganathan D Rehm JT Rein DB Remuzzi G Rivara FP Roberts T De Leon FR Rosenfeld LC Rushton L Sacco RL Salomon JA Sampson U Sanman E Schwebel DC Segui Gomez M Shepard DS Singh D Singleton J Sliwa K Smith E Steer A Taylor JA Thomas B Tleyjeh IM Towbin JA Truelsen T Undurraga EA Venketasubramanian N Vijayakumar L Vos T Wagner GR Wang M Wang W Watt K Weinstock MA Weintraub R Wilkinson JD Woolf AD Wulf S Yeh PH Yip P Zabetian A Zheng ZJ Lopez AD Murray CJ AlMazroa MA Memish ZA 2012 Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010 a systematic analysis for the Global Burden of Disease Study 2010 Lancet 380 9859 2095 128 doi 10 1016 S0140 6736 12 61728 0 hdl 10536 DRO DU 30050819 PMID 23245604 S2CID 1541253 Luzzatto L 2012 Sickle cell anaemia and malaria Mediterr J Hematol Infect Dis 4 1 e2012065 doi 10 4084 MJHID 2012 065 PMC 3499995 PMID 23170194 Piel FB Howes RE Patil AP Nyangiri OA Gething PW Bhatt S Williams TN Weatherall DJ Hay SI 2013 The distribution of haemoglobin C and its prevalence in newborns in Africa Scientific Reports 3 1671 1671 Bibcode 2013NatSR 3E1671P doi 10 1038 srep01671 PMC 3628164 PMID 23591685 Modiano D Luoni G Sirima BS Simpore J Verra F Konate A Rastrelli E Olivieri A Calissano C Paganotti GM D Urbano L Sanou I Sawadogo A Modiano G Coluzzi M 2001 Haemoglobin C protects against clinical Plasmodium falciparum malaria Nature 414 6861 305 308 Bibcode 2001Natur 414 305M doi 10 1038 35104556 PMID 11713529 S2CID 4360808 Verra F Bancone G Avellino P Blot I Simpore J Modiano D 2007 Haemoglobin C and S in natural selection against Plasmodium falciparum malaria a plethora or a single shared adaptive mechanism Parassitologia 49 4 209 13 PMID 18689228 Olivieri NF Pakbaz Z Vichinsky E 2011 Hb E beta thalassaemia a common amp clinically diverse disorder The Indian Journal of Medical Research 134 4 522 531 PMC 3237252 PMID 22089616 Chotivanich K Udomsangpetch R Pattanapanyasat K Chierakul W Simpson J Looareesuwan S White N 2002 Hemoglobin E a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria Blood 100 4 1172 1176 doi 10 1182 blood V100 4 1172 h81602001172 1172 1176 PMID 12149194 Verra F Mangano VD Modiano D 2009 Genetics of susceptibility to Plasmodium falciparum from classical malaria resistance genes towards genome wide association studies Parasite Immunology 31 5 234 53 doi 10 1111 j 1365 3024 2009 01106 x PMID 19388945 S2CID 23734166 Tishkoff SA Williams SM 2002 Genetic analysis of African populations human evolution and complex disease Nature Reviews Genetics 3 8 611 21 doi 10 1038 nrg865 PMID 12154384 S2CID 7801737 Excoffier L 2002 Human demographic history refining the recent African origin model Current Opinion in Genetics amp Development 12 6 675 682 doi 10 1016 S0959 437X 02 00350 7 PMID 12433581 Reed FA Tishkoff SA 2006 African human diversity origins and migrations Current Opinion in Genetics amp Development 16 6 597 605 doi 10 1016 j gde 2006 10 008 PMID 17056248 Further reading editHiggs DR Vickers MA Wilkie AO Pretorius IM Jarman AP Weatherall DJ 1989 A review of the molecular genetics of the human alpha globin gene cluster Blood 73 5 1081 104 doi 10 1182 blood V73 5 1081 1081 PMID 2649166 Giardina B Messana I Scatena R Castagnola M 1995 The multiple functions of hemoglobin Crit Rev Biochem Mol Biol 30 3 165 96 doi 10 3109 10409239509085142 PMID 7555018 Salzano AM Carbone V Pagano L Buffardi S De RC Pucci P 2002 Hb Vila Real beta36 C2 Pro gt His in Italy characterization of the amino acid substitution and the DNA mutation Haemoglobin 26 1 21 31 doi 10 1081 HEM 120002937 PMID 11939509 S2CID 40757080 Frischknecht H Dutly F 2007 A 65 bp duplication insertion in exon II of the beta globin gene causing beta0 thalassemia Hematologica 92 3 423 4 doi 10 3324 haematol 10785 PMID 17339197 External links editOverview of all the structural information available in the PDB for UniProt P68871 Human Hemoglobin subunit beta at the PDBe KB Overview of all the structural information available in the PDB for UniProt P02088 Mouse Hemoglobin subunit beta 1 at the PDBe KB nbsp Wikimedia Commons has media related to Hemoglobin beta chain Retrieved from https en wikipedia org w index php title Hemoglobin subunit beta amp oldid 1187455866, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.