fbpx
Wikipedia

Infiltration/Inflow

Infiltration/Inflow (I/I) causes dilution in sanitary sewers. Dilution of sewage decreases the efficiency of treatment, and may cause sewage volumes to exceed design capacity. Although inflow is technically different from infiltration, it may be difficult to determine which is causing dilution problems in inaccessible sewers. The United States Environmental Protection Agency defines the term infiltration/inflow as combined contributions from both.[1]

Excessive infiltration/inflow may cause sanitary sewer overflows during wet weather.

Background

Early combined sewers used surface runoff to dilute waste from toilets and carry it away from urban areas into natural waterways. Sewage treatment can remove some pollutants from toilet waste, but treatment of diluted flow from combined sewers produces larger volumes of treated sewage with similar pollutant concentrations. Modern sanitary sewers are designed to transport domestic and industrial wastewater directly to treatment facilities without dilution.[2]

Infiltration

Groundwater entering sanitary sewers through defective pipe joints and broken pipes is called infiltration.[3] Pipes may leak because of careless installation; they may also be damaged after installation by differential ground movement, heavy vehicle traffic on roadways above the sewer, careless construction practices in nearby trenches, or degradation of the sewer pipe materials. In general, volume of leakage will increase over time. Damaged and broken sewer cleanouts are a major cause of infiltration into municipal sewer systems.[4]

Infiltration will occur where local groundwater elevation is higher than the sewer pipe. Gravel bedding materials in sewer pipe trenches act as a French drain. Groundwater flows parallel to the sewer until it reaches the area of damaged pipe. In areas of low groundwater, sewage may exfiltrate into groundwater from a leaking sewer.[5]

Inflow

Water entering sanitary sewers from inappropriate connections is called inflow.[3] Typical sources include sump pumps, roof drains, cellar drains, and yard drains where urban features prevent surface runoff, and storm drains are not conveniently accessible or identifiable. Inflow tends to peak during precipitation events, and causes greater flow variation than infiltration. Peak flows caused by inflow may generate a foul flush of accumulated biofilm and sanitary solids scoured from the dry weather wetted perimeter of oversized sewers during peak flow turbulence.[6] Sources of inflow can sometimes be identified by smoke testing. Smoke is blown into the sewer during dry weather while observers watch for smoke emerging from yards, cellars, or roof gutters.[7]

Significance

Dilution of sewage directly increases costs of pumping and chlorination, ozonation, or ultraviolet disinfection. Physical treatment structures including screens and pumps must be enlarged to handle the peak flow. Primary clarifiers must also be enlarged to treat average flows, although primary treatment of peak flows may be accomplished in detention basins. Biological secondary treatment is effective only while the concentration of soluble and colloidal pollutants (typically measured as biochemical oxygen demand or BOD) remains high enough to sustain a population of microorganisms digesting those pollutants. Secondary treatment is expected to remove 85 percent of soluble and colloidal organic pollutants from sewage containing 200 mg/L BOD;<ref?[8] but BOD removal by conventional biological secondary treatment becomes less effective with dilution and practically ceases as BOD concentrations entering the treatment facility are diluted below about 20 mg/L. Unremoved organics are potentially converted to disinfection by-products by chemical disinfection prior to discharge.

High rates of infiltration/inflow may make the sanitary sewer incapable of carrying sewage from the design service area. Sewage may back up into the lowest homes during wet weather, or street manholes may overflow.[7]

Correction

Smoke test results may not correlate well with flow volumes; although they can identify potential problem locations. Where sewage flow is expected to be relatively uniform, significance of infiltration and inflow may be estimated by comparison of sewage flow at the same point during wet and dry weather or at two sequential points within the sewer system. Small areas with large flow differences can be identified if the sewer system provides adequate measuring locations. It may be necessary to replace a section of sewer line if flow differences cannot be corrected by removing identified connections.[7]

References

  1. ^ U.S. Environmental Protection Agency (EPA), Washington, D.C. Code of Federal Regulations. "Part 35—State and Local Assistance."
    • "Definitions; Excessive inflitation/inflow." 40 CFR 35.2005 (b)(16). 40 CFR 35.2005
    • "Grants for Construction of Treatment Works; Infiltration/Inflow." 40 CFR 35.2120
  2. ^ Steel, E.W.; McGhee, Terence J. (1979). Water Supply and Sewerage. McGraw-Hill. p. 318. ISBN 0-07-060929-2.
  3. ^ a b King, James J. (1995). The Environmental Dictionary. John Wiley & Sons. p. 335. ISBN 0-471-11995-4.
  4. ^ Private Sewer Laterals (PDF) (Report). Water Infrastructure Outreach. Boston, MA: EPA. June 2014.
  5. ^ Metcalf & Eddy (1972). Wastewater Engineering. New York: McGraw-Hill. pp. 39–44.{{cite book}}: CS1 maint: uses authors parameter (link)
  6. ^ Fan, Chi-Yuan; Field, Richard; Lai, Fu-hsiung. (PDF). EPA and University of California, Los Angeles. Archived from the original (PDF) on 13 March 2016. Retrieved 12 March 2016.
  7. ^ a b c Hammer, Mark J. (1975). Water and Waste-Water Technology. John Wiley & Sons. pp. 303–304, 441–442. ISBN 0-471-34726-4.
  8. ^ EPA. "Part 133—Secondary Treatment Regulation." 40 CFR 133

infiltration, inflow, causes, dilution, sanitary, sewers, dilution, sewage, decreases, efficiency, treatment, cause, sewage, volumes, exceed, design, capacity, although, inflow, technically, different, from, infiltration, difficult, determine, which, causing, . Infiltration Inflow I I causes dilution in sanitary sewers Dilution of sewage decreases the efficiency of treatment and may cause sewage volumes to exceed design capacity Although inflow is technically different from infiltration it may be difficult to determine which is causing dilution problems in inaccessible sewers The United States Environmental Protection Agency defines the term infiltration inflow as combined contributions from both 1 Excessive infiltration inflow may cause sanitary sewer overflows during wet weather Contents 1 Background 2 Infiltration 3 Inflow 4 Significance 5 Correction 6 ReferencesBackground EditEarly combined sewers used surface runoff to dilute waste from toilets and carry it away from urban areas into natural waterways Sewage treatment can remove some pollutants from toilet waste but treatment of diluted flow from combined sewers produces larger volumes of treated sewage with similar pollutant concentrations Modern sanitary sewers are designed to transport domestic and industrial wastewater directly to treatment facilities without dilution 2 Infiltration EditGroundwater entering sanitary sewers through defective pipe joints and broken pipes is called infiltration 3 Pipes may leak because of careless installation they may also be damaged after installation by differential ground movement heavy vehicle traffic on roadways above the sewer careless construction practices in nearby trenches or degradation of the sewer pipe materials In general volume of leakage will increase over time Damaged and broken sewer cleanouts are a major cause of infiltration into municipal sewer systems 4 Infiltration will occur where local groundwater elevation is higher than the sewer pipe Gravel bedding materials in sewer pipe trenches act as a French drain Groundwater flows parallel to the sewer until it reaches the area of damaged pipe In areas of low groundwater sewage may exfiltrate into groundwater from a leaking sewer 5 Inflow EditWater entering sanitary sewers from inappropriate connections is called inflow 3 Typical sources include sump pumps roof drains cellar drains and yard drains where urban features prevent surface runoff and storm drains are not conveniently accessible or identifiable Inflow tends to peak during precipitation events and causes greater flow variation than infiltration Peak flows caused by inflow may generate a foul flush of accumulated biofilm and sanitary solids scoured from the dry weather wetted perimeter of oversized sewers during peak flow turbulence 6 Sources of inflow can sometimes be identified by smoke testing Smoke is blown into the sewer during dry weather while observers watch for smoke emerging from yards cellars or roof gutters 7 Significance EditDilution of sewage directly increases costs of pumping and chlorination ozonation or ultraviolet disinfection Physical treatment structures including screens and pumps must be enlarged to handle the peak flow Primary clarifiers must also be enlarged to treat average flows although primary treatment of peak flows may be accomplished in detention basins Biological secondary treatment is effective only while the concentration of soluble and colloidal pollutants typically measured as biochemical oxygen demand or BOD remains high enough to sustain a population of microorganisms digesting those pollutants Secondary treatment is expected to remove 85 percent of soluble and colloidal organic pollutants from sewage containing 200 mg L BOD lt ref 8 but BOD removal by conventional biological secondary treatment becomes less effective with dilution and practically ceases as BOD concentrations entering the treatment facility are diluted below about 20 mg L Unremoved organics are potentially converted to disinfection by products by chemical disinfection prior to discharge High rates of infiltration inflow may make the sanitary sewer incapable of carrying sewage from the design service area Sewage may back up into the lowest homes during wet weather or street manholes may overflow 7 Correction EditSmoke test results may not correlate well with flow volumes although they can identify potential problem locations Where sewage flow is expected to be relatively uniform significance of infiltration and inflow may be estimated by comparison of sewage flow at the same point during wet and dry weather or at two sequential points within the sewer system Small areas with large flow differences can be identified if the sewer system provides adequate measuring locations It may be necessary to replace a section of sewer line if flow differences cannot be corrected by removing identified connections 7 References Edit U S Environmental Protection Agency EPA Washington D C Code of Federal Regulations Part 35 State and Local Assistance Definitions Excessive inflitation inflow 40 CFR 35 2005 b 16 40 CFR 35 2005 Grants for Construction of Treatment Works Infiltration Inflow 40 CFR 35 2120 Steel E W McGhee Terence J 1979 Water Supply and Sewerage McGraw Hill p 318 ISBN 0 07 060929 2 a b King James J 1995 The Environmental Dictionary John Wiley amp Sons p 335 ISBN 0 471 11995 4 Private Sewer Laterals PDF Report Water Infrastructure Outreach Boston MA EPA June 2014 Metcalf amp Eddy 1972 Wastewater Engineering New York McGraw Hill pp 39 44 a href Template Cite book html title Template Cite book cite book a CS1 maint uses authors parameter link Fan Chi Yuan Field Richard Lai Fu hsiung Sewer Sediment Control Overview of an EPA Wet Weather Flow Research Program PDF EPA and University of California Los Angeles Archived from the original PDF on 13 March 2016 Retrieved 12 March 2016 a b c Hammer Mark J 1975 Water and Waste Water Technology John Wiley amp Sons pp 303 304 441 442 ISBN 0 471 34726 4 EPA Part 133 Secondary Treatment Regulation 40 CFR 133 Retrieved from https en wikipedia org w index php title Infiltration Inflow amp oldid 1107244361, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.